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ABSTRACT 

Non-pharmaceutical interventions (NPI) have been proven vital in the fight against the COVID-19 

pandemic before the massive rollout of vaccinations. Considering the inherent epistemic-aleatoric 

uncertainty of parameters, accurate simulation and modeling of the interplay between the NPI and contagion 

dynamics are critical to the optimal design of intervention policies. We propose a modified SIRD-MPC 

model that combines a modified stochastic Susceptible-Infected-Recovered-Deceased (SIRD) compartment 

model with mixed epistemic-aleatoric parameters and Model Predictive Control (MPC), to develop robust 

NPI control policies to contain the infection of the COVID-19 pandemic with minimum economic impact. 

The simulation result indicates that our proposed model can significantly decrease the infection rate 

compared to the practical results under the same initial conditions. 

1 INTRODUCTION 

The COVID-19 pandemic has taken a substantial economic and societal toll worldwide (Wan et al. 2022a). 

Before the mass rollout of vaccination and at the early stages of the outbreak, the infection went rampant 

globally, owing to human mobility and uncoordinated and ineffective non-pharmaceutical interventions 

(NPI). Since the pandemic has almost waned and the world has returned to normalcy, it is essential to 

perform a retrospective analysis to better understand the interplay between intervention policies and the 

infection dynamics, to enhance the preparedness for future pandemic outbreaks and the resilience of the 

whole society. Notably, with a lack of knowledge about the novel coronavirus and insufficient and 

inaccurate data, epistemic and aleatory uncertainty have hindered effective prediction of contagion 

evolution. Aleatory uncertainty refers to a process's innate randomness and variability, and epistemic 

uncertainty refers to a lack of knowledge or understanding about the process.  
Compartment models have been predominantly used in modeling the infection dynamics of epidemic 

outbreaks (Chen et al. 2019; Chowell et al. 2003; Jin et al. 2011; Xia et al. 2015). Specifically, the 
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population is divided into non-overlapping groups or compartments representing, for example, those who 
are susceptible (S), infected (I), recovered (R), and deceased (D). The SIRD model and its variants have 
been widely used to predict case counts for COVID-19 and the optimal design of NPIs (Armaou et al. 2022; 

Calafiore et al. 2020). The large number of infections in a short period could crimp the hospital system and 
exhaust the healthcare resources for non-COVID patients. In an attempt to contain infections, NPIs 
inevitably strain the economy and social functions (Miller et al. 2020; Polcz et al. 2022). A good NPI 
strategy seeks a delicate trade-off between economic loss and infections (Lemaitre et al. 2022; Scarabaggio 
et al. 2022; Sharomi and Malik 2017; She et al. 2022). Model predictive control (MPC) has proven effective 
in controlling various real-world processes in which future dynamics are highly uncertain. (Armaou et al. 

2022; Péni and Szederkényi 2021). Consequently, combining MPC with the compartment model is a 
promising approach to designing policies to contain the spread of diseases. 

As in most complex systems, parameters in a compartmental model could be rather challenging to infer 
from the available data owing to a lack of knowledge, incomplete and inaccurate data, as well as 
computational issues (Gallo et al. 2022). Conventional compartmental models, regarded as deterministic, 
could suffer severely from poor predictive power. Uncertainty quantification in parametric compartment 

models could also help formalize a more robust design of control policies (Wu and Mortveit 2015). 
Stochastic compartmental models, moreover, have been developed and applied to the investigation of the 
COVID-19 pandemic (Mamis and Farazmand 2023) and quantify uncertainties in such models.  

In this study, we consider a mixed epistemic-aleatoric uncertainty for parameters in compartmental 
models in the context of COVID-19 for two reasons. First, the knowledge gap is narrowing as more studies 
are conducted on COVID-19 and its variants; and second, the uncertainty of infectious system parameters 

cannot be completely eliminated by acquiring new knowledge or data, due to inherent stochasticity and 
individual differences. Therefore, it is more reasonable to characterize the extensively studied COVID-19 
pandemic in compartmental models using a mixed epistemic-aleatoric parameter. This paper uses 
probability bounds analysis (PBA) to quantify the uncertainty of the SIRD compartment model. PBA is a 
collection of mathematical tools that extends the ideas of interval analysis and probability theory, and may 
be used to quantify both random and deterministic forms of uncertainty in a wide range of scientific 

endeavors. Since it does not make any optimistic assumptions about parameter values, distribution shapes, 
or correlations between variables, PBA excels when there is a paucity of information regarding such 
variables (Gray et al. 2022). 

Moreover, conventional compartmental models have limitations in capturing the complexities of the 
dynamics of the realistic interventional COVID-19 pandemic due not only to the deterministic and constant 
nature of the model parameters but also to the neglectfulness of human society interventions during the 

pandemic. Indeed, the effects of human society interventions, as described by various NPI policies 
implemented by policymakers, are not insignificant.  The impact of human society interventions of COVID-
19 essentially enters the infection process via feedback from some observables (March et al. 2022), and can 
significantly alter the population dynamics more than the parameters in the conventional models. Therefore, 
optimal control to develop practical policies to reduce the realistic pandemic should involve the integration 
of collected data and the implemented human society interventions to avoid implementing inappropriate 

policies. One example of this is the incorporation of pandemic data collected on the use of masks into 
pandemic models that consider the presence of human society interventions. Failure to consider these 
interventions can result in control policies that do not align with policy design expectations, due to 
discrepancies between the control effort of the developed policy (treating wearing masks as the minimum 
intervention) and the control effort of policy implementation (treating non-intervention as the minimum 
intervention). Therefore, it is inevitable that attempts to capture the complexity of the dynamics of a realistic 

interventional COVID-19 pandemic will involve some degree of uncertainty in the model parameters and 
the dynamics of human society interventions. In this study, we introduce additional population feedback 
parameters to model the impact of human society interventions on a SIRD compartment model, to control 
a set of models further, and finally assess the simulated achievable robustness in combatting COVID-19 
infection. 
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We propose a modified stochastic SIRD-MPC model to develop robust control policies to combat the 
spread of  disease with minimal social and economic impacts. We use mixed epistemic-aleatoric parameters 
in a stochastic compartmental model with feedback to emulate the dynamics of human interventions. 

Subsequently, we apply the MPC technique to determine the optimal NPI control policy while considering 
uncertainty propagation using probability bounds analysis (PBA) for uncertainty quantification. It is 
noteworthy that our proposed model possesses general applicability beyond the scope of COVID-19. 
Additionally, the COVID-19 case provides a valuable means of validating our model. 

The following is the structure of this paper. Section 2 introduces the modified stochastic SIRD-MPC 
model. The data preprocessing and retrospective analysis are introduced in section 3. The simulation result 

is shown in section 4. The last section is the conclusion and discussion. 

2 METHODOLOGY 

We use a modified SIRD compartment model and the MPC approach to design optimal containment 

policies for the COVID-19 pandemic, considering both the epistemic and aleatoric parameter uncertainty.  

2.1 Modified SIRD Compartment Model with Parameter Uncertainty  

In the conventional SIRD model, the population is divided into four compartments at each time 𝑡 : 

susceptible 𝑆(𝑡), infected 𝐼(𝑡), recovered 𝑅(𝑡), and deceased 𝐷(𝑡). The intrinsic dynamics of the infection 

process are fully elucidated by the evolution of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), and 𝐷(𝑡), according to a system of 

nonlinear differential equations: 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)𝐼(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡) −  𝛼𝐼(𝑡) 

                                                                                
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡)                                                                        (1) 

𝑑𝐷(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡) 

where 𝛽, 𝛾, and 𝛼 are the transmission rate, recovery rate, and death rate, respectively. Here, 𝑆(𝑡), 𝐼(𝑡), 

𝑅(𝑡), and 𝐷(𝑡) represent the proportional population of compartment susceptible, infected, recovered, and 

deceased. Those parameters are assumed fixed and readily available in deterministic SIRD models. 

However, due to a lack of knowledge and insufficient data on infectious diseases, particularly at the early 

stage of the pandemic, the aleatory and epistemic uncertainty hinders most models from effectively 

depicting the COVID-19 evolution. Therefore, there is a dire need for the effective quantification of the 

parameter uncertainty and its propagation in the model. Though a huge amount of data have been collected 

so far for the COVID-19 virus and its variations, the inherent stochastic spatiotemporal dynamics of the 

infection and the population heterogeneity, among other factors, have presented a knowledge gap in the 

simulation and modeling of COVID-19. Here, parameters in the SIRD compartment model are 

characterized in a mixed epistemic-aleatoric scheme, where the uncertainty about the probability 

distribution of a model parameter is expressed in terms of a particular form of the distribution function to 

an interval bounded by lower and upper bounds on the distribution function parameters. For example, it is 

generally accepted in the literature that the transmission rate 𝛽 follows a normal distribution, which is the 

internal randomness of disease transmission and cannot be eliminated as the aleatory uncertainty. 

Meanwhile, the transmission rate 𝛽 exhibits different infectivity in different environments (temperature, 

altitude, geographical location) (Starke et al. 2021), which is the epistemic uncertainty with the knowledge 

gaps in understanding the contagion process of disease and the ambient environments. Therefore, we can 

use the interval to quantify the epistemic uncertainty to characterize the average infectivity under various 

ambient environments and use the normal distribution to represent the aleatory uncertainty. Specifically, 

𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙([0.03,  0.90],  0.05) follows the normal distribution to represent the aleatory uncertainty 
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(internal randomness of disease transmission) with mean 𝜇 = [0.03,0.90] and standard deviation 𝜎 =
0.05 , where [𝑎, 𝑏]  represents an interval to quantify the epistemic uncertainty (knowledge gaps in 

understanding the contagion process of disease) of with lower bound 𝑎 and upper bound 𝑏.  
According to the record data on the prevalence rate of COVID-19, policymakers have responded with 

interventions of varying magnitudes to contain the infection, from shelter-at-home orders to a large-scale 
lockdown. While effective in bending the infection curve, the lockdown has incurred a huge economic cost. 
The policymakers design the NPI policy 𝐶𝑡 to diminish the interaction in the population and hence the 
effective transmission rate 𝛽 according to the prevalence. Here, 𝐶𝑡 ∈ [0.0, 1.0] represents the nominal level 

of control at time stamp 𝑡, which indicates a nominal discount on 𝛽. As explained in our recent work (Wan  
et al. 2022a), the effective control policy 𝑈𝑡 is subject to the influence of the population's perception of 
infection risk and compliance with the intervention policy. For simplicity, we have 𝑈𝑡 = 𝐶𝑡(1 − 𝑒(−φ×𝐼)). 
In this study, the value of each compartment is normalized to represent the fraction of the total population. 
Therefore, the value of infected compartment 𝐼  in this SIRD model represents the infection rate (the 
proportion of infected compartment); φ > 0 is the scaling factor to steer the strength of the feedback for 

infection rate 𝐼, which can capture the attitude of society and/or government encountering 𝐼. Large φ means 
that the public is prone to comply with the control policy and vice versa. Therefore, the 1 − 𝑒(−φ×𝐼) 
represents the effective level of policy implementation, which can characterize overall compliance of 
control policy for the society and/or government in dealing with the pandemic. In such a manner, as the 
infection rate 𝐼 rises, so too will the effective control policy 𝑈𝑡, which will approach the nominal level of 
control 𝐶𝑡 for large scaling factor φ. The effective transmission rate will decrease to become 𝛽(1 − 𝑈𝑡) if 

a control strategy is implemented. Therefore, we propose a modified SIRD compartment model by 
incorporating the feedback control policy 𝑈𝑡 and the conventional SIRD compartment model to capture the 
interventional evolution of the COVID-19 pandemic. Subsequently, discretization of the modified SIRD 
model is adopted to characterize the compartment evolution, with time step ∆𝑡 = 1 day: 

𝑆(𝑡 + 1) = 𝑆(𝑡) − (1 −  𝑈𝑡)𝛽𝑆(𝑡)𝐼(𝑡) 
𝐼(𝑡 + 1) = 𝐼(𝑡) + (1 −  𝑈𝑡)𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡) − 𝛼𝐼(𝑡) 

𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾𝐼(𝑡) 

                                                                𝐷(𝑡 + 1) = 𝐷(𝑡) +  𝛼𝐼(𝑡)                                                                   (2) 

𝑈𝑡 = 𝐶𝑡(1 − 𝑒(−φ×𝐼(𝑡))) 

2.2 Incorporation of Stochastic Compartment Model and MPC 

In order to construct control strategies to combat the spread of COVID-19, we incorporate optimal control 

method into the modified stochastic SIRD compartment model, considering the mixed epistemic-aleatoric 

uncertainty. Therefore, to execute an optimal control approach to reduce the infection of COVID-19, it is 

required to quantify the uncertainty of the crucial variables of the compartment model, which are 

𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡),  and 𝐷(𝑡)  at time stamp 𝑡 . PBA method (implementation details of uncertainty 

quantification are provided in the appendix section) for uncertainty propagation is used to assess the 

possible outputs/compartment states and the effect of uncertainty on decision-making for our proposed 

model. Meanwhile, cumulative uncertainty makes effective optimal control impractical due to the time 

propagation of uncertainty with model dynamics. To address this issue, MPC is applied because it involves 

continuously updating the best strategy to make up for performance losses predicted over lengthy time 

horizons (Lemaitre et al. 2022). We use a two-stage approach to implementing MPC in this investigation: 

(a) solving the optimization problem for a fixed predictive horizon 𝑁𝑝 using the system’s states ℎ(𝑡0) =

(𝑆(𝑡0), 𝐼(𝑡0), 𝑅(𝑡0), 𝐷(𝑡0)), achieved from the collected epidemiological data (true data or estimated 

stochastic data), as the initial conditions at the start of the optimization problem and (b) putting into the first 

step of optimal design 𝐶𝑡0
 for the compartment model (equation (2)) to achieve the next time stamp states 

ℎ(𝑡1) and starting the next new prediction horizon ([𝑡1, 𝑡𝑁𝑝+1]) until the final terminal time. Therefore, the 
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MPC procedures aim at optimizing the objective within the predictive horizon 𝑁𝑝 . The general MPC 

problem with cost function 𝑓(ℎ(𝑡), 𝑈𝑡) starting from time stamp 𝑡 = 𝑘 can be represented as:  

                                                         𝑱(ℎ(𝑘)) = min
𝑪(𝒌)

∑ 𝑓(ℎ(𝑡), 𝑈𝑡)
𝑘+𝑁𝑝

𝑡=𝑘+1                                                    (3) 

s.t                                                                      constraints                        

where 𝐽(𝑘) denotes the total estimated cost in MPC from time stamp 𝑘  to 𝑘 + 𝑁𝑝 . 𝑓(ℎ(𝑡), 𝑈𝑡) is the 

general form of the cost function, reliant on ℎ(𝑡) and 𝑈𝑡 at the time stamp 𝑡. In other words, the control 

cost depends on the contagion dynamics and the control magnitude, and different functional forms have 

been attempted in the literature (Wan et al. 2022b). We elaborate on the cost function in this study in the 

next section. ℎ(𝑡) = ℎ(𝑡|𝑘) is the predicted state at time stamp 𝑡 given state ℎ(𝑘) at time stamp 𝑘. 𝑪(𝒌) =
{𝐶𝑘, … 𝐶𝑘+𝑁𝑝−1} is a vector of manipulated variables in a prediction horizon 𝑁𝑝 days start from time stamp 

𝑘, and 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the minimum and maximum values of the nominal level of control 𝐶𝑡. In this 

paper, the constraints are defined as follows: 

                                                         �̂�(𝑡 + 1) = �̂�(𝑡) − (1 −  𝑈𝑡)𝛽�̂�(𝑡)𝐼(𝑡) 
𝐼(𝑡 + 1) = 𝐼(𝑡) + (1 −  𝑈𝑡)𝛽�̂�(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡) − 𝛼𝐼(𝑡) 

�̂�(𝑡 + 1) = �̂�(𝑡) + 𝛾𝐼(𝑡) 
�̂�(𝑡 + 1) = �̂�(𝑡) +  𝛼𝐼(𝑡) 

𝑈𝑡 = 𝐶𝑡(1 − 𝑒(−𝜑×𝐼(𝑡))) 
0 ≤ 𝐶𝑡 ≤ 1.0 

where �̂�, 𝐼, �̂�, and �̂� represent the estimated results for 𝑆, 𝐼, 𝑅, and 𝐷, respectively. 

3 MODEL EVALUATION  

3.1 Data Preprocessing 

In this study, we use the COVID-19 data from the open-access database "The COVID Tracking Project" 

(available at https://covidtracking.com/data/download) that compiles and makes available information on 
COVID-19 in the United States. The data is collected from January 2020 to March 2021. We get the 
cumulative information on "positive", "recovered", and "death". Based on the data definitions provided by 
“The COVID Tracking Project”, which is available at https://covidtracking.com/about-data/data-
definitions. The "positive" refers to the cumulative confirmed cases plus probable cases reported of 
COVID-19, the "death" to the cumulative deaths associated with a confirmed or probable case diagnosis of 

COVID-19, and the "recovered" to the cumulative number of people who have been confirmed and then 
recovered from COVID-19. Therefore, the daily infected cases should be the cumulative confirmed cases 
minus the cumulative recovered and cumulative deceased cases. The susceptible cases are the total 
population minus the cumulative confirmed cases. In this study, we consider all the data normalized for 
each compartment susceptible (𝑆), infected (𝐼), recovered (𝑅), and deceased (𝐷). To begin with, we adopt 
a 7-day moving average (MA) filter to smooth the time series record for the 4 compartments. In this study, 

the preprocessed data obtained through the use of the MA technique is treated as true data and is utilized in 
the analysis. 

3.2 Retrospective Analysis 

Analyzing past events, data, or results to better understand their causes and effects is called retrospective 

analysis. In this work, the purpose of the retrospective analysis is to understand the interplay between such 

intervention policies and infection dynamics. Here, we compare the nominal level of control 𝐶𝑡 and the 

observed infection rate 𝐼 to analyze whether the proposed feedback control intervention in our model can 

capture the human society interventions during the pandemic, while maintaining the minimum gap between 

the estimated result with the true data. In such a manner, we construct the cost function with the absolute 
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value as a penalty term for the difference between the estimated states (𝐼(𝑡), �̂�(𝑡), and �̂�(𝑡)) and the true 

data in order to evaluate whether our proposed model can capture the realistic intervention dynamics of 

COVID-19. We also consider the estimated results from the final day to match the trend of the trajectories. 

Due to the parameter uncertainty, we apply the mean of the estimated data to the objective function. Hence, 

the optimization problem can be formulated by:  

                                               𝑱(ℎ(𝑘)) = ∑ ( min
𝑪(𝑡−1)

∑ 𝑍(𝑖)
𝑡+𝑁𝑝

𝑖=𝑡
+ 𝑍(𝑡 + 𝑁𝑝))𝑘+𝑁

𝑡=𝑘+1                                          (4)                                                                                                            

s.t                                                                      constraints                        
where 𝑁 is the total estimation time to estimate each compartment for a given initial condition ℎ(𝑘) and 

we solve an optimization to predict coming 𝑁𝑝 days at each time stamp 𝑡. 𝑍(𝑖) = 𝑔(𝐼(𝑖)) + 𝑔(𝑅(𝑖)) +

𝑔(𝐷(𝑖)) and 𝑔(∙) is the absolute difference between the mean of the estimated value and the true value of 

compartments (𝐼, 𝑅, and 𝐷). For example, 𝑔(𝐼(𝑡)) = ‖𝜇 (𝐼(𝑡)) − 𝐼(𝑡)‖
1
, where 𝜇(∙) is the mean of the 

variable, calculated based on the PBA method, and 𝐼(𝑡) and 𝐼(𝑡) are the estimated and true results for the 

infected compartment at the time stamp 𝑡 . This optimization problem includes 𝑁  small optimization 

problems and each small optimization problem can achieve a vector of optimized variables 𝑪(𝒕 − 𝟏) =

{𝐶𝑡−1, … , 𝐶𝑡−1+𝑁𝑝
} by minimizing ∑ 𝑍(𝑖)

𝑡+𝑁𝑝

𝑖=𝑡
+ 𝑍(𝑡 + 𝑁𝑝). Only the first control variable 𝐶𝑡−1 and the 

first day of the state ℎ(𝑡) = (𝑆(t), 𝐼(t), 𝑅(t), 𝐷(t)) are keeping for time stamp 𝑡. Based on equation (4), 

we can achieve the implemented nominal level of control set 𝑪𝒊𝒎𝒑 = {𝐶𝑘, . . , 𝐶𝑘+𝑁}, where 𝐶𝑖, 𝑖 = 𝑘, … , 𝑁, 

is the first element of vector 𝑪(𝒊) = {𝐶𝑖, … , 𝐶𝑖+𝑁𝑝
}. The achieved nominal level of control set 𝑪𝒊𝒎𝒑 =

{𝐶𝑘, . . , 𝐶𝑘+𝑁} can represent the policy design of the government from time stamp 𝑘 to 𝑘 + 𝑁. 

Here, we assume that the policymaker designs the control actions consistently for each prediction 

horizon, which means that 𝑪(𝒊) = {𝐶𝑖, … , 𝐶𝑖+𝑁𝑝
} with 𝐶𝑎 = 𝐶𝑖, 𝑎 = 𝑖 + 1, … , 𝑖 + 𝑁𝑝. Moreover, we set the 

estimation time 𝑁 = 7 days for reinitializing because we assume that the policymakers readjust/ re-estimate 

the intervention policy weekly based on the latest collected information. We initialize the value of 4 

compartments to the values of September 13, 2020, in Texas, and the total population is a constant value of 

29,360,000. Thus, the normalized initial condition 𝑆(0) = 0.97157 , 𝐼(0) = 0.002641 , 𝑅(0) =
0.019720, and 𝐷(0) = 0.000482. Consequently, the initial condition of 4 compartments in the next period 

is set to the value of September 20, 2020. Additionally, we set the prediction horizon 𝑁𝑝 = 7 and the scaling 

factor φ = 1000. The parameter uncertainty for transmission rate 𝛽, recovery rate 𝛾, and death rate 𝛼 are 

set as follows based on studies (Pacheco and de Lacerda 2021; Pei and Zhang 2021; Sebbagh and Kechida 

2022): 

𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙([0.03,  0.90],  0.05) 
𝛾 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙([0.001,  0.45], 0.01) 

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙([0.0001,  0.07], 0.01) 
We compare the estimated result of our model and the true data in 7 weeks (7𝑁), from September 14, 2020, 

to November 1, 2020 (applied in all the figures in this work), as shown in Figure 1. The shaded area 

represents the possible evolution result of each compartment under the given parameter uncertainty. 

Because uncertainty propagation accumulates uncertainty from prior days, the shaded area gradually 

expands. As time progresses, the uncertainty will grow to be enormous. As a result, the estimation time 

cannot be made too long lest the prediction becomes meaningless. In this case, we suppose that 

policymakers reassess the intervention strategy every week in light of the latest collected information, 

causing uncertainty to build up again every 𝑁 = 7 days. As a result, in the course of 7 days, there is an 

incremental increase in uncertainty, followed by a significant drop as a result of the implementation of the 

latest certain information. The result in Figure 1 shows that the predictive interval covers the observed 

numbers, which indicates that our proposed model can capture the realistic interventional evolution of the 
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COVID-19 pandemic. Furthermore, we compare the implemented nominal level of control 𝐶  and the 

effective control 𝑈, as obtained from equation (4), with the practical infection rate 𝐼 to assess the correlation 

between the two. This evaluation enables us to evaluate whether the proposed feedback control intervention 

in our model can characterize the human society interventions during the pandemic. Our underlying 

assumption is that an increase in the level of control leads to a reduction in infections, while a decrease in 

control results in a rise in infections under a relatively stable scenario. The intuitive result, shown in Figure 

2, indicates that the 𝐶 has a negative influence on the infection rate 𝐼, which conforms to the expectation of 

our proposed model. The correlation of 𝐶 and 𝐼 is -0.92. 

 

 
Figure 1: Comparing the estimated time series resulted from proposed model and true data starting from 

date September 14, 2020. The solid lines are the true data for infected, recovered, and deceased 

compartments presented with blue, green, and orange colors, respectively. The shaded areas are the 

estimated interval for infected, recovered, and deceased compartments presented with blue, green, and 

orange colors, respectively. 

 

 
Figure 2: Comparing the achieved time series nominal level of control 𝐶𝑡 and the practical infection rate 

𝐼(𝑡) to check the trend of 𝐼(𝑡) and 𝐶𝑡 starting from date September 14, 2020. The shaded area in (a) is the 
estimated interval of the infection rate and the solid line is the observed infection rate. The solid lines in (b) 
show the achieved nominal level of control 𝐶 and effective control 𝑈.  

(a) (b)
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4 SIMULATION RESULT  

This work targets constructing a modified stochastic SIRD-MPC model to develop robust optimal control 
policies to provide guidance to combat the spread of the pandemic. In this section, we implement a control 

scheme into our proposed model to determine the robust optimal control policy so as to decrease the 
maximum infection rate cost-effectively. The control scheme can be characterized by the detail 
optimization problem described below: 

 𝑱(ℎ(𝑘)) = min
𝑪(𝒌)

∑ 𝑤1𝕌 (𝐼(𝑡)) + 𝑤2𝕃(𝑈𝑡)
𝑘+𝑁𝑝

𝑡=𝑘+1                                                 (5) 

s.t                                                                      constraints                        
where 𝕌(∙) and 𝕃(∙) are the maximum and minimum values of the variable; 𝑤1 and 𝑤2 are weights for each 
term. As introduced in Section 2, the control action 𝑈𝑡 is an effective control policy imposed on society 
based on the nominal level of control 𝐶𝑡  designed by policymakers and the effective level of policy 
implementation characterized by 1 − 𝑒(−φ×𝐼). Therefore, 𝑈𝑡 is also an uncertainty due to the existence of  
𝐼 in 𝑈𝑡. Here, the cost function considers the worst scenario of infected compartment 𝕌 (𝐼(𝑡)) and worst 
effective control policy 𝕃(𝑈𝑡) to design the nominal level of control policy 𝐶𝑡 so as to avoid significant 

infection and economic costs. Compared to the cost function in equation (4) minimizing the gap between 
the estimated result with true data, we desire to decrease the infection rate to achieve a better control result 
than true data. 

In this case, we set the 𝑤1 =1000 and 𝑤2 = 1 to minimize the maximum estimated infection rate 𝐼 
even with a large economic cost. Meanwhile, to curb the uncertainty cumulation, we reset the MPC every 
7 days, similar in section 3.2, with new initial condition ℎ(𝑘) = 𝜇 (ℎ̂(𝑘)), where ℎ̂(𝑘) is the estimated 

system state based on our proposed model. The simulation result is shown in Figure 3 where (a) shows the 
true and estimated infection rate and (b) presents the achieved nominal level of control and the effective 
control based on our proposed model and control scheme. The result indicates that our proposed model can 
effectively suppress the infection rate even in the worst-case scenario where uncertainty in model 
parameters leads to the infection rate at each time stamp 𝑡. It is worth noting that due to the low infection 
rate, the effective control is significantly less than the nominal level of control. Therefore, policymakers 

should consider designing stricter control policies to tame the pandemic. 
 

Figure 3: Comparing the estimated infection rate and true infection rate starting from date September 14, 
2020: (a) comparison of the true and estimated infection rate; and (b) the achieved ideal level of control 
𝐶 and the effective control 𝑈 based on the proposed model.  

5 CONCLUSION AND DISCUSSION 

In this present study, we propose a modified stochastic SIRD compartment model with mixed epistemic-

aleatoric parameter uncertainty to characterize the COVID-19 dynamics and incorporate it with the optimal 

(a) (b)
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control technique MPC to develop the optimal NPI control policy to contain virus transmission with 
minimum economic impact. The retrospective analysis indicates that our proposed modified SIRD-MPC 
model can capture the realistic interventional COVID-19 dynamics with the proposed feedback NPI control 

policy implementation. Moreover, the simulation result in section 4 suggests that our proposed model can 
achieve a better containment of the infection rate compared to the practical control result based on the 
control scheme. In a realistic control design, the effective control may be significantly smaller than the 
nominal control, so the control scheme should be more stringent. 

Possible future research will investigate how to design a prediction horizon 𝑁𝑝, such as inconstant 𝑁𝑝, 

in our proposed model. Moreover, although our proposed model achieves good performance by model 

validation, we will consider more factors for the feedback mechanism to improve our model. Likewise, 

designing dynamic scaling factor φ and exploring various control schemes are also worth investigating in 

order to better understand and apply our proposed model to combat the pandemic infection in a realistic 

situation. 
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APPENDIX 

This paper employs the PBA method to quantify the mixed epistemic-aleatoric uncertainty by constructing 

probability boxes (p-boxes) that capture the propagated uncertainty. The p-box serves as a versatile 
framework that combines intervals and probability distributions into a unified structure, allowing for the 
characterization of interval bounds on probability distributions. This framework facilitates the rigorous 
treatment of both epistemic and aleatory uncertainty during computational processes. 

Generally, a p-box, denoted as 𝑃𝑏(𝑥) can be represented by a left bound and right bound function as 

𝑃𝑏(𝑥)  =  [𝑃𝑏(𝑥), 𝑃𝑏(𝑥)], 𝑃𝑏(𝑥)  ≥  𝑃𝑏(𝑥)  

where 𝑃𝑏(𝑥) and 𝑃𝑏(𝑥) represent the left and right bound distribution functions, respectively. In the PBA 

method, these functions are approximated based on the inverse of the cumulative distribution function of 

the left and right bounds. The process involves selecting 𝑁𝑠  points between 0 and 1 to construct a 

cumulative probability dataset 𝒚 = (𝑦1, … 𝑦𝑁𝑠
)  to record each cumulative probability 𝑦𝑖 , where 𝑖 =

1, … , 𝑁𝑠. Then, the minimum and maximum values (𝑥𝑖 , 𝑥𝑖) of variable 𝑥 for each cumulative probability 

𝑦𝑖 are calculated using the inverse of the cumulative distribution functions. Finally, the left and right bound 

distribution functions 𝑃𝑏(𝑥) and 𝑃𝑏(𝑥) are formulated based on the cumulative probability dataset 𝒚 and 

its coordinated left and right bound datasets 𝒙 = (𝑥1 , …𝑥𝑁𝑠
) and 𝒙 = (𝑥1, … , 𝑥𝑁𝑠

), achieved from the 

inverse of the cumulative distribution function. Therefore, the whole process allows for the determination 

of interval bounds on probability distributions within the p-box framework. 
According to the description above, the most important step is to calculate the minimum and maximum 

values (𝑥𝑖, 𝑥𝑖) for each cumulative probability 𝑦𝑖. To illustrate this process, we consider a general case 

where 𝑥 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙([a, b], [c, d]) , 𝑎 ≤ 𝑏 , and  𝑐 ≤ 𝑑 . We can reformulate the variable 𝑥  into four 
distributions: 𝑥1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(a, c) , 𝑥2 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(a, d) , 𝑥3 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(b, c) , and 𝑥4 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(b, d) . 
Denoting the cumulative distribution functions of 𝑥1 , 𝑥2 , 𝑥3 , and 𝑥4  are 𝑦1 = 𝑃𝑟1(𝑥), 𝑦2 = 𝑃𝑟2(𝑥), 
𝑦3 = 𝑃𝑟3(𝑥) , and 𝑦4 = 𝑃𝑟4(𝑥)  for any given value 𝑥 , respectively. The inverse of the cumulative 
distribution functions of 𝑥1 , 𝑥2 , 𝑥3 , and 𝑥4  are denoted as 𝑥1 = 𝑃𝑟1−1(𝑦) , 𝑥2 = 𝑃𝑟2−1(𝑦) , 𝑥3 =
𝑃𝑟3−1(𝑦), and 𝑥4 = 𝑃𝑟4−1(𝑦) for any given cumulative probability 𝑦. Hence, we can obtain the left bound 

and right bound points for a given cumulative probability 𝑦𝑖 as follows: 
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𝑥𝑖 = min(𝑃𝑟1−1(𝑦𝑖), 𝑃𝑟2−1(𝑦𝑖), 𝑃𝑟3−1(𝑦𝑖), 𝑃𝑟4−1(𝑦𝑖)) 

𝑥𝑖= max(𝑃𝑟1−1(𝑦𝑖), 𝑃𝑟2−1(𝑦𝑖), 𝑃𝑟3−1(𝑦𝑖), 𝑃𝑟4−1(𝑦𝑖)) 
To quantify the uncertainty of variables, it is necessary to select a confidence interval 𝐼𝛼 = [𝐼𝛼1, 𝐼𝛼2], where 
0 ≤ 𝐼𝛼1 ≤ 𝐼𝛼2 ≤ 1. The precision of the left bound and right bound functions approximation relies on the 
total number of selected points, denoted as 𝑁𝑠 . In this study, we choose 𝑁𝑠 =200 evenly space values 
between 𝐼𝛼1 = 0.0001  and 𝐼𝛼2 = 0.9999 . Consequently, the cumulative probability dataset 𝒚 =
(0.0001, … ,0.9999). 

As illustrated above, the uncertainty quantification based on the PBA method should be conducted 

within the framework of p-box [𝑃𝑏(𝑥), 𝑃𝑏(𝑥)]. In fact, probability distributions, intervals, and constants 

can all be considered as special cases of p-boxes, as explained below: 

1. The probability distribution of a variable 𝑥𝑝 with known cumulative distribution functions 𝑦 =

𝑓𝑝(𝑥𝑝) , the left and right bound datasets for its p-box can be written as 𝒙𝒑 = 𝒙
𝒑

=

(𝑓𝑝−1(0.0001), …, 𝑓𝑝−1(0.9999)) and its p-box format is 𝑃𝑏(𝑥𝑝) =  [𝑃𝑏(𝑥𝑝), 𝑃𝑏(𝑥𝑝)], where 

𝑃𝑏(𝑥𝑝) = 𝑃𝑏(𝑥𝑝) because as 𝒙𝒑 = 𝒙
𝒑
 in our study. 

2. The interval variable 𝑥𝐼 with interval [𝑎, 𝑏] can achieve the left and right bound datasets for its p-
box 𝒙𝑰 = (𝑎, … 𝑎) and 𝒙

𝑰
= (𝑏, … , 𝑏), respectively. 

3. The constant 𝜍 can achieve the left and right bound datasets for its p-box 𝒙𝜍 = 𝒙
𝜍

= (𝜍, …,𝜍). 

These representations allow for the flexible application of the p-box framework to various types of 

uncertainty, encompassing probability distributions, intervals, and constants. The standard arithmetic 

operations can be performed on p-boxes. Any two p-boxes 𝑃𝑏1(𝑥1)  =  [𝑃𝑏1(𝑥1), 𝑃𝑏1(𝑥1)]  and 

𝑃𝑏2(𝑥2)  =  [𝑃𝑏2(𝑥2), 𝑃𝑏2(𝑥2)] can conduct standard arithmetic operations as follows: 𝑃𝑏3(𝑥3) =

𝑃𝑏1(𝑥1) ∘ 𝑃𝑏2(𝑥2) = [𝑃𝑏3(𝑥3), 𝑃𝑏3(𝑥3)], where ∘ ∈  (+, −,∗,∕). 

As we mentioned above, the left and right bound functions 𝑃𝑏3(𝑥3) and 𝑃𝑏3(3𝑥) should be formulated 

based on the cumulative probability dataset 𝒚 and its coordinated achieved left and right bound datasets 

𝒙𝟑 = (𝑥13, …𝑥𝑁𝑠
3) and 𝒙𝟑 = (𝑥13, … , 𝑥𝑁𝑠

3). In this study, we assume that there is a perfect positive 

association between the two variables. Therefore, the left and right bound datasets 𝒙𝟑 and 𝒙𝟑 are calculated 

as follows: 

𝒙𝟑 = 𝒙𝟏 ∘ 𝒙𝟐 = (𝑥11 ∘ 𝑥12, …𝑥𝑁𝑠
1 ∘ 𝑥𝑁𝑠

2)   

𝒙𝟑 = 𝒙𝟏 ∘ 𝒙𝟐 = (𝑥11 ∘ 𝑥12, … , 𝑥𝑁𝑠
1 ∘ 𝑥𝑁𝑠

2)  

where, 𝒙𝟏 = (𝑥11, …𝑥𝑁𝑠
1) and 𝒙𝟏 = (𝑥11, … , 𝑥𝑁𝑠

1) are the achieved left and right bound datasets for p-

box 𝑃𝑏1(𝑥1), based on selected cumulative probability dataset 𝒚 = (𝑦1, … 𝑦𝑁𝑠
), respectively. Similarly, 

𝒙𝟐 = (𝑥12, …𝑥𝑁𝑠
2) and 𝒙𝟐 = (𝑥12, … , 𝑥𝑁𝑠

2) are the achieved left and right bound datasets for p-box 

𝑃𝑏2(𝑥2), based on selected cumulative probability dataset 𝒚 = (𝑦1, … 𝑦𝑁𝑠
), respectively. 

In the PBA framework, the arithmetic operations of p-boxes provide a means to calculate the p-box for 
a dependent variable by leveraging the established arithmetic relationships of other given uncertainty 
parameters and/or variables. Through the application of these arithmetic operations, it becomes possible to 
determine the p-box associated with the dependent variable and consequently quantify its corresponding 

uncertainty. The handling of cumulative uncertainty involves an iterative process that continuously updates 
the relevant uncertainty (p-box) of parameters and/or variables, allowing for a comprehensive assessment 
of the uncertainty pertaining to the dependent variable. 
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