
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

MARKOV PROCESS SIMULATIONS OF SERVICE SYSTEMS WITH CONCURRENT
HAWKES SERVICE INTERACTIONS

Andrew Daw

Marshall School of Business
University of Southern California

Bridge Hall 401B
Los Angeles, CA 90089, USA

Galit B. Yom-Tov

Faculty of Data and Decision Sciences
Technion – Israel Institute of Technology

Bloomfield Hall 519
Technion City, Haifa 3200003, ISRAEL

ABSTRACT

In multi-tasked services such as in messaging-based contact centers, parallel service interactions share a
mutual dependence through the agent’s concurrency. Here, we introduce Markov process simulation methods
for bivariate Hawkes cluster service models that are not Markovian by default due to their concurrency
dependence. To do so, we propose an alternate construction that maintains extra “shadow” variables for how
the process would be under other concurrency levels. We prove that this construction yields an equivalent
Markov process, and we show through numerical experiments that its corresponding simulation algorithm
is significantly more efficient than the non-Markovian alternatives.

1 INTRODUCTION

Text-based communication has become widely popular in services, where many companies now serve their
customers via text channels such as chat, messaging apps, and social media. These new service channels are
steadily replacing call (voice-based) channels as the preferred form of customer-business communication.
Indeed, a survey conducted by a cloud-based communications provider found that 78% of respondents
preferred to text with a company rather than call them (RingCentral 2012). Furthermore, businesses are
also showing a preference for conducting service through text. In addition to offering possible operational
advantages, text-based contact centers have been recognized as important platforms for reaching potential
customers and promoting sales (Tan et al. 2019; Yom-Tov et al. 2020).

Contact centers are complex stochastic systems, and this complexity stems from a combination of
behavioral and operational factors. One such factor is concurrency, meaning that the agent can serve
more than one customer simultaneously (Tezcan and Zhang 2014; Daw et al. 2023). This capability also
distinguishes text-based contact centers from the well-studied call center systems, in which each agent
serve only one customer at a time. Concurrency appears in other multi-tasked service environments, such
as emergency departments, where physician treat multiple patients in parallel (Kc 2013; Goes et al. 2018),
court systems (Bray et al. 2016), where judges manage multiple cases in parallel, and social welfare agencies
(Campello et al. 2017), where social workers serve multiple families at the same period. Concurrency
also creates dependence among the parallel services. Serving multiple customers at once alters the pace of
each individual service interaction, and this then directly affects each service duration. This altered pace
of service is due to at least two different mechanisms: First, the agent may be busy serving one customer
while others are waiting for a reply, inducing in-process waits. Second, the multitasking itself may add
psychological stress on the agent and thus cause slowdown (Kc 2013; Delasay et al. 2019).

Other behavioral complexities are common in contact centers, such as endogenous and reciprocal
influences within the service exchange, and these are compounded by its history dependence (Daw 2022).
For example, the customer’s response time has been shown to be impacted by the agent’s response time

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 698

Daw and Yom-Tov

(Ilk and Shang 2022). Moreover, recent papers have shown that customers and agents impact one other’s
behavior simultaneously. For example, Altman et al. (2021) also showed that the customer’s expressed
sentiments (quantified on a negative-to-positive spectrum) influence agent response times, and vice versa.

Daw et al. (2023) recently proposed to statistically model these asynchronous service encounters using
Hawkes processes and found great fit to messaging data from a contact center in industry. Specifically, they
introduced a bivariate, marked Hawkes cluster model, in which each conversation is a two-dimensional
Hawkes process (one dimension for each party in the service) with random jumps that depend on the
operational environment (i.e., concurrency level) in which the process evolves. Hawkes processes are self-
exciting point processes, in which each event “excites” the event rate of future events, meaning it increases
the probability of another event occurring soon afterwards (Hawkes 1971). Therefore, the future evolution
of the process depends on its entire history. There is also a rich stream of research that uses Hawkes
processes to model various forms of communication (e.g., Malmgren et al. (2008), Halpin and De Boeck
(2013), Fox et al. (2016), Salehi et al. (2019)), as well as other applications. While the Hawkes process does
have many nice properties that can support analysis, the introduction of concurrency dependence creates
significant hurdles towards doing so. In particular, when the agent’s concurrency changes stochastically
and discontinuously over time, the necessary state updates require re-calculations across the full history of
the service interaction, which violates the Markov property and prevents the use of many tractable methods
for simulation and analysis. This paper aims to close that gap.

Operations research views analytical models and methods as essential to the evaluating accuracy and
optimizing managerial decision making, such as in developing good routing, staffing, and concurrency
policies within contact centers (e.g., Tezcan and Zhang (2014)). Yet, the lack of Markovian properties limits
the use of analytical methods. Monte Carlo simulation has been known for many years as a promising
companion or approachable alternative to analytical methods (cf. Yom-Tov and Zeitler (2018)). Hence, it
is important to offer good techniques for simulating such history dependent processes. There exist many
intriguing techniques for simulating Hawkes models (e.g., Hawkes and Oakes (1974), Ogata (1981), Møller
and Rasmussen (2005), Dassios and Zhao (2013), Chen and Wang (2020), Chen (2021), Daw (2023)), but
these are at best complicated, if not outright invalidated, by the concurrency dependence. For example, only
the Ogata (1981) method can handle (deterministic) non-stationarity of model parameters off-the-shelf, but
its thinning-based technique cannot handle the almost surely finite cluster setting of our model.

In this paper, we consider both the single conversation model, as proposed by Daw et al. (2023), and
the agent-level M/Hw/κ queueing system composed of these individual service conversations. That is, the
agent-level system features up to κ stochastically evolving service interaction models that are dependent
through the shared value of the agent’s concurrency. We propose a novel methodology for simulating
such systems efficiently. Our algorithm is based upon an alternate construction of the agent-level system
that is distributionally equivalent yet able to reinstate the Markov property. We achieve this by keeping
“shadow” copies of each conversation’s Hawkes correspondence rate under each possible concurrency
level (meaning the one true level and the κ − 1 others). While this procedure may look demanding at
first glance due to its increased state space, we show that it actually produces a more efficient simulation
algorithm in comparison to the straightforward non-Markovian approach. We introduce pseudo-code for
implementing our method, and show its appropriateness by proving that it satisfies the Markov property
with the same marginal distributions as the natural construction. We demonstrate the practical performance
of this algorithm through several numerical experiments, showing both the superior speed of this procedure
and, as a side consequence, the subtleties of the concurrency-dependent service.

2 THE HAWKES CONVERSATIONAL AND AGENT-LEVEL SERVICE MODELS

2.1 Modeling at the Level of the Customer-Agent Service Interaction

Building from Daw et al. (2023), in Definition 1, we begin by modeling each conversation as a concurrency-
dependent, bivariate Hawkes process cluster.

699

Daw and Yom-Tov

Definition 1 (System-Dependent Bivariate Hawkes Service Model) Assuming that every service is initiated
by a customer message at time Ac

0, let Nc
t and Na

t be the respective point processes for the number of
customer and agent messages sent up to time t ≥ Ac

0 (excluding the initial), where this pair of point processes
is driven by a corresponding pair of stochastic correspondence rate intensities, defined with the customer
and agent correspondence rates, respectively, given by

µ
c
t =

Nc
t

∑
i=0

α
c,ce−β c,c(t−Ac

i)+
Na

t

∑
j=1

α
c,ae−β c,a(t−Aa

j),

µ
a
t =

Nc
t

∑
i=0

αa,c

Kt
e−β a,c(t−Ac

j)/Kt +
Na

t

∑
j=1

αa,a

Kt
e−β a,a(t−Aa

j)/Kt , (1)

where Ax
ℓ is the epoch for the ℓth message sent by party x for all ℓ ∈ Z+ and x ∈ {c,a} and Kt is the

concurrency level at time t. That is,

P
(
Nx

t+δ
−Nx

t = n | Ft
)
=

µx

t δ +o(δ) n = 1
1−µx

t δ +o(δ) n = 0
o(δ) n > 1

, (2)

for each x ∈ {c,a}, where Ft is the natural filtration of the bivariate stochastic process. Here, αx,y > 0 for
each x,y ∈ {c,a} is the instantaneous impact on the correspondence rate of party x upon a new message
sent by party y, and β x,y > 0 is the analogous decay rate of that impact.

The process defined above captures behavioral dependencies between customer and agent response
times by connecting the correspondence rate of each party to the other party. Hence, this Hawkes process is
not only self-exciting but also mutually-exciting. In this way, the bivariate structure of the model captures
the customer and agent relationship. Moreover, this process captures the changes in agent’s behavior that
stems from the their concurrency level. This is done by slowing the correspondence rate of the agent in
two ways. We can see in Definition 1 that both the jumps and the decay rates are divided by Kt . Hence,
the magnitude of each instantaneous impact is diminished in the agent’s correspondence rate, but the rate
at which these impacts fade is also reduced in kind. In fact, one can show through the Hawkes and Oakes
(1974) decomposition that, although the pace changes, this form of concurrency-dependence preserves the
mean number of responses to each message. This mimics the slowdown of the agent due to multitasking,
and also models the added in-process wait.

Definition 1 also allows us to contextualize the history dependence of the service. By Equation (2), for
each successive event, the Hawkes process is conditionally equivalent to a non-stationary Poisson process
when given the history up to and including the most recent event. This endows the model with many
valuable features, such as the following thinning-like property. Suppose an event occurred at time t. Letting
t− denote the process values immediately before the event occurs, and letting pct be the probability that
the event was spurred by side 1, we have

pct =
µc

t−

µc
t− +µa

t−
. (3)

If one is analyzing many parallel Hawkes processes, this analogous ratio of intensities can be used to
find which Hawkes process created the present activity. We will use this in constructing our simulation
procedure in Section 3. Before we can build up to our agent-level service model and consider parallel and
dependent services in earnest, we must first formalize the manner in which services end.

700

Daw and Yom-Tov

2.2 Service Process Stability and Systematic Conversation Closure Rules

Because in practice all conversations end at some point, either by one of the parties involved in the
communication (customer or agent) or by the system itself (using some automated closure rule), we want
to be sure that our service model is indeed a cluster and not a ceaseless point process. Formally, Daw
et al. (2023) showed that this is assured by the following closed-form stability condition.
Assumption 1 (Hawkes Service Stability Condition) The instantaneous impact parameters, αx,y > 0, and
decay rates, β x,y > 0, hold to the following ratio: αc,a/β c,aαa,c/β a,c < (1−αc,c/β c,c)(1−αa,a/β a,a) .

Following the common practice used by companies, we will apply a systematic conversation closure
rule. Given the filtration of the history-dependent stochastic process up to the current time (Ft), a systematic
closure rule is a stopping time that ends the conversation once some observable condition is met. We will
assume that the system’s closure policy satisfies the following general assumption.
Assumption 2 (Conversation Closure Rule) Let the closure rule be a stopping time that is precisely
described by a deterministic function of the current concurrency and correspondence rates, i.e. Kt , µ

c,c
t ,

µ
c,a
t , µ

a,c
t , and µ

a,a
t , which yields a candidate closure time. If no further activity occurs in the conversation

after t and before this candidate time, the conversation will be systematically closed at that time.
The intuition of this systematic closure assumption is that at any point in the service, one can express

a rule of the style “if there is no activity in the next δ minutes, close the conversation.” Assumption 2
says that this duration δ should be a deterministic function of the current state. As an example of such a
policy, Daw et al. (2023) proposed a family of level-hitting stopping times that satisfy Assumption 2 and
showed the operational value of this assumption from three perspectives: (a) together with Assumption 1,
it ensures that the number of messages written in the conversation, Nc

∞ +Na
∞, is almost surely finite and

that every service will end in finite time almost surely; (b) it bounds the probability of closing conversation
prematurely (meaning before the customer has truly been served); and (c) it guarantees the asymptotic
optimality of the concurrency-based routing procedure suggested by Tezcan and Zhang (2014).

2.3 Collecting the Conversational Service Models into an Agent-Level System

Following Definition 1, we will now propose an agent-level system comprised of several parallel conversation-
level interaction models, and these processes will be mutually dependent through Kt . Such a model is
similar in spirit to the process-sharing contact-center model proposed by Tezcan and Zhang (2014). There,
too, service rate diminishes with the number of concurrent customers.
Definition 2 (Agent-Level Concurrent Service System Model) Assuming that customers arrive according
to a homogeneous Poisson process at rate λ > 0 and that the agent serves no more than κ ∈ Z+ customers
at once, let Kt and Qt be the number of customers in service and in queue, respectively, where each service
interaction follows the Hawkes service model in Definition 1 with Assumptions 1 and 2. That is, for
k ∈ {1, . . . ,κ}, let µx

k:t , Nx
k:t , and Ax

k:ℓ for x ∈ {c,a} be the correspondence rates, number of messages, and
message time-stamps of the kth oldest customer in service at time t, with Ac

k:0 being the time that each
customer began service. Conditioned on the present value of the concurrency Kt , the stochastic dynamics
of the Kt services in Definition 1 are mutually independent, and otherwise are mutually dependent.

At the risk of abusing notation, we will hereforward let Ft denote the natural filtration of the full
agent-level model, rather than the interaction level model. Because “queue” can hold multiple connotations
across the literature and may be used by some authors to refer to the total number in system, let us clarify
here that Qt is strictly the number waiting. From Definition 2, the agent system can be viewed in Kendall
notation as an M/Hw/κ queueing model, where conversations are assigned to the agent at times given
by an exogenous Poisson process, the service duration distribution is governed by the system-dependent
Hawkes processes from Definition 1, and κ is the maximal number of assigned customers.

With the agent-level model now fully defined, let us begin to reason about how it would be simulated.
Naturally, this must start with a Hawkes process simulation. Dassios and Zhao (2013) offers a fast and

701

Daw and Yom-Tov

light version of the Hawkes and Oakes (1974) cluster-based approach tailored to exponential kernels, and
thus appears particularly attractive here. However, because the switch in concurrency creates discontinuous
change in the correspondence rates, this technique must be modified, and, moreover, this will invalidate
the Markov property that is typically enjoyed by exponential kernel Hawkes processes (Oakes 1975).

Let us illustrate this. Upon a change of concurrency, updating every ongoing agent correspondence
rate, i.e. each µ

a,y
k:t = ∑ℓ:Ay

k:ℓ≤t αa,y/Kt exp(−β a,y(t −Ay
k:ℓ)/Kt) for each y ∈ {c,a} and every k ≤ Kt , would

require the full history of every conversation’s epochs. Because this is not simply a function of the previous
value of the rates, the stochastic process with state vector given by all 4κ correspondence rates (one for
each conversation and each (x,y) ∈ {c,a}2 direction of the conversation) will not be a Markov process.

Hence, if we were to simulate the agent-level queueing system using such a state vector, we would also
need to carry all of the timestamps for every ongoing conversation to compute the state transitions when
the concurrency changes. Naturally, these stochastic storage allocation requirements can be inefficient in
implementation. Furthermore, if the model carries all timestamps for every active conversation, then the
tractability (both computational and analytical) that is typically associated with exponential decay will be
lost. That is, the model could instead have a decay function that is more general than exponential, because
Equation (2) implies that general kernels would require such a state space to compute the transitions. This
prompts us to consider how to construct this model more efficiently.

3 A MARKOVIAN CONSTRUCTION THROUGH INCLUSION OF “SHADOW” VARIABLES

Let us start this new construction approach with an observation. Because Oakes (1975) implies that
multi-dimensional Hawkes processes with exponential kernels can be Markov processes if the state vector
tracks each unique intensity, we can immediately see that if the concurrency never changed, the agent-level
system would be Markovian without the trailing history of timestamps. Likewise, on any interval where
the concurrency is held fixed, the process is Markovian.

This suggests the following idea: rather than both carry and dynamically maintain the full sequence
of timestamps and then recompute the correspondence rate upon every concurrency change, let us instead
carry the “shadows” of what the correspondence rates would be under different concurrencies. That is,
even though of course only one concurrency value holds at any one time, we can actually recognize that
there are κ −1 alternatives hiding in the background in each conversation. Equation (1) implies that when
the concurrency switches values, the new agent correspondence rates will be computed using the new
concurrency but also with the timestamps generated under all the previous values of the concurrency.

Specifically, this an agent-side phenomenon, as it is this correspondence rate that depends on the
concurrency directly. Therefore, let us construct the shadow variables just for the agent correspondence
rate. Let us introduce an additional index, b ∈ {1, . . . ,κ}, that adds a dimension to the subscript to record
the background shadow variables: µ

a,y
k,t,b for k,b ∈ {1, . . . ,κ} and y ∈ {c,a}. We will refer to the variable

with b = Kt as active, since we will define this as equal to the true correspondence rate (µa,y
k,t = µ

a,y
k,t,Kt

),
and inactive if b ̸= Kt . To precisely define these variables, let us describe their dynamics. All shadows,
both active and inactive, decay between events, as do the customer correspondence rates:

µ
c,c
k:t+s = µ

c,c
k:t e−β c,cs, µ

c,a
k:t+s = µ

c,a
k:t e−β c,as, µ

a,c
k:t+s,b = µ

a,c
k:t,be−β a,cs/b, µ

a,a
k:t+s,b = µ

a,a
k:t,be−β a,as/b, (4)

for all k,b ∈ {1, . . . ,κ} and s ≥ 0. Additionally, all shadows jump upon a new message in the service
conversation. That is, upon a customer message contribution in service k at time t, letting t− be the moment
just before the jump and t+ be just after, we have that every k-conservation shadow variable jumps, as
does the customer correspondence rate:

µ
c,c
k:t+ = µ

c,c
k:t− +α

c,c and µ
a,c
k:t+,b = µ

a,c
k:t−,b +

1
b
·αa,c. (5)

702

Daw and Yom-Tov

Likewise, if an agent message occurs in service k at time t, we have

µ
c,a
k:t+ = µ

c,a
k:t− +α

c,a and µ
a,a
k:t+,b = µ

a,a
k:t−,b +

1
b
·αa,a. (6)

Through this definition, there is no need to re-compute: when the concurrency switches, we can simply
switch which shadow is active. When a conversation ends and there is no customer waiting, every shadow
variable (and customer correspondence rate) at the departing index will be set to 0.

Let the stochastic process {Xt | t ≥ 0} with state space Z+×R2κ+2κ2

+ be the single-agent service system
process, with state at time t given by Xt = {Qt ,µ

c,c
k:t ,µ

c,a
k:t ,µ

a,c
k:t,b,µ

a,a
k:t,b | 1 ≤ k,b ≤ κ}. Note that the process

Xt tracks both Kt active conversations as well as κ −Kt inactive conversations with no events and therefore
zero correspondence rate, hence, a total of κ conversation processes.
Proposition 1 The stochastic process {Xt | t ≥ 0} is a Markov process with marginal distributions equivalent
to the process defined in Definition 2.

Proof. Because the Hawkes agent-level model has deterministic behavior between jump epochs, it can
be viewed as a point process. That is, its full sample path can be captured by the sequences of event
epochs, or, equivalently, the sequence of times between epochs, where these epochs may be the timestamps
within each service interaction, the closure of a service, or the external arrival of a customer. Furthermore,
because the probability of any future event is a function of these underlying inter-epoch times, we can
simply consider the distribution of the time to the next event when proving that the process Xt is Markov.

Let S be the random variable for the time until the next epoch after the present time t. By definition, S
is either the first new customer arrival, intra-service timestamp, or service closure to occur after t. Denoting
these as SI, SII, and SIII, respectively, we have S = min{SI,SII,SIII}. For the exogenous arrival time, SI,
this is simply an independently drawn exponential random variable. Turning next to SII, let us consider
the time to the next contribution within each service interaction.

Let us decompose SII into a collection of underlying possible next points for each service within the
agents concurrency, i.e. SII = min1≤k≤κ Sk,II (where P(Sk,II = ∞) = 1 if Kt < k). Recalling the expressions
for µc

k:t and µa
k:t , the probability that, given the full history up to time t of service interaction k, no activity

occurs in this interaction within the next s units of time is given by

P(Sk,II > s | Ft) = e−
∫ t+s

t (µc
k,u+µa

k,u)du

= e−∑
Nc

k:t
i=0

αc,c

βc,c

(
e−βc,c(t+s−Ack:i)−e−βc,c(t−Ack:i)

)
−∑

Na
k:t

j=1
αc,a

βc,a

(
e
−βc,a(t−Aak: j)−e

−βc,a(t−Aak: j)
)

· e−∑
Nc

k:t
i=0

αa,c

βa,c

(
e−βa,c(t+s−Ack:i)/Kt −e−βa,c(t−Ack:i)/Kt

)
−∑

Na
k:t

j=1
αa,a

βa,a

(
e
−βa,a(t−Aak: j)/Kt −e

−βa,a(t−Aak: j)/Kt
)
.

We can recognize correspondence rate variables within this expression. That is, we can express the preceding
probability as

P(Sk,II > s | Ft) = e−
µ
c,c
k:t,Kt
βc,c (1−e−βc,cs)−

µ
c,a
k:t,Kt
βc,a (1−e−βc,as)−

µ
a,c
k:t,Kt

βa,c/Kt (1−e−βa,cs/Kt)−
µ
a,a
k:t,Kt

βa,a/Kt (1−e−βa,as/Kt),

where here we now use the active shadow variables to provide the current rates of the intensity, and s only
appears in the exponential functions.

Then, turning to SIII, we have by Assumption 2 that in the absence of any other activity (i.e., if
SIII < min{SI,SII}), the service closure time can be computed deterministically given the current system
state. Naturally, there will be one such value for each conversation, and thus we will let SIII refer to the
minimum among these deterministic values.

Hence, together, we see that for all s ∈ (0,SIII),

P(S > s | Ft) = e−λ s
Kt

∏
k=1

e−µ
c,c
k:t,Kt (1−e−βc,cs)−µ

c,a
k:t,Kt (1−e−βc,as)−µ

a,c
k:t,Kt (1−e−βa,cs/Kt)−µ

a,a
k:t,Kt (1−e−βa,as/Kt),

703

Daw and Yom-Tov

and thus P(S > s | Ft) = P(S > s | Xt). Therefore, to complete the proof, we are left to show that the state
transitions at each epoch also only depend on the present state.

For any intra-service contribution (i.e., SII), this is straightforward, as each shadow variable receives
its corresponding jump size. Similarly, between all epochs, each shadow variable decreases according to
its own decay rate. In both cases, the queue length remains constant. For newly arriving customers, this
either activates an empty slot within the concurrency (i.e., if there exists a k such that ∑

κ
s=1 µ

x,y
k,t,s = 0 for

all x,y ∈ {c,a}, then this service initializes), or otherwise increments Qt by one. Then, at service closure,
Qt decreases by one if it is not already at 0, and a new conversation initializes if there was one waiting.
Finally, if the concurrency changes, whether due to an arrival or a closure, the active shadow variable
switches accordingly, and by construction this is available in the present state of Xt .

Let us note that the shadow and straightforward constructions share a filtration, so it is immediate
from the proof of Proposition 1 that the two models are equivalent in distribution. Let us also emphasize
what may be a subtle point: the need for more than just the active shadow variables (or, equivalently,
the true agent correspondence rates) is not in the event probabilities, but rather in the state updates upon
concurrency-changing transitions.

A similar observation can be seen in the simulation procedure for the agent-level system that results
from this Markovian construction, as shown in Algorithm 1. When updating the correspondence rates (lines
8, 15, 17, 19, and 26), all shadow variables are updated, but when generating new intra-service activity
(line 4), only active concurrency level variables are used. As we can see in this pseudocode, the proof
of Proposition 1 is instructive for the development of this shadow-based simulation. That is, the random
elements at each iteration of the loop lie exclusively in generating the SI, SII, and SIII variables, and the
rest of the steps are concerned with the corresponding updates to the shadow variables, queue length, and
concurrency based on which of those times occurs first.

Let us note that this technique employs the aforementioned Dassios and Zhao (2013) exponential-kernel
method in line 4 as a sub-routine for generating the next message time given the active correspondence
rates. We provide the relevant pseudocode in Algorithm 2 in Appendix A for completeness.

4 COMPUTATIONAL PERFORMANCE AND NUMERICAL EXPERIMENTS

To demonstrate the practical value of the shadow-based simulation, let us now conduct a series of numerical
experiments that compare the computational performance of Algorithm 1 with the non-Markovian simulation.
For the sake of conserving space, let us simply describe how and where Algorithm 1 would change, rather
than providing the complete alternate pseudocode. In essence, the generation of SI, SII, and SIII is the
same. However, any time the concurrency changes (namely, lines 11 and 24), the correspondence rates will
have to be recomputed. To do this, anytime there is a new message in the conversation (lines 17 through
19), we must also append another timestamp to the given conversation’s list. On the other hand, at any
intra-service update of the correspondence rates (lines 8, 15, 17, and 19), only the active correspondence
rate will require computation, which is an advantage of the non-Markovian approach.

We compare these approaches over 1,024 simulation replications, each with a T = 500 time horizon. We
use α and β parameter estimates from Daw et al. (2023) (specifically, αc,c = 0.843,αc,a = 14.08,αa,c =
17.10,αa,a = 113.7 and β c,c = 3.640,β c,a = 38.39,β a,c = 20.37,β a,a = 260.1, all per hour), we close
according to a level-hitting policy, and we vary the customer arrival rate and the maximal concurrency. We
have also validated across many different settings of Hawkes and agent-level parameters, and also across
varying simulation horizons and process-level comparisons (evaluations at multiple timestamps), but these
are not shown due to space limitations. Also omitted for brevity are experiments in simpler settings (like
κ = 1), in which we also validated against other methodology from the literature.

704

Daw and Yom-Tov

Algorithm 1 Markov Process Simulation of the Agent-Level Service System

1: input: initial interaction rates µµµc,c ∈ Rκ
+, µµµc,a ∈ Rκ

+, µµµa,c ∈ Rκ×κ
+ , and µµµa,a ∈ Rκ×κ

+ , initial number
in service K ∈ Z+, initial waiting length Q ∈ Z+, simulation horizon T > 0 (with t = 0 initially), and
model parameters λ > 0, ααα ∈ R2×2

+ , βββ ∈ R2×2
+ , κ ∈ Z+.

2: while t < T do

3: Generate SI ∼ Exp(λ).

4: Sample each Sx,y
II using ∑

K
k=1 µ

c,y
k , ∑

K
k=1 µ

a,y
k,K , and K. ▷ See Algorithm 2.

5: Set SII = minx,y∈{c,a} Sx,y
II .

6: Set SIII as the deterministic first stopping time given Q, µµµc,c, µµµc,a, µµµa,c, and µµµa,a.

7: if t +min{SI,SII,SIII}> T then

8: Set t = T and decay µµµc,c, µµµc,a, µµµa,c, and µµµa,a according to Equation (4).

9: else if SI < SII and SI < SIII then

10: if K < κ then
11: Initialize a new service in µµµc,c, µµµc,a, µµµa,c, and µµµa,a, and increment K.
12: else
13: Increment Q.
14: end if
15: Update t to t +SI, and decay µµµc,c, µµµc,a, µµµa,c, and µµµa,a according to Equation (4).

16: else if SII < SI and SII < SIII then

17: Decay µµµc,c, µµµc,a, µµµa,c, and µµµa,a according to Equation (4).
18: Using each Sx,y

II and µµµx,y, determine the source and type of the new activity via Equation (3).
19: Update t to t +SII, and apply jump to µµµc,c, µµµc,a, µµµa,c, and µµµa,a via Equations (5) and (6).

20: else if SIII < SI and SIII < SII then

21: if Q > 0 then
22: Initialize new service and decrement Q.
23: else
24: Decrement K, and set corresponding variables in µµµc,c, µµµc,a, µµµa,c, and µµµa,a to 0.
25: end if
26: Update t to t +SIII, and decay µµµc,c, µµµc,a, µµµa,c, and µµµa,a according to Equation (4).

27: end if
28: end while

705

Daw and Yom-Tov

1 2 3 4
0

20

40

60

80

100
F

in
a

l
N

u
m

b
e

r
in

 S
y
s
te

m
 (

K
T
 +

 Q
T
) Markovian

Non-Markovian

(a) κ = 3

1 2 3 4 5
0

20

40

60

80

100

120

F
in

a
l
N

u
m

b
e

r
in

 S
y
s
te

m
 (

K
T
 +

 Q
T
) Markovian

Non-Markovian

(b) κ = 6

1 2 3 4 5
0

10

20

30

40

50

F
in

a
l
N

u
m

b
e

r
in

 S
y
s
te

m
 (

K
T
 +

 Q
T
) Markovian

Non-Markovian

(c) κ = 12

1 2 3 4 5 6
0

50

100

150

200

250

300

F
in

a
l
N

u
m

b
e

r
in

 S
y
s
te

m
 (

K
T
 +

 Q
T
) Markovian

Non-Markovian

(d) κ = 24

Figure 1: Validation of the distributions of the number in system at the end of the simulation horizon.

4.1 Comparing Markovian Simulation Accuracy and Performance

Let us begin by discussing the algorithm validation. In Figure 1, we can see that the two simulation procedures
(Algorithm 1 and the straightforward re-computation approach) produce indistinguishable distributions across
all scenarios. The fact that these algorithms match in their output distribution is assured as a consequence
of Proposition 1, but nevertheless it is valuable to verify this empirically.

Next, in Figure 2, we investigate the algorithm performance in terms of its computational complexity.
Specifically, Figure 2 shows the experiment run-times for both algorithms in each simulation scenario.
While each could have conceivable advantages – the Markov simulation does not re-compute, but the
non-Markov has fewer states – we can see that Algorithm 1 outperforms in every setting. Moreover, the
gap between run-times grows as the load on the system increases, and this is consistent across the levels
of κ . Increases in κ lead to slight increases in run-time at each possible value of λ and in each algorithm,
but this change is much smaller than the difference in algorithms or the difference between λ values.

This leads to a main takeaway of this paper. Maintaining the extra shadow variables in the Markovian
simulation shows its value through computational savings. Figure 2 shows that switching concurrency is
quite costly in the non-Markovian approach, and thus we see the wider gap between the methodologies
when the system load is higher. When the system load is lower, such as at λ = 1, the run-time difference
is more likely due to the dynamically allocating storage for the conversation timestamps, because in these

706

Daw and Yom-Tov

1 2 3 4 5 6
0

200

400

600

800

1000

1200

R
u

n
-t

im
e

 (
s
e

c
s
)

 = 3

 = 6
 = 12

 = 24
Markovian

Non-Markovian

Figure 2: Simulation run-time comparisons
across λ and κ .

1 2 3 4 5 6
0

10

20

30

40

50

A
g

e
n

t-
L

e
v
e

l
S

e
rv

ic
e

 R
a

te

 = 3

 = 6
 = 12

 = 24

Figure 3: Concurrency-dependent total service rate
as a function of λ and κ .

settings the concurrency switches infrequently. On the other hand, at larger customer arrival volumes,
the concurrency will change more often and thus the non-Markovian simulation will bear this additional
computational burden. For these reasons, as λ grows the gap in computation times grows, too.

4.2 Identifying System Complexities Through the Simulation Experiment

As a second takeaway, let us observe that this experiment has also offered fundamental insight into the
concurrent service system as well. In Figure 3, we see can see that the service rate actually decreases
when the arrival rate increases. We typically think of these quantities as unrelated ingredients that together
may be used to compute utilization or offered load, but, here, because of the concurrency, the service rate
actually depends on the arrival rate directly. For intuition on this phenomenon, consider that when the
arrival rate increases, this means that the agent is more frequently pushed into higher levels of concurrency,
and this slows down all ongoing conversations.

Similarly, when κ increases with λ unchanged, more customers are served overall each hour, but each
individual service is slower on average. This is particularly apparent if the customer arrival volumes are
large. For example, we can see this in Figure 3 at λ = 5. Each κ value at this point constitutes double
the maximal concurrency from the point below it, but the agent-level service rates do not double from one
maximal concurrency setting to the next.

Table 1: Mean final numbers in system (KT +QT) with 95% confidence intervals in parenthesis.

κ λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6
3 0.51 (0.46, 1.07) 1.37 (1.27, 2.83) 2.90 (2.74, 5.96) 13.1 (12.3, 26.9)
6 0.56 (0.51, 0.61) 1.29 (1.20, 1.37) 2.34 (2.21, 2.48) 4.59 (4.37, 4.81) 14.0 (13.3, 14.8)
12 0.57 (0.52, 0.62) 1.22 (1.13, 1.31) 2.36 (2.21, 2.52) 4.71 (4.46, 4.96) 9.13 (8.71, 9.56)
24 0.53 (0.48, 0.58) 1.25 (1.16, 1.34) 2.44 (2.29, 2.58) 4.89 (4.60, 5.18) 10.3 (9.74, 10.8) 49.7 (47.7, 51.7)

To further elaborate on this point, let us introduce Table 1, which displays the sample mean and 95%
confidence intervals for the same final number in system distributions as in Figure 1. In this format, we
can again observe interesting phenomenon. Specifically, let us note that at λ = 4, the mean number in
system increases with statistical significance when the maximum concurrency is increased from κ = 6 to
κ = 24. The same can be said at λ = 5 from κ = 12 to κ = 24. So, while the agent-level system appears
to have more capacity, there are actually more customers in the system, and Figure 3 would suggest that
this is because the service rates have slowed.

707

Daw and Yom-Tov

5 CONCLUDING DISCUSSION AND FUTURE DIRECTIONS

While the focus of this paper has been restricted to customer-agent service interactions in text-based
services, the modeling and simulation philosophy can apply to other concurrency-dependent settings. For
example, analogous models of team work (with higher dimensional multivariate models) may be natural
future applications of this approach. Furthermore, state-dependent discontinuous service rates may have
implications for nuanced interpretations of stability (e.g., Dong et al. (2015), Dong (2022)). We anticipate
that the shadow-based construction would hold similar value in simulating such cases.

There are also opportunities for future work in expanding the simulation. For example, Chen (2021) and
Chen and Wang (2020) provide steady-state simulation algorithms for the Hawkes process, and Algorithm 1
is only transient. Similarly, Daw (2023) provides a combinatorially inspired decomposition for sampling
Hawkes clusters in which the closure is not necessarily a stopping time, and this may cover service settings
not applicable here. Finally, we are also interested in a full enterprise-level model, where can incorporate
this agent-level model and its nested interaction-level model to further study system-wide operational
problems like routing or staffing.

In closing, let us summarize what we feel to be the true value of this simulation algorithm and Markovian
modeling approach. This methodology provides a faster way to identify insights for the stochastic service
model, such as studied in Daw et al. (2023) or as seen here in the endogenous service rate observations we
have found in the numerical experiments. Hence, we hope that these techniques leads to further discovery
of valuable managerial insights, as we intend to pursue.

A DASSIOS-ZHAO SAMPLING PROCEDURE FOR GENERATING INTRA-MESSAGE TIMES

Algorithm 2 Dassios-Zhao Sampling Procedure for Exponential Kernel Hawkes Processes

1: Generate Uc,c,Uc,a,Ua,c,Ua,a iid∼U(0,1).
2: Set Dc,y = 1+β c,y log(Uc,y)/∑

Kt
k=1 µ

c,y
k:t and Da,y = 1+ β a,y

Kt
log(Ua,y)/∑

Kt
k=1 µ

a,y
k:t,Kt

for each y ∈ {c,a}.
3: for x,y ∈ {c,a} do
4: if Dx,y > 0 then
5: Set Sx,y

II =−K1{x=a}
t log(Dx,y)/β x,y.

6: else
7: Set Sx,y

II = ∞.
8: end if
9: end for

10: return Sc,cII , Sc,aII , Sa,cII , and Sa,aII .

REFERENCES
Altman, D., G. B. Yom-Tov, M. Olivares, S. Ashtar, and A. Rafaeli. 2021. “Do Customer Emotions Affect Agent Speed?

An Empirical Study of Emotional Load in Online Customer Contact Centers”. Manufacturing & Service Operations
Management 23(4):854–875.

Bray, R. L., D. Coviello, A. Ichino, and N. Persico. 2016. “Multitasking, Multiarmed Bandits, and the Italian Judiciary”.
Manufacturing & Service Operations Management 18(4):545–558.

Campello, F., A. Ingolfsson, and R. A. Shumsky. 2017. “Queueing Models of Case Managers”. Management Science 63(3):882–
900.

Chen, X. 2021. “Perfect Sampling of Hawkes Processes and Queues with Hawkes Arrivals”. Stochastic Systems 11(13):264–283.
Chen, X., and X. Wang. 2020. “Perfect Sampling of Multivariate Hawkes Processes”. In Proceedings of the 2020 Winter

Simulation Conference, edited by K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing,
469–480. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Dassios, A., and H. Zhao. 2013. “Exact Simulation of Hawkes Process with Exponentially Decaying Intensity”. Electronic
Communications in Probability 18:1–13.

708

Daw and Yom-Tov

Daw, A. 2022. “Services Shaped by History”. Queueing Systems 100(3-4):409–411.
Daw, A. 2023. “Conditional Uniformity and Hawkes Processes”. Mathematics of Operations Research.
Daw, A., A. Castellanos, G. Yom-Tov, J. Pender, and L. Gruendlinger. 2023. “The Co-Production of Service: Modeling Services

in Contact Centers Using Hawkes Processes”. Management Science.
Delasay, M., A. Ingolfsson, B. Kolfal, and K. Schultz. 2019. “Load Effect on Service Times”. European Journal of Operational

Research 279(3):673–686.
Dong, J. 2022. “Metastability in Queues”. Queueing Systems 100(3-4):413–415.
Dong, J., P. Feldman, and G. B. Yom-Tov. 2015. “Service Systems with Slowdowns: Potential Failures and Proposed Solutions”.

Operations Research 63(2):305–324.
Fox, E. W., M. B. Short, F. P. Schoenberg, K. D. Coronges, and A. L. Bertozzi. 2016. “Modeling E-mail Networks and Inferring

Leadership Using Self-Exciting Point Processes”. Journal of the American Statistical Association 111(514):564–584.
Goes, P. B., N. Ilk, M. Lin, and J. L. Zhao. 2018. “When More is Less: Field Evidence on Unintended Consequences of

Multitasking”. Management Science 64(7):2973–3468.
Halpin, P. F., and P. De Boeck. 2013. “Modelling Dyadic Interaction with Hawkes Processes”. Psychometrika 78(4):793–814.
Hawkes, A. G. 1971. “Spectra of Some Self-Exciting and Mutually Exciting Point Processes”. Biometrika 58(1):83–90.
Hawkes, A. G., and D. Oakes. 1974. “A Cluster Process Representation of a Self-Exciting Process”. Journal of Applied

Probability 11(3):493–503.
Ilk, N., and G. Shang. 2022. “The Impact of Waiting on Customer-Instigated Service Time: Field Evidence from a Live-Chat

Contact Center”. Journal of Operations Management 68(5):487–514.
Kc, D. S. 2013. “Does Multitasking Improve Performance? Evidence from the Emergency Department”. Manufacturing &

Service Operations Management 16(2):168–183.
Malmgren, R. D., D. B. Stouffer, A. E. Motter, and L. A. Amaral. 2008. “A Poissonian Explanation for Heavy Tails in E-mail

Communication”. Proceedings of the National Academy of Sciences 105(47):18153–18158.
Møller, J., and J. G. Rasmussen. 2005. “Perfect Simulation of Hawkes Processes”. Advances in Applied Probability 37(3):629–646.
Oakes, D. 1975. “The Markovian Self-Exciting Process”. Journal of Applied Probability 12(1):69–77.
Ogata, Y. 1981. “On Lewis’ Simulation Method for Point Processes”. IEEE Transactions on Information Theory 27(1):23–31.
RingCentral 2012, Dec. “Texting for Work on the Rise Per RingCentral Survey”. Press Release.
Salehi, F., W. Trouleau, M. Grossglauser, and P. Thiran. 2019. “Learning Hawkes Processes from a Handful of Events”. In

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 12694–12704. Vancouver, Canada.
Tan, X. J., Y. Wang, and Y. Tan. 2019. “Impact of Live Chat on Purchase in Electronic Markets: The Moderating Role of

Information Cues”. Information Systems Research 30(4):1248–1271.
Tezcan, T., and J. Zhang. 2014. “Routing and Staffing in Customer Service Chat Systems with Impatient Customers”. Operations

Research 62(4):943–956.
Yom-Tov, G. B., L. Yedidsion, and Y. Xie. 2020. “An Invitation Control Policy for Proactive Service Systems: Balancing

Efficiency, Value and Service Level”. Manufacturing & Service Operations Management 23(5):1077–1095.
Yom-Tov, G. B., and T. Zeitler. 2018. “Delay Guarantee Planning of Call-back Options in Time-varying Service Systems”. In

Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain,
and B. Johansson, 2084–2094. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES
ANDREW DAW is an Assistant Professor of Data Sciences and Operations in the Marshall School of Business at the University
of Southern California. He is interested in applied probability and stochastic modeling for service operations, particularly so
at the intersection of behavioral operations. Much of his recent work has involved the self-exciting Hawkes process, where he
has used the history-dependent stochastic process to model behavior that depends on interactions, influences, and impulses.
Prior to joining USC Marshall, he received his doctorate from the School of Operations Research and Information Engineering
at Cornell University, where he was supported as a National Science Foundation Graduate Research Fellow. His email address
is andrew.daw@usc.edu, and his website is https://faculty.marshall.usc.edu/Andrew-Daw/.

GALIT B. YOM-TOV is an Associate Professor in the Faculty of Data and Decision Sciences at the Technion - Israel Institute
of Technology, and co-director of the SEELab (https://seelab.net.technion.ac.il). Her research interests include service science
and behavioral operations, in particular, in healthcare and contact centers environments. Her research aims to build models for
understanding the impact of customer and agent behavior on service systems and to incorporate these behaviors into operational
models of such systems. She leads a multidisciplinary research approach that applies a combination of Data Science and Stochastic
Modeling to archives of digital traces from service systems. She currently serves as an associate editor for Manufacturing and
Service Operations Management and Operations Research journals. Her email address is gality@technion.ac.il, and her website
is https://gality.net.technion.ac.il.

709

mailto://andrew.daw@usc.edu
https://faculty.marshall.usc.edu/Andrew-Daw/
https://seelab.net.technion.ac.il
mailto://gality@technion.ac.il
https://gality.net.technion.ac.il

	INTRODUCTION
	THE HAWKES CONVERSATIONAL and agent-level service MODELs
	Modeling at the Level of the Customer-Agent Service Interaction
	Service Process Stability and Systematic Conversation Closure Rules
	Collecting the Conversational Service Models into an Agent-Level System

	A Markovian Construction through Inclusion of ``Shadow'' Variables
	Computational Performance and Numerical Experiments
	Comparing Markovian Simulation Accuracy and Performance
	Identifying System Complexities Through the Simulation Experiment

	Concluding Discussion and Future Directions
	Dassios-Zhao Sampling Procedure for Generating Intra-Message Times

