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ABSTRACT

Modern enterprise infrastructures (EIs) including those of industrial control systems (ICSs) are becoming
increasingly crucial to businesses in a wide range of sectors spanning multiple end-user verticals (e.g.,
energy, chemical, manufacturing, biotechnology). These EIs improve the (real-time) decision support,
productivity, and efficiency of business processes, but are necessarily reliant upon the cyber-resilience of
complex infrastructures for sustainable business continuity. We are interested in the long-standing open
question in the cyber-resilience domain: how can managers formally quantify cyber-resilience for any
complex networked EI (sub-)system in the event of a cyber-attack affecting its multiple (inter-dependent)
components? We propose a simulation-backed framework derived from probabilistic graph theory to
answer this question. We pioneer the derivation and analysis of a quantifiable, closed-form manager-
friendly expression exhibiting the degree of cyber-resilience (dependent upon individual EI component
functionality quality and the varying extents of functional dependencies across networked components)
within the (sub-)system post cyber-attack(s) affecting an EI.

1 INTRODUCTION

The modern IoT/CPS driven enterprise market - mostly spanned by industrial control system (ICS) driven
enterprises, is currently valued at least around a few hundred billion dollars globally and growing at
a CAGR of approximately 10% (according to GlobeNewswire). This market is crucial to businesses
spanning a wide range of (public and private) sectors that include energy, chemical, power, manufacturing,
transportation, biotechnology, and other end-user verticals. The physical machinery underlying the business
supporting enterprise infrastructures (EIs), that traditionally used to be dumb, are often embedded today with
software-programmable IoT/CPS devices such as sensors, actuators, programmable logic controllers (PLCs),
programmable automation controllers (PACs), and intelligent electronic devices (IEDs). Furthermore, these
devices can communicate with each other over a wireless network (e.g., WiFi, 5G) and/or the Internet through
proprietary network protocols. This results in a smart and networked cyber-physical infrastructure with
associated IT/software and OT controls supporting increasingly new forms of running enterprise business
processes built upon software stacks. The steady growth of such cyber-physical EIs is primarily due to
(a) rising cost of labor, (b) pressure on businesses to satisfy the two-fold constraint of meeting receding
deadlines under increasing demand, (c) organizational push to improve quality control via real-time data
driven decision making, and (d) mitigating human error in increasingly automated business processes. In
summary, networked cyber-physical EIs will generate significant economic and societal benefits through
improved efficiency, productivity, and reliability of a plethora of (critical) day-to-day business processes.

Despite the continual technical advancements in IoT/CPS technology, an EI can necessarily sustain
business continuity (BC) both, for itself and for other external (ICS-driven EI reliant) businesses dependent
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on it, only if relevant (sub-)systems spanning the EI are cyber-resilient in the face of business-disrupting
cyber-beach incidents. In this paper, we define ‘cyber-resilience’ as the ability of any system (in this work,
any (sub-)system at the physical and/or software spanned by an EI) to successfully absorb and adapt to
such cyber-breach incidents [(Cutter et al. 2013)] by providing a minimum acceptable level of business
functionality performance. This ability is usually quantified in a metric that further drives enterprise C-suites
to appropriately invest in resilience management and engineering.

As an example of non cyber-resilient system behavior, unauthorized access (e.g., via a spear phishing
cyber-attack) into the supervised control and data acquisition (SCADA) system of an electric power grid can
result in multiple software-controlled substations (representing ICS sub-systems) being disconnected for
hours (hence exhibiting cyber non-resilience), eventually leading to regional power blackouts that will not
only disrupt consumer lifestyle and the local energy transmission business, but all other businesses (e.g., man-
ufacturing, healthcare) that are (critically) dependent on power. Here, blackout events project the inability of
the power grid to adapt or recover to a cyber-attack by providing enough electricity to certain (critical) corpo-
rations and/or households for a minimum amount of time (consequently satisfying a minimal BC threshold),
even if the rest do not have power. The Kyivoblenergo regional electric distribution company in Ukraine
faced a similar cyber-attack in the year 2015 when approximately 230,000 of their customers in the Ivano-
Frankivsk region and inter-dependent businesses lost power (https://www.globalsign.com/en/blog/cyber-
autopsy-series-ukranian-power-grid-attack-makes-history). Unfortunately, each EI built upon ICSs usually
operates on a large cyber-risk terrain at its network, device, workstation, and perimeter layers that contributes
to hundreds of thousands of cyber-vulnerabilities which adversaries can exploit - many of them capable of
causing large-scale systemic business disruptions.

With (state-sponsored) cyber-attacks on (critical) EI infrastructure on the rise, it is mandatory for EI
management to have a cyber-resilience plan in operation to sustain business continuity in the face of such
cyber-attacks. The foundation elements of such a management plan often involve (but not limited to) (a)
quantifying EI cyber-resilience via a metric and (b) subsequently deriving a constrained budget-allocation
framework to enable an EI management to achieve a desired level of cyber-resilience. We focus on the
former foundational element in this paper.

1.1 Research Contributions and Novelty

Motivated by the fact that there is a lack of (formally-backed) principles (in research or industry literature)
among organizations (ICS-driven or otherwise) around the globe on how C-suites should metricize the
degree of cyber-resilience for complex business processes in the event of cyber-attacks, we take a first
pass at proposing a general formal framework to quantify cyber-resilience in a complex IT/IoT driven EI
system having inter-dependent networked (at either the physical, logical, informational, or geographical
abstraction) components. We make the following research contributions in this paper.

• We model an enterprise infrastructure (EI) as a general (physical, logical, informational, or geo-
graphical) weighted directed network of inter-dependent components, where the inter-component
linkages, i.e., network edges, represent a measure of directional inter-dependency between com-
ponents of the EI. In the event that a cyber-attack on any EI (sub-)system directly brings down
multiple specific components (usually primary infrastructure targets by cyber-adversaries), we first
derive an analytical and easily computable expression, using principles from the theory of fixed-
point equations and lattice algebra, for the number of inter-dependent components that indirectly
(via a spread effect) fail to function at their ‘basic minimum’ ability to (partially) support other
components dependent on them for functioning. We term such components (both directly and
indirectly affected) as ‘dysfunctional’. The novelty of our approach rests in explicitly accounting
for component inter-dependencies (apart from their logical network connectivity) while deriving
such a metric that captures the total number of dysfunctional EI components post a cyber-attack
event. We identify this simple metric as a manager-friendly measure to quantify EI cyber-resilience
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given that the former is directly related and inversely proportional to an EI’s ability to absorb and
adapt from cyber-attack(s) - a standard definition of system resilience (Linkov et al. 2013). From the
perspective of enterprise cyber-resilience management, our proposed metric provides C-suites with
an average estimate of the monetary impact of business disruption. This estimate is a determining
factor for cyber-resilience budget planning (see Sections 2 and 3).

• We subsequently derive a closed form (quantifiable) expression for our proposed cyber-resilience
measure for any general networked EI with interdependent components using probabilistic graph
theory. We validate our theory with extensive Monte Carlo simulations that also output the statistical
equivalent of our measure apriori, over multiple attack configurations. After all, managers cannot
wait to assess enterprise cyber-resilience post a cyber-attack event as it moots the resilience planning
and management process. Apart from formally and uniquely accounting for system network topology,
our metric formally and uniquely accounts for system network randomness, cyber-attack impact
randomness, and the randomness in various components’ ability to adapt and absorb the adverse
impact of a cyber-attack. This statistical, quantifiable, and computable measure of EI cyber-resilience
provides enterprise management with an instantaneous and simple base estimate on how robust
its (sub-)systems are post a cyber-attack, for existing (i.e., status quo) investments made towards
ensuring cyber-resilience [(Alderson and Doyle 2010; Allspaw 2012)] (see Sections 4 and 5).

To the best of knowledge, we pioneer mathematical system resilience theory to quantify cyber-resilience
for complex networked cyber infrastructures with functionally inter-dependent system components.

1.2 Related Work

Most well-known system cyber-resilience metrics introduced in the research literature are engineering
focused, and either model cyber-resilience as (a) a rebound of the system from cyber-shock to reach the
usual state of equilibrium level of performance at which the system usually performs, or (b) a synonym
for robustness allowing the system to function at degraded but acceptable levels of performance post a
rebound from a cyber-shock (Segovia et al. 2020; Francis and Bekera 2014; Linkov et al. 2013; Clark
and Zonouz 2017; Woods 2015; Hosseini et al. 2016; Arghandeh et al. 2016; Gholami et al. 2018;
Venkataramanan et al. 2019; Venkataramanan et al. 2019; Zuloaga et al. 2019; Hossain-McKenzie et al.
2018; DiMase et al. 2015; Sterbenz et al. 2011; Chaves et al. 2017; Haque et al. 2018). Despite a highly
application-dependent overloading in the definition of cyber-resilience across these works, the common
aspect among these metrics is that they are derived using mathematical frameworks that all account for the
cyber-vulnerability dynamics of each (sub-)system component or a network (Haque et al. 2018), alongside
some accounting for an adversarial input to model the cyber-vulnerability dynamics.

However, a common drawback to all these metrics is the fact that none of them account for the extent
of liabilities between EI components - a salient complex system property, irrespective of whether the
cyber-resilience measure is network dependent or not. More specifically, the degree of liability between
(sub-)system components creates negative service degradation externalities that (non-linearly) percolate
throughout an EI network when individual components experience a cyber-shock. These percolating
externalities, that directly influence the ability of components to absorb and adapt, go unaccounted for in
the calculation of existing cyber-resilience metrics. As an example, a water-cooling component within an
ICS-type EI (e.g., a manufacturing plant) might heavily depend on component A for water. In the event of
A failing, components B and C might partially satisfy the water demands of the cooling component which
allow the latter to function with a degraded quality of service (QoS). Nonetheless, this degradation is not
stand-alone, and would recursively percolate (hence the negative externality effect) within the component
network affecting the QoS of all components that depend on the water-cooling component as the root
service source. Such externalities need to be necessarily accounted for in metrics aiming to accurately
model system cyber-resilience, and is missing, as a major drawback, from existing literature.
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In line with the above-mentioned common cyber-resilience metric pitfall in existing literature, we in
this paper, are interested in the long-standing open question (Musman et al. 2019; Cybenko 2019) in the
cyber-resilience domain: how can managers formally quantify cyber-resilience for any complex networked
EI (sub-)system in the event of a cyber-attack affecting its multiple (inter-dependent) components? To
this end, we alleviate the aforementioned pitfall by the design and analysis of a formal amalgamated
methodology rooted in probabilistic graph theory and lattice-theoretic fixed point algebra results (Topkis
1978), that accounts for the percolation of the negative externalities throughout a liability-driven EI
network in determining a quantitative measure of cyber-resilience. This methodology importantly adds to
the effectiveness and accuracy of the multiple existing and overloaded definitions of EI cyber-resilience that
do not capture the said percolating externalities post cyber-shocks hitting multiple nodes of an EI network.
With respect to modeling the aspect of externality percolation, we adopt the seminal works on bootstrap
percolation theory (Holroyd 2003; Balogh and Bollobás 2006; Balogh and Pittel 2007) for un-directed
networks and extend them to our EI setting of weighted directed graphs. The strong relevance of using
bootstrap percolation theory in our work lies in the fact that (a) it is popular in fault tolerant distributed
system models to analyze cascading-related failure probabilities in non-homogeneous systems - a defining
characteristic of EIs in general, and (b) allows us to effectively analyze at scale networked systems of large
sizes in the number of (sub-)system components (Kirkpatrick et al. 2002) - a property of societal EIs.

2 SYSTEM MODEL

We consider a general enterprise infrastructure setting reliant upon IT and/or IoT technology in our
work. However, without loss of generality and for the purpose of exposition, we present an industrial
control system (ICS) as a representative example of an EI infrastructure in this paper. We assume that
an ICS comprises networked components that often exhibit inter-dependent relationships with each other.
These inter-dependencies could be either at the physical, informational, geographical, or logical levels of
abstraction. As pertinent examples of some of these inter-dependencies in the smart grid setting, we have
(a) the supply of natural gas at a minimum pressure of 300 psig as a necessary functioning constraint for
boilers; the supply of lube oil necessary for turbines and generators; and the supply of water for emissions
control, as examples of physical inter-dependencies, (b) message-based e-recommendations from the energy
management system (EMS) to turbines on optimal throttle settings; and networked transmissions of real-time
operational conditions recorded by a power plant information system to EMS and plant engineers over a
demilitarized zone (DMZ) router, as examples of informational dependencies, and (c) inter-dependencies
among turbines, boilers, and chillers in different geographical locations, as examples of geographical
dependencies. A figurative illustration of such functional dependencies in a real-world smart grid is shown
in Figure 1, and borrowed from (Khan and Madnick 2021).

We model an ICS (or any of its sub-systems) by a weighted directed graph G = (V,e). The vertex set
V = {1, . . . ,n} = [n] represent (sub-)system components. The edge inter-dependency matrix is given by
e ∈n×n, where the i j-th entry e(i, j) represents the amount of service liability (in tangible units) component
i owes from component j for the normal functioning of i. As an example, i could be a cooling tower for a
power plant that needs to consume approximately 2.4 gallons of water per minute (supplied from multiple
sources, each representing a j and the sum of e(i, j)’s summing to 2.4) of operation per 100 tons of cooling
required to always maintain a certain temperature range inside a power plant. The inability to do so will
likely trigger overheating of machines inside the power plant and significantly increase the likelihood of their
damage. The e(i, j) values are usually known and obtained/estimated by site management administration
by observing the traditional normal functioning of ICS operations over time. The inter-component service
liability (inter-dependency) owed by any component i from other j’s is given by A(i) := ∑ j e(i, j). In a
similar fashion, ∑ j e( j, i) represents the inter-component liabilities i owes to other js in the ICS network.
In addition to these inter-component liabilities, each component i may self-invest to ‘generate’ (including
‘processing’ efforts) Di amounts of a relevant resource to serve its functionality. Figure 2 provides a
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Figure 1: Illustrating functional dependencies among networked EI (i.e, a thermal plant ICS) components.

figurative illustration of our graph modeling ideas. Here, the purple arrows denote the e(i, j) variables of
our proposed graphical model.

Having modeled an ICS into a graph, we define a general ICS network, (e,γ), to be one with the vertex
set V = [n] having a matrix of liability (inter-dependency) exposures {e(i, j)}1≤i, j≤n, and a set of node
independence quotient (NIQ) ratios {γ(i)}1≤i≤n. Here, γ(i) := c(i)

A(i) for each ICS component i is the ratio
of the total amount of resources, c(i), available to a component i to sustain functionality to the amount
of resources i receives only from other components in the network via inter-dependent relationships to
sustain the same functionality. Here, c(i) = x(i)+∑ j ̸=i e(i, j)−∑ j ̸=i e( j, i) with x(i) indicating self-reliant
resources for component i. In order words, γ(i) for each component i represents how independent i is with
respect to resources supporting its functionality in a resource inter-dependent network. In this network,
the in-degree of a node i is given by

d−(i) := #{ j ∈V | e( j, i)> 0},

which represents the number of ICS components resource-dependent on i (i.e., the components i is liable
to), while component i’s out-degree

d+(i) := #{ j ∈V | e(i, j)> 0}

represents the number of ICS components i is resource-dependent upon (i.e., nodes liable to i).
We assume that each EI node (e.g., an ICS component) i is subject to a non-negative pre-determined

cyber-protection budget endorsed by the EI management that might allow it to sustainably function (albeit
at a degraded performance) in the face of an adverse impact caused by a cyber-attack. We further assume
that this budget is distributed across the EI components (nodes) following a statistical distribution that is
usually (but not necessarily) a function of the strategic (with respect to inter-node liabilities) location of the
nodes in the network. To rationalize this point, consider an example of an advanced persistent threat (APT)
conducted through a botnet that spreads malware throughout an ICS network of IoT/CPS devices. Since
the inter-dependent liability structure is heterogeneous across the nodes (with high in-degree nodes being
increasingly critical and significantly liable), it makes management sense to invest in a cyber-protection
budget that is proportional to (among other factors) the liability structure (investing higher in more critical
nodes). Furthermore, we assume that this distribution induces a recovery probability Ri (attack-dependent
among other factors) for each node i when it is compromised by the cyber-attack.
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Figure 2: Graphical dependencies among networked EI components (nodes). The node dependencies are
in purple arrows opposite to the (orange) arrows denoting resource flow characterizing the dependency.

3 HOW MANY EI COMPONENTS FAIL TO FUNCTION POST A CYBER-ATTACK?

An important metric to study is the number of components that fail to function in the event of a cyber-attack
launched on an EI network (e.g., ICS network). It is evident that this metric directly, but negatively,
correlates with a measure of cyber-resilience - simply because a higher value of this metric is inversely
proportional to the ability of any EI to absorb and adapt to cyber-attack events. We will analyse this metric
in this paper as a measure of cyber-resilience with respect to the definition in (Linkov et al. 2013).

We assume that a cyber-attack on an EI network induces direct (without the support of a network
spread effect) performance hits to some of its (critical) components (e.g., as present in ICSs) that are the
first to become dysfunctional in the EI network post attack. A practical example of such a setting is a
traditional botnet induced cyber-attack (e.g., APT) on an ICS where a subset of critical nodes are initially
targeted by adversaries who bring them down (e.g., via phishing or email spoofing attacks). We assume
that this set of initial dysfunctional components (nodes) in network (e,γ), denoted by D0(e,γ), is given by

D0(e,γ) = {i ∈V | γ(i) = 0},

where an NIQ value (γi) of 0 for any node i reflects its dysfunctional nature, or complete breakdown, to
provide service (even at a degraded level of performance) to other ICS components dependent upon it. Now
given that R j is the recovery probability of any component j in the network, a dysfunctional j induces an
expected loss (with respect to a given resource) amount of (1−R j))e(i, j) for component i that is dependent
upon j as a resource supply. In the event that this loss exceeds c(i) = γ(i)A(i), ICS component i becomes
dysfunctional due to the loss amount of (1−R j))e(i, j) that acts as a negative externality, i.e., spillover
effects, on the functioning ability (albeit at a degraded level) of components reliant upon j. The set of
nodes (components) in (e,γ) that subsequently become dysfunctional due to negative externality effects of
j ∈ D0(e,γ) becoming dysfunctional is then given by

D1(e,γ) = {i ∈V | γ(i)A(i)< ∑
j∈D0

(1−R( j))e(i, j)}.

This phenomenon is recursive in fashion and initiates a cascade of indirect (due to a spread process)
EI component failures within the network. More generally, Dk(e,γ) represents the set of networked EI
network components that are resource starved enough to be incapable of functioning due to failures of
components in the set Dk−1(e,γ). It is self-evident that in an EI network of size n, the cascading process of
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generating EI component failures ends after at most n−1 iterations. Hence, Dn−1(e,γ) represents the set
of all EI components which become dysfunctional post a cyber-attack, given the initial set of dysfunctional
components, D0(e,γ), generated due to a direct impact by the cyber-attack. Evidently, D0(e,γ)⊆D1(e,γ)⊆
. . .⊆Dn−1(e,γ), with αn =

|Dn−1(e,γ)|
n denoting the final fraction of the nodes (components) in an EI network

that fails to function (even at degraded levels of performance) post a cyber-attack hitting an EI. In reference
to an APT launched on an EI, such a cascading event occurs when the botnet-induced malware propagates
through cyber-protected EI components - potentially disabling them to such an extent that they are not
independent enough to overcome the resource limitations posed by other dysfunctional components they
rely upon for sustaining component functionality (albeit at a degraded performance level). Two questions
of immense management interest that arises are: (i) are αn and (Dn−1(e,γ)) fixed, i.e., converge, after n -
1 iterations?, and (ii) does there exist a closed form expression for αn for general n? In this section, we
resort to lattice algebra to answer the first question. We have the following result as an answer.

Theorem 1 For an EI with n components, the fraction of dysfunctional components αn =
|Dn−1(e,γ)|

n and
the associated recursive component set Dn−1(e,γ) post a cyber-attack converge after n - 1 iterations, given
the knowledge of (D0(e,γ)) - the set of adversary targeted EI components directly getting dysfunctional
due to the attack.
Proof Insight - In order to answer the first question, the main crux is in realizing that the relation
D0(e,γ)⊆D1(e,γ)⊆ . . .⊆Dn−1(e,γ) forms a lattice (Matoušek and Nešetřil 2008) as it is a partially ordered
set (reflexive, anti-symmetric, and transitive) having both a least upper bound (the element Dn−1(e,γ))and
a greatest lower bound (the element D0(e,γ)). What we need to look for is a vector comprising of
(1−R j))e(i, j) values that results in Dn−1(e,γ) being a fixed set (one that does not get updated with
iterations) such that

Dn(e,γ) = Dn−1(e,γ) = {i ∈V | γ(i)A(i)< ∑
j∈Dn−2

(1−R( j))e(i, j)}. (1)

We call such a vector a clearing vector as it clears the recursive Di(e,γ) generation procedure from updating
Di(e,γ) at every iteration number greater than n−1. Evidently, the partially ordered setD0(e,γ)⊆D1(e,γ)⊆
. . .⊆Dn−1(e,γ) is a monotonic (increasing) sequence in the size of the sets. Then, according to the celebrated
Tarski Lattice Theorem (Tarski 1955; Topkis 1978) (as applicable to this problem), there always exists
a clearing vector of (1−R j))e(i, j) values being a fixed point in R2 that ensures (1) holds above, with
the resulting partially ordered lattice having Dn−1(e,γ) as the greatest element and D0(e,γ) as the least
element. Thus, αn and (Dn−1(e,γ)) are fixed after n - 1 iterations.
Managerial Implications of the Theorem - The answer to the first question has significant implications
for the EI management. It implies that if the latter has good knowledge (if not exact) about the set of main
targets (components) behind a cyber-attack (represented by D0(e,γ)), they can tightly estimate in advance
how many components (and necessarily which of them - characterized by Dn−1(e,γ)) the cyber-attack
majorly affect (result in their dysfunctionality) in the long-run, if the main targets, D0(e,γ)), become
dysfunctional. The cyber-resilience metric αn along with Dn−1(e,γ) enables an EI management to roughly
estimate the amount of budget to reserve for system resilience boosting cyber-protection. The metric serves
a handle to the famous saying “if you can’t measure it” (e.g., cyber-resilience), “you can’t manage it”.

4 A CLOSED FORM EXPRESSION FOR THE PROXY CYBER-RESILIENCE MEASURE

Thus far, we have shown that cyber-resilience in a networked EI with inter-dependent components is
quantifiable via a measure, αn. However, we are yet to express this measure in closed form as a function of
the EI network topology and component inter-dependencies. In this section we answer in the affirmative:
does there exist a closed form quantifiable expression of αn (general n) for arbitrary EI instances?, via
resorting to the use of probabilistic (random) graph theory.
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In order to derive a closed form expression for αn, we first need to formally capture the entire space of
EI network structures possible. Using theoretical developments in (Amini et al. 2016), we do this by first
letting Gn(en) be the set of all n-node weighted directed graphs (networks) with degree sequence d+

n ,d−
n . In

other words, given an in-degree and out-degree sequence for each node in the EI network, Gn(en) denotes
the set of all possible networks that can be formed with this configuration. Given d+

n ,d−
n , there is no

reason to prefer any network over the other, as EI network structures with such a degree configuration are
equally likely over the space of all EI networks. Let (Ω,A ,P) be a probability space, on which we define
En : Ω → Gn(en) as a random directed graph uniformly distributed on Gn(en).

Having formalized the space of EI networks, our next step to deriving a closed form expression for αn
is to formalize the degree statistics of graphs in this space. Subsequently, for any given en, let

µn( j,k) :=
1
n

#{i ∈ [n]|d+
n (i) = j,d−

n (i) = k},

be the empirical distribution of d+
n ,d−

n . Then, we can assume a probability distribution µ on N2 such
that for large n, µn( j,k) = µ( j,k) as n → ∞. This assumption is practically viable simply because with
increasing network sizes, their empirical distribution of in and out-degrees (for all equiprobable networks
with a given d+

n ,d−
n configuration) tends to become a constant distribution (this is easily verified through

computer simulations even for a medium sized n). We can also assume that the number of components
in any EI network will be finite and hence the average degree of any such network will be finite, i.e.,
∑ j,k jµ( j,k) = ∑ j,k kµ( j,k) = λ ∈ (0,∞).

One must also note that, due to the service inter-dependencies between components, the order in which
a sequence of components fail in an n-node EI network is also an important factor in eventually quantifying
the number of components that will fail to function in the event of a cyber-attack. As a practical analogue,
the order in which components such as a gas turbine, boiler, and chiller in an ICS electric power grid
fail will lead to different αn values for the grid (as the process spreading negative externalities within
the network due to component failures differ with order). Hence, fail order sequence permutations are
necessary to model en route quantifying αn. In this regard, define Σe

i to be the set of permutations of the
set { j ∈ [n] | ei, j > 0}. For a node (component) i and permutation τ ∈ Σe

i specifying the sequence in which
the nodes that i depends upon fail to function, the threshold function determining the number of failed
components i can withstand before it becomes dysfunctional is consequently given by

Θ(i,τ,e) := min{k ≥ 0 | γi

n

∑
j=1

ei, j <
k

∑
j=1

(1−R)ei,τ( j),} (2)

where it is assumed for analytical tractability that R = Ri, for all i ∈ [n]. We also define

pn( j,k,θ) :=
#{(i,τ) | i ∈ [n], τ ∈ Σe

i , d+
n (i) = j, d−

n = k, Θ(i,τ,en) = θ}
nµn( j,k) j!

, (3)

where for large network sizes, n, pn( j,k,θ) converges in probability to the constant, p( j,k,θ). Here, for
θ = 1, nµn( j,k) jpn( j,k,1) represents the number of EI components on which nodes (components) with
degree ( j,k), with lower resource support than the former, are dependent upon for resources needed to
function above a threshold level of performance. We have the following result adapted from the theory in
(Amini et al. 2016) to characterize αn for general enterprise infrastructure instances.
Theorem 2 Let Gn(en) be the set of all EI networks formally characterized by n-node weighted directed
graphs (networks) with degree sequence d+

n ,d−
n . Let π∗ be the smallest fixed point of I in [0,1], where we

define the function I : [0,1]→ [0,1] as

I(π) := ∑
j,k

µ( j,k)k
λ

j

∑
θ=0

p( j,k,θ)β ( j,π,θ), (4)
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where β ( j,π,θ) := P(Bin( j,π)≥ θ) = ∑
j
l≥θ

( j
l

)
π l(1−π) j−l. Here, I(π) represents (for large-enough ICS

network sizes) the fact that if the end node of a randomly chosen inter-dependent edge becomes dysfunctional
with probability π , I(π) is the expected fraction of components dependent upon this randomly chosen node
(component) that will fail (become dysfunctional) after one iteration of the cascade. Given En to be a
random network uniformly sampled from Gn(en), the following results consequently hold:

1. The fraction of EI components that fail tends to one, i.e., all components fail, in the event of a
cyber-attack if π∗ = 1. In mathematical jargon, if I(π)> π for all π ∈ [0,1), then -

αn(En,γn)
p→ 1 | n → ∞,

signifying that almost all EI components fail in the event of a cyber-attack even if the number of
components are large enough.

2. The fraction of EI components that fail is less than 1 in the event of a cyber-attack if π∗ < 1. In
mathematical jargon, if I′(π∗)< 1, and furthermore π∗ is a stable fixed point of I for all π ∈ [0,1),
then

αn(En,γn)
p→ ∑

j,k
µ( j,k)

j

∑
θ=0

p( j,k,θ)β ( j,π∗,θ) | n → ∞,

signifying the strictly positive fraction (and strictly less than 1) of EI components that fail in the
event of a cyber-attack even if the number of components are large enough.

Proof Insights - The proof follows directly from the application of Theorem 5.1 in (Wormald 1995) to
stochastic processes on graphs - in our case the process generated by uniformly sampling En from Gn(en).
Managerial Implications of the Theorem - The theorem first quantifies the number of EI components
that will fail to function (above acceptable levels of performance) in the event of a cyber-attack as a
cyber-resilience metric reflecting the ability of the EI with networked and interdependent components to
absorb and adapt to a cyber-attack event. It then provides valuable insights for EI management on tradeoffs
between the quality of cyber-protection deployed in its system and the degree to which the EI components
can function at acceptable levels of performance. In the default case of π = 1, it is highly likely that a large
enough number of components in the node are dysfunctional. This is a direct consequence of the fact that
the probability, R, of component recovery is quite low. Hence, budget-conscious substantial investments
need to be made (a topic of future work) to protect certain ‘critical’ components to ensure that the direct
or indirect (spread) impact of a cyber-attack (e.g. spread-based APT malware cyber-attack) is not large
enough to cause a cascade of systemic component dysfunctions - resulting in π∗ values much lesser than 1.

5 NUMERICAL EVALUATION

In this section, we perform large scale Monte Carlo simulations (10K sample path runs per setting
configuration) of αn(En,γn) for real world motivated random graph settings where each graph represents
interconnected and interdependent components of an enterprise infrastructure. We simulate random graphs
seeded upon a real world electricity microgrid network (see Figure 1) in Boston, USA (Khan and Madnick
2021). One of our goals is to validate the theoretical results we obtain in the paper, apart from studying
other interesting results. We briefly describe our evaluation setup and followed by an analysis of the results.
Evaluation Setup - We study αn(En,γn) and a corresponding resilience coefficient 1−αn(En,γn) by
varying (a) the number of graph nodes, (b) the fraction of nodes initially dysfunctional via a direct infection
mechanism, (c) the interconnection probability between random graph components, and (d) independence
quotients of individual components. We sample the in-degrees and out-degrees of graph nodes, each, from
both, a heavy-tailed distribution (Pareto) and a light-tailed (Normal) distribution for the sake of ensuring
completeness in generating random non-tree graph topologies. As a plot-representative example, the power
parameter of the Pareto distribution (for the plots shown in the paper) are taken from a Normal distribution
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having a mean of 2 and a standard deviation of 5 to capture practical heavy-tailed topologies. Likewise, in
the case of light-tailed topologies, the in and out degrees are sampled from a plot-representative Normal
distribution with mean and standard deviation of 10 and 2, respectively. We simulate αn(En,γn) and
corresponding resilience coefficients 1−αn(En,γn) for two contagion settings: one where each component
is resilient (does not become dysfunctional with probability 1) post cyber-attack, and one where each
component is brittle and fails immediately with probability 1 upon a cyber-attack. We ensure that the sum
of the in-degrees of all the nodes in the graph is equal to the sum of the out-degrees of all the nodes in the

Percentage of Initial Infected Nodes (IINs)
2% 10% 2% 10%

(a) Gaussian Distribution
Brittle Mode

(b) Gaussian Distribution
Brittle Mode

(c) Gaussian Distribution
Non-Brittle Mode

(d) Gaussian Distribution
Non-Brittle Mode

(e) Gaussian Distribution
Brittle Mode

(f) Gaussian Distribution
Brittle Mode

(g) Gaussian Distribution
Non-Brittle Mode

(h) Gaussian Distribution
Non-Brittle Mode

(i) Pareto Distribution
Brittle Mode

(j) Pareto Distribution
Brittle Mode

(k) Pareto Distribution
Non-Brittle Mode

(l) Pareto Distribution
Non-Brittle Mode

(m) Pareto Distribution
Brittle Mode

(n) Pareto Distribution
Brittle Mode

(o) Pareto Distribution
Non-Brittle Mode

(p) Pareto Distribution
Non-Brittle Mode

Figure 3: Illustrating the trends in the cyber-resilience measure αn with variations in (i) # of network nodes
(components/processes), (ii) node degree distribution, (iii) extent of node brittleness, and (iv) % of IINs.
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graph to create a fully connected bi-directional graph with randomized in-degrees and out-degrees for each
node. The recovery rate of any network node j, denoted by R( j), is simulated based on a Beta distribution
and a Uniform distribution. The representative plot setting in this paper is chosen to be Beta(5,1) and
Uniform(0,1). The γn, or node independence quotient (NIQ) values are sampled from a Normal distribution
with mean of 0.2 and variance of 0.1 to ensure that enterprise networks are not brittle to cyber-attacks.
Analysis of Plot Results - We broadly observe from Figures 4(a)-(p) that (i) in the brittle environments,
with increasing network size and the percentage of initially dysfunctional nodes due to direct infection -
the αn values converge towards 1 (implying no cyber-resilience) at a fast rate (because there is no partial
recovery) - thereby validating Theorem 2 (part 1), (ii) in the non-brittle environments, with increasing
network size and the percentage of initially dysfunctional nodes due to direct infection - the αn values
steadily increase but does not usually converge to 1 (implying different degrees of cyber-resilience) but
to a value relatively much lesser - thereby validating Theorem 2 (part 2). Both convergences validate
Theorem 1. These results hold irrespective of whether the node degree distributions are statistically light
or heavy-tailed. The difference being that non-brittle environments result in more outlier samples when
compared to brittle environments because the former entails partial recovery for (sub-)system components
to perform at varying degrees of cyber-resilience. Overall, we also observe balanced skewed interdependent
topologies (characterized by Gaussian degree distribution) to be more cyber-resilient statistically than
unbalanced skewed (characterized by Pareto degree distribution) topologies. Note that for a fixed network
node size, the y-axis reflects the probability distribution of αn taking a value between 0 and 1 - acting as a
statistical measure of cyber-resilience over multiple cyber-attack configurations showcasing best to worst
case likelihood of the degrees of cyber-resilience.

6 SUMMARY

We proposed the first formal probabilistic framework to quantify and analyze cyber-resilience in closed
form within any complex IT/IoT driven enterprise infrastructure (EI) network prior to the occurrence of
cyber-attack events. Consequently, we resolved the open problem of quantifying cyber-resilience in EI
systems with networked and interdependent components. Our contributions will serve an EI management
to advance estimate the amount of business disruption in the event of a cyber-attack, and in the planning
of appropriate budget allocation to boost EI cyber-resilience. We ran extensive Monte Carlo simulations
seeded upon a real world electricity microgrid EI network in Boston, USA to test and analyze our theory.
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