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ABSTRACT

Accurate navigation and control of Aerial Vehicles requires precise estimations of their position and attitude.
Measuring an aircraft’s rotation involves comparing two vectors in different reference frames, such as inertial
and body axes. Typically, a GNSS sensor-based matrix with at least three sensors is utilized for this purpose,
taking advantage of the carrier phase measurements. However, factors such as multipath, frequency lock
loss, cycle slips, and severe clock drifts can impede accurate integer ambiguity resolution. To address
these challenges, a new neural network-based technique has been developed to optimize the management
of large amounts of data and increase carrier phase ambiguity resolution reliability. By using carrier phase
difference and pseudorange information, various neural network configurations can be trained to solve the
ambiguity and estimate the precise attitude of the GNSS sensor matrix. The provided solution can be used
alone or hybridized with other attitude sensor such as gyroscope information.

1 INTRODUCTION

Using Global Navigation Satellite Systems (GNSS) as an alternative or complement to inertial navigation
systems (INS) for attitude determination is an attractive option since a relatively common, and economically
affordable system in aircraft, such as GNSS, can be redundantly used for other tasks apart from determining
position, just introducing some relatively simple algorithms in terms of processing power into the on-board
computers. Although INS can provide accurate positioning and attitude determination during brief GNSS
outages, they are susceptible to drifts, biases, and colored noise that are difficult to model with precision.
Therefore, GNSS is often used to calibrate INS and obtain a position estimate free of drift, and also can be
used to determine attitude. This article focuses solely on determining attitude using GNSS measurements
from low-cost, single-frequency receivers and antennas. However, these receivers have their own limitations,
such as frequent phase jumps caused by unreliable tracking, severe code multi-path, significant antenna
phase center variations, and clock oscillations that are too large to be canceled by double differencing. The
use of a Neural Network-based estimator will also help to minimize (or nearly eliminate) these effects as
it will be demonstrated along this paper.

Accurately determining attitude for low-cost aircraft applications requires a baseline length of approx-
imately 1 meter, which makes carrier phase difference measurements optimal for attitude this purposes.
However, carrier phase measurements are subject to uncertainty, and in recent years, significant effort has
been devoted to developing reliable methods for resolving carrier phase ambiguities. These methods include
merging GNSS and INS measurements, using multi-frequency linear combinations to improve ambiguity
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discrimination (Henkel and Günther 2012; Geng and Bock 2013), incorporating prior knowledge (Teunissen
et al. 1997; Teunissen 2006) and utilizing multi-antenna systems (Li 2018).

To resolve carrier phase ambiguities, both code and carrier phase measurements from delay locked
loop and phase locked loop are utilized. This article does not cover the classical integer search method,
which is described in detail in Henkel and Günther (2012), Geng and Bock (2013), Xu et al. (2022),
and using different methodologies as LAMBDA method in Joosten et al. (1999), Wang et al. (2022).
The main innovation of the methodology presented in this paper is the absence of the need to know in
detail the formulation or physics of the problem, since the neural network is in charge of adjusting the
solution based on the experimental measurement data. The ability to measure phase differences between
signals received from two or three baselines formed by multiple antennas is crucial for the performance
of a GPS carrier-based attitude determination system. Currently, in GPS systems, phase differences can
only be calculated within one wavelength, resulting in indeterminate phase differences corresponding to
integer multiples of the wavelength. This creates ambiguity in attitude determination due to the unknown
integer number of wavelengths of the carrier phase. Mathematical algorithms are required to resolve this
integer ambiguity, relying on precise phase difference measurements from different satellites visible to all
receivers at the same epoch.

When using non-dedicated low-cost GPS receivers for this purpose, the error in phase measurements
increases significantly (Nie et al. 2020). This is caused by factors such as the receiver clock error or
noise induced by the multi-path effect, eventually leading to failures in the ambiguity resolution algorithm.
As non-dedicated low-cost GPS receivers lack a common oscillator, the carrier phase double-difference
technique must be employed, which leads to noise amplification and an increase in the number of integer
solutions (Hu et al. 2020). This results in excessive search time and high noise levels, decreasing reliability
and availability, respectively, in attitude determination. Therefore, it is crucial to introduce an additional
source of information in the system for real-time navigation aiding, suitable for most vehicle types.

Machine Learning (ML) is an emerging field of study that utilizes statistical algorithms to analyze and
learn from data, with the goal of making predictions or decisions based on that data. In the context of
aerospace engineering, ML algorithms can be applied to GNSS data to determine the integer in carrier phase
measurements, which is essential for accurate attitude determination. One of the main advantages of using
ML for this purpose is that it eliminates the need to have a deep understanding of the physical-mathematical
foundations of aerospace vehicles (de Celis et al. 2021). This is because the ML algorithm can be trained
or calibrated using input data, such as simulated or experimental data, to learn the relationship between the
GNSS measurements and the integer ambiguity. Once the algorithm is trained, it can be used to determine
the integer ambiguity in real-time, providing information that can be used in a guidance, navigation, and
control (GNC) system (de Celis and Cadarso 2023). This can greatly improve the accuracy and reliability
of the GNC system, which is essential for the safe operation of aerospace vehicles. Overall, the use of ML
for determining the integer ambiguity in carrier phase measurements has the potential to revolutionize the
field of aerospace engineering by providing a more efficient and effective method for attitude determination.

In order to achieve the goal of improving the current approaches for determining attitude using GNSS
sensors and a neural network-based single-phase delay estimator, this study will employ an innovating
variety of techniques and methods. Firstly, the researchers will review and analyze existing methods for
attitude determination and identify areas for improvement. They will then develop and implement a neural
network-based algorithm for estimating single-phase delay, which will improve the accuracy of angular
measurements obtained from GNSS sensors. To evaluate the performance of the proposed method, the
researchers will conduct experiments and simulations using both synthetic and real-world data. They will
compare the accuracy of the proposed method with existing approaches for attitude determination, as well
as evaluate its effectiveness when integrated into a guidance, navigation, and control system alongside other
sensor measurements. The results of this study will have important implications for the development of
more accurate and reliable systems for aerial vehicle navigation and control. By improving the accuracy of
angular measurements obtained from GNSS sensors, the proposed method will enable more precise control
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of aerial vehicles, enhancing their safety and reliability. It will also contribute to the development of more
advanced autonomous aerial vehicles, which are increasingly important in a variety of applications such
as search and rescue, environmental monitoring, and transportation.

2 DESCRIPTION OF THE MODEL

This section aims to provide a detailed explanation of the model and sensor utilized to produce data for
the neural networks. The determination of attitude can be achieved through mathematical calculations that
identify two non-aligned vectors (−→v1 = [v1x,v1y,v1z] and −→v2 = [v2x,v2y,v2z]) in two distinct triads. For this
study, we consider the North-East-Down earth axes, which are denoted by the sub-index ’e’ and have their
center located at an arbitrary point on land. This triad has xe pointing North, ye pointing East, and ze
forming a right triad. Furthermore, we also consider the body fixed axes, denoted by the sub-index ’b’,
which have their center located at the center of gravity of the airship. This triad has xb pointing forward, yb
pointing right wing, and ze forming a right triad. A graphical representation of the two triads is provided
in Figure 1 for clarity.

Land

𝑥𝑒

𝑦𝑒

𝑧𝑒

𝑥𝑏

𝑦𝑏 𝑧𝑏

𝑣1

𝑣2

Figure 1: Earth and body axes.

The geometric plane defined by the two non-aligned vectors −→v1 and −→v2 is characterized by its associated
normal vector −→v3 =−→v1 ×−→v2 . To determine the rotation between the North-East-Down earth axes and the
body fixed axes, a rotation matrix Re,b is used. To simplify the mathematical operations, the vectors −→v1 , −→v2 ,
and −→v3 are normalized and renamed as −→u1 , −→u2 , and −→u3 , respectively. The rotation matrix can be calculated
using equation (1), where the normalized vectors are arranged as columns. This method of determining
attitude is crucial in aerospace vehicles as it allows for the precise determination of the vehicle’s orientation
in space. By using a rotation matrix, the vehicle’s sensors can be aligned correctly, allowing for accurate
measurements to be taken. This information can then be used in the guidance, navigation, and control
system to make adjustments and ensure the vehicle’s trajectory is on track. Overall, this approach provides
a reliable and efficient way to determine attitude in aerospace vehicles.

Re,b =

 u1xe u2xe u3xe

u1ye u2ye u3ye

u1ze u2ze u3ze

 ·

 u1xb u2xb u3xb

u1yb u2yb u3yb

u1zb u2zb u3zb

−1

(1)

In the context of an airship, the pair of vectors that determine attitude is represented by an array of
GNSS sensors located on the body. The position of the body is determined by using at least three (and up

614



de Celis, Gonzalez-Barroso, Solano-Lopez, and Cadarso

to eight in this study) sensors, which are labeled as an for n = 1,2, ...,N. These sensors collect position data
from the Global Navigation Satellite System (GNSS) and transmit it to the onboard computer. Then one
of the sensors (namely a1) can be taken as a reference and use the others in order to calculate −→u1 =

−−−→va1,a2
||−−−→va1,a2 ||

to −−→uN−1 =
−−−→va1 ,aN

||−−−→va1 ,aN ||
in both systems of axes. This can be easily expressed as follows. The use of multiple

GNSS sensors provides redundancy and improves the accuracy of the position determination. The number
of sensors used in this study was chosen based on a trade-off between accuracy and cost. Increasing the
number of sensors improves the accuracy of the position determination but also increases the cost and
complexity of the system. According to this fact, equation (1) can be generalized for an infinite number
of vectors as it is shown in equation (2):

Re,b =
(
Ve ·Ve

T )−1 ·Ve ·Vb
T with Vaxis =

[ ( −−−→va1 ,a2
||−−−→va1 ,a2 ||

)T
...

( −−−→va1 ,aN
||−−−→va1 ,aN ||

)T
]

axis
, axis = [e,b] (2)

2.1 Data Generation

GNSS sensors are capable of measuring the carrier phase difference (φ ) in GNSS wavelength, providing
an approximate navigation precision of 0.003 m. However, determining the Carrier Phase Ambiguity or
’N’, which is the product of GNSS wavelength and the integer number of cycles the wave travels from
the satellite to the receiver, is a challenging task. Furthermore, several sources of errors can affect the
navigation process, including satellite clock error (dT S j ), sensor clock error (dTai), random white noise
from the sensor and satellite (ES j

ai ), and errors from the ionosphere and troposphere (ET I) that affect each
sensor and satellite. The primary objective of this navigation technique is to determine the pseudo-range
(ρS j

ai ), which represents the distance between sensor ’ai’ and satellite ’S j’. Pseudo-range can be calculated
as a function of several parameters, including φ , N, dT S j , dTai , the speed of light ’c’, wavelength ’λ ’, ES j

ai ,
and ET I . The mathematical expression for determining pseudo-range is given by equation (3).

ρ
S j
ai = λφ

S j
ai +λNS j

ai + c ·
(
dT S j −dTai

)
+ES j

ai +ET I (3)

In orientation problems, it may not be possible to determine certain errors. However, methods can
be implemented to avoid such errors since they often have common sources. In the case of determining
attitude, one such method involves defining the unit vector that points from the sensor ai to the satellite S j

as −→e S j
ai , as it is shown in Figure 2. This vector is directly provided by the navigation data. As the distance

between the sensors is much smaller compared to the distance to the satellite, the pointing vector can be
considered independent of each sensor and can be expressed as a single vector −→e S j . Using this, the vectors
required for the attitude determination process can be calculated using equation (4).

−−→vai,an = ρ
S j
ai
−→e S j

ai −ρ
S j
an
−→e S j

an =
(

ρ
S j
ai −ρ

S j
an

)−→e S j (4)

The difference between the pseudo-range measurements of two sensors observing the same satellite
is known as a single difference. This difference can be expressed as

(
ρ

S j
ai −ρ

S j
an

)
and can be contracted

as ∆ρ
S j
ai,an . The expression for the single difference is given by equation (5), which is a function of the

differences between the previously defined variables. It is important to note that the application of single
differences eliminates errors caused by the ionosphere and troposphere, as well as satellite clock errors.

∆ρ
S j
ai,an = ∆φ

S j
ai,an +∆NS j

ai,an − c ·∆dTai,an +∆ES j
ai,an (5)

The same concept can be applied now by subtracting the single difference of satellite ’Sm from that
of satellite ’S j’ in what is called double difference ∇ρ

S j,Sm
ai,an . Note that applying double difference, GNSS

sensor clock error is eliminated as it can be seen in expression (6).
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Figure 2: Example of pointing vector to each satellite.

∇ρ
S j,Sm
ai,an = ∇φ

S j,Sm
ai,an +∇NS j,Sm

ai,an +∇ES j,Sm
ai,an (6)

To generate data for the neural network, a GNSS signal simulator such as the one included in Matlab
can be used to obtain each of the terms of Equation (6) separately. These terms can then be used as
data to train a neural network that will determine the double differences of the Carrier Phase Ambiguity,
denoted as ∇NS j,Sm

ai,an . In other words, the input of the neural network consists of the combination of the
double differences of the pseudo-range and error terms, given by ’∇ρ

S j,Sm
ai,an −∇ES j,Sm

ai,an ’, while the output
of the neural network is the double differences of the Carrier Phase Ambiguity, represented as ’∇NS j,Sm

ai,an ’.
This neural network can then be used to estimate the values of ∇NS j,Sm

ai,an for previously unseen data, finally,
providing an accurate method for determining the attitude of the airship.

Finally, in the case under study, the set of inputs is generated for a combination of 8 sensors, taking
one sensor as reference, and the other seven to generate the reference vectors, and 6 satellites present in the
field of view. This configuration generates a set of 36 inputs (including the configuration for the satellites
in the field of view as an input), and 35 outputs. It must be noted that, in order to simplify the amount of
data, and reduce the training time, as this configuration will be sufficient for demonstrate the validity of
the methodology, the simulation training data is particularized for a fixed geographic location (centered at
URJC campus in Madrid) and for a determined period of time of 24 hours, but these assumptions will be
generalized in further works.

The set of inputs is generated in 100 different simulations, with 5760 timesteps on each simulation,
which means each timestep defined every 15 s of the simulated trajectory of the vehicle. The number of
satellites is chosen based on how many of them are in sight, being the minimum available for the GNSS
constellation 4 in a harsh location and 6 in a populated one. This facts are translated into a set of 36
different inputs during 5760 different timesteps and 100 different simulations. The 60% of the simulations
is used for training, 20% for simulations and 20% for validation.

2.2 Machine Learning Architectures. A model for the Neural Networks.

Once the data-set has been described and introduced, the different Machine Learning (ML) algorithms will be
introduced for this approach. One of the most important and most widely used machine learning techniques
are neural networks. They are so varied that they can solve a large number of different problems. These
networks would receive ∇ρ

S j,Sm
ai,an −∇ES j,Sm

ai,an as input and return and unique ∇NS j,Sm
ai,an as output. Therefore, as

many neural networks as ∇NS j,Sm
ai,an would be needed.
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From now on, the set of trained neural networks with the same architecture and configuration of
parameters specialized in outputting each ∇NS j,Sm

ai,an will be called model. Since the possible values of
∇NS j,Sm

ai,an are integers located within a finite range, the problem could be considered as both a regression
(an output layer with a single neuron) or a classification task (an output layer with as many neurons as
∇NS j,Sm

ai,an values, in case under study, 33 output neurons in High Quality, ∇NS j,Sm
ai,an ∈ [−16,16]).

The simplest neural network consists on a multi-layer perceptron (MLP) (Rosenblatt 1958), that is,
a neural network with multiple fully-connected/dense layers. Since consecutive inputs and outputs in an
historical time are interrelated, it makes sense to apply a slide time window in each prediction. As an
historical of data is received as input, it is also interesting to utilize RNN (recurrent neural networks).
Figure 3 shows the expected performance of one network of the model (to predict all ∇NS j,Sm

ai,an for a given
pair of sensors and satellites). This network can do predictions in parallel with the rest of networks to get
all ∇NS j,Sm

ai,an in each time-step in real time. M is the number of instances per simulation, and N the number
of simulations. In a simulation n, at each time-step, the network R receives an input inn

m and the previous
hidden state sn

m of the recurrent neural network, and returns an output outn
m and the updated hidden state

sn
m+1. Those hidden states sn

m contain information about the previous inputs inn
j , where j < m. In addition,

si
1, where 1 ≤ i ≤ N, is initialized to zero at the beginning of each simulation.

Figure 3: Recurrent neural network performance for a given pair of sensors and satellites.

The use of LSTM (Long short-term memory) (Hochreiter and Schmidhuber 1997) has been studied
as it is the most widely used recurrent neural network, since it solves the short-term memory problem,
which appears in simpler recurrent networks. This problem means that the network progressively forgets
information about the inputs throughout the iterations, giving more importance to the last ones. However,
for the current problem, it is more interesting the most recent information in the timeline, so the short-term
memory problem is not and impediment for this concrete case. For these reasons, such recurrence layer
could be based on a simple recurrent network. The rest of the network layers are fully connected (dense)
and a dropout is also used as regularization before each dense layer to avoid over-fitting in both Simple
RNN and MLP. Figure 4 shows our recurrent neural network structure where the number of Dense layers
is 2 (for instance), including the output layer. Commonly, neural networks with more than three layers
(including input and output layers) are called deep learning systems. Increasing the complexity of the neural
network by adding more layers usually involves better results. The rest of parameters and architecture
configurations (learning rate, number of layers, etc.) will be studied in 2.2.3.

2.2.1 Pre/Post- Processing

All inputs received by a neural network should be normalized beforehand in order to improve the performance
of the resulting models (Sola and Sevilla 1997). This normalization transforms each input data into a value
between 0 and 1, using the minimum and maximum value from among all the data obtained.
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Figure 4: Recurrent neural network structure R with 36 inputs per time-step and 2 Dense layers.

For the training process it is also needed the corresponding output for each input. These outputs
(∇NS j,Sm

ai,an ) must also be pre-processed (Sola and Sevilla 1997). Since ∇NS j,Sm
ai,an ∈ [−16,16] in High Quality

and ∇NS j,Sm
ai,an ∈ Z, the neural network can be trained to solve both a classification or a regression task.

If the task to be solved is a classification task, one-hot coding is used: output o =
(
a0...a32

)
: ai = 1 if

i = ∇NS j,Sm
ai,an −min(∇NS j,Sm

ai,an ) and ai = 0 otherwise. Similarly, when prediction is obtained, it is necessary to

interpret that value. The actual prediction can be expressed as ∇̃NS j,Sm
ai,an = argmax

(
a0...a32

)
+min(∇NS j,Sm

ai,an ).
During the regression task, the output is normalized as it is shown in (7). However, the normalization
expression is different from the standard normalization in order to use the rounding function when de-
normalizing without breaking equiprobability between ∇NS j,Sm

ai,an values.

o =
2(∇NS j,Sm

ai,an −min(∇NS j,Sm
ai,an ))+1

2(max(∇NS j,Sm
ai,an )−min(∇NS j,Sm

ai,an )+1)
(7)

Similarly, the output o in each prediction must be de-normalized as it is shown in expression (8).

∇̃NS j,Sm
ai,an = ⌊o∗ (max(∇NS j,Sm

ai,an )−min(∇NS j,Sm
ai,an )+1)+min(∇NS j,Sm

ai,an )− 1
2
⌉ (8)

Figure 5 shows an example in case ∇NS j,Sm
ai,an ∈ [0,1]. The arrows indicate the value of ∇NS j,Sm

ai,an to which
each output converges when de-normalizing (applying rounding). This method of normalizing does not
introduce an artificial precision that favors the success criterion defined in the next section, since any
∇NS j,Sm

ai,an will have the same probability of being selected by generating a prediction uniformly randomly
between 0 and 1.

Figure 5: Output normalization in case ∇NS j,Sm
ai,an ∈ [0,1].

2.2.2 Error Definition and Success Criteria

First of all, it is necessary to remember that each model is composed of a set of neural networks with the
same architecture and parameters, but each one of them trained to predict a given ∇NS j,Sm

ai,an . However, these
networks are analogous to each other. Therefore, to compare models, it will be only only taken a single
network from each model as a reference (in the case under study it is the ∇NS1,S2

a1,a2 . Therefore, the measures
taken to establish the success criteria for each model are:

• Accuracy. Percentage of instances correctly predicted by the neural network.
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• Mean Square Error (MSE). In case of failure in the prediction. Small deviations from the exact
value of the output.

The problem solved can be posed as both a classification and regression problem. After predicting
and denormalizing we get numerical values that can be used to calculate the MSE, MSE in case of failure
or the accuracy rate. However, during training, it must be used the corresponding metric (accuracy for
classification and MSE for regression). The Mean Squared Error (MSE) is solely measured in the event of
a failure. This metric assigns a value of 1 to the best-case scenario, representing the minimum deviation
in predictions when they fail. The rationale behind this choice is our focus on models that exhibit high
accuracy and, even in the event of failure, demonstrate minimal deviation from their true values.

2.2.3 Experimental Methodology

In this section the experimental methodology to obtain a model able to determine ∇NS1,S2
a1,a2 values will

be described. Therefore, machine learning tasks, neural network types, architecture configurations and
parameters will be listed and extended. It is important to mention that the main purpose is not to get the
best model, but to demonstrate that the use of neural networks approaches are a good methodology to solve
this particular problem. The optimization of the neural network selection process will be part of a further
work. In addition, it is necessary to divide the experimentation process into several phases. In each phase,
there will be set the rest of architecture configurations and parameters to specific values. Once a phase has
determined which options are the best, subsequent phases will default to those options.

Some of those specific values by default are:

• Machine learning tool: TensorFlow in Keras.
• Amount of data in train, validation and test: 60%, 20% and 20% respectively.
• Number of Dense layers: 5.
• Number of neurons per Dense layer: 800, 400, 200, 100 and output layer size (33 in classification

and 1 in regression) (from left to right).
• Activation function in intermediate layers: ReLU.
• Activation function in output layer in regression: sigmoid.
• Activation function in output layer in classification: softmax.
• Number of neurons in recurrent layer: 125.
• Activation function in recurrent layer: ReLU.
• Dropout rate: 0.1.
• Optimizer: Adam.
• Learning rate: 0.001.
• Batch size: 200 in MLP and 16 in RNN.
• Shuffle data in training: True.
• Epochs: 600.

There are 4 phases of experimentation. The first 3 phases will be focused on predicting only ∇NS1,S2
a1,a2 ,

because the rest of the networks of the same model trained to predict ∇NS j,Sm
ai,an would be analogous to this

one. In addition, in these first three phases a checkpoint will be applied to save the best model found
during training using the validation data set.

In phase 1 there will be determined which machine learning task (regression or classification) and
neural network type (recurrent network or multi-layer perceptron) are the best options to work in this
problem. Each configuration will be run 3 times with different seeds. Since 3 different values of slide time
window k will be tested (1, 5 and 10), and also one type of recurrent neural network (SimpleRNN), the
number of different neural networks in this section will be 24. The baseline is a multi-layer perceptron
with k = 1.
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In phase 2 there will be determined the best architecture and parameters among all those tested. The dif-
ferent dense layer architectures tested will be (800,400,200,100), (400,200,100,50) and (200,100,50,25),
indicating the number of neurons per dense layer (except output layer) from left to right. There will only
be used 5 dense layers to apply deep learning (more than three layers including input and output layers)
although the problem to be solved does not seem too complex. Since in phase 1 it will be chosen as the
best network the recurrent one, it will be tested with different number of neurons (100, 125, 150, 175 and
200) and activation functions (ReLU and tanh) in the recurrent layer. As in the previous phase, it will be
run each configuration 3 times with different seeds. Therefore, the number of different neural networks in
this section will be 90.

In phase 3 there will be determined the number of epochs and the learning rate to find the best neural
network from the best architecture configuration and parameters found so far. It will be tested with 5
learning rates (0.01, 0.005, 0.001, 0.0005 and 0.0001) and with many epochs (2000). Again, it will be run
each configuration 3 times with different seeds, and the number of different neural networks in this section
will be 15.

Once the number of epochs and the learning rate have being adjusted, in phase 4 it will be got the final
model. In order to obtain the final result the validation set will be embedded into the training set, so the
80% will be used as training set and 20% as test set. By having more training data it will be expected to
obtain better results, even without using checkpoint, just by saving the last model obtained in the training
stage. After that, it will be gotten a neural network for each ∇NS j,Sm

ai,an . The networks that reach the reliability
threshold (which has been set at 99% in accuracy rate in classification networks and 1.1 in MSE in case
of failure in regression ones) will become part of the final model. Those that do not pass this threshold
will be retrained from the beginning with the same configuration but using another seed. When all the
networks in the model reach the reliability threshold, the experimentation ends.

2.2.4 Angular Restitution

The value for the double differences (∇ρ
S j,Sm
ai,an ) can be determined from the use of GNSS carrier phase

difference sensor measurements (∇φ
S j,Sm
ai,an +∇ES j,Sm

ai,an ) and from the results of NN outputs (∇NS j,Sm
ai,an ) as it is

deduced from equation (6). Applying double differences to expression (4) it can be obtained the following
equation (9):

∇ρ
S j,Sm
ai,an =−−→vai,an ·

(−→e S j −−→e Sm
)

(9)

Equation (9) can be reformulated as a matrix equation (10), taking in account the signals from every
satellite available:

−−→vai,an =
(
HT ·H

)−1 ·HT ·∇−→
ρ , ∇

−→
ρ =

 ∇ρ
S j,Sp
ai,an

...

∇ρ
S j,Sm
ai,an

 and H =

 eS j
x − eSp

x eS j
y − eSp

y eS j
z − eSp

z

... ... ...

eS j
x − eSm

x eS j
y − eSm

y eS j
z − eSm

z

 (10)

with −−→vai,an as a column vector, ∇
−→
ρ as the column vector composed of the double differences of the

reference satellite ( j) with respect to the rest of available satellites (p = [1,2, ...,m] with p ̸= j), and H as
a matrix composed of the subtraction of the pointing row vectors of the reference satellite and the rest of
available satellites.

3 RESULTS

This section will first show the results for the Neral Network selection problem and finally the final results
applied to an angular restitution problem.
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Figure 6: Left - Accuracy in MLP and RNN in classification and regression tasks. Right - MSE (in those
predictions where the networks fails) in MLP and RNN in classification and regression tasks.

3.1 Comparison and Selection of the Final ML Model

Figure 6 (left) displays the results for the regression and classification accuracy of multi-layer perceptrons
(MLP) with various slide time windows and for RNN. The classification networks exhibit superior perfor-
mance compared to the regression counterparts, as they were trained to reduce categorical cross-entropy.
The accuracy demonstrates an upward trend as the slide time window size increases, until it reaches a peak
value. This is in line with the notion that past entries become less significant as time progresses, and the
more inputs there are, the more difficult it becomes for the network to learn. However, increasing the time
window excessively leads to a decline in accuracy. Regardless of the time window used, MLP accuracy
will not reach the same level as RNN accuracy. Therefore, there is no reason to prefer MLP over RNN
based on accuracy.

Figure 6 (right) illustrates the Mean Squared Error (MSE) in cases where the networks fail. The
regression networks outperform their classification counterparts, as they were trained to minimize the MSE.
Similar to the accuracy graph, the MSE decreases as the slide time window size increases until it reaches a
minimum value. In the best-case scenario, the MSE would be 1, but none of the networks tested exceeded
1.4. The difference in performance between networks is minor. Regardless of the time slide window used,
RNN for regression is the best network in terms of MSE, while RNN for classification is the worst.

Due to the great redundancy in the number of sensors, the classification networks have been chosen
to carry out the angle restitution tests, since it is expected that with the redundancy in the available data,
a vast majority of the data will have great precision, and the filtering algorithm is in charge of eliminating
those results that have the worst MSE. For the density of the networks, the upper values listed in section
2.2.3 have been selected, with the aim of being tested in the angular restitution. Finally, the training have
been carried out during 2000 epochs.

3.2 Angular Restitution Results

Monte Carlo simulations are utilized to assess the performance of the closed-loop system under various
uncertainties, such as initial conditions, sensor data acquisition, atmospheric conditions, thrust features,
and aerodynamic coefficients, where the coefficient uncertainties have been taken into account.

To demonstrate the effectiveness of the proposed attitude determination algorithm, simulation results
are presented utilizing a non-linear flight dynamics model developed by (de Celis and Cadarso 2023).
A set of nominal regular Euler angles are executed to compare the estimated and actual attitudes. The
Euler angles are configures as a sine signal with a frequency of 1 rad/s and an amplitude of 20 deg. The
simulations are performed using MATLAB/Simulink R2021a on a desktop computer with a processor of 2.8
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Figure 7: Roll (left) pitch (center) and yaw (right) angles comparison between nominal and estimation.

GHz and 8 GB RAM. The comparison between the estimated and actual attitudes for a nominal parabolic
trajectory is shown in Figure 7.

The results consistently indicate accuracy levels below 2.5 degrees, which is considered sufficient based
on current standards for utilizing the algorithm in the guidance, navigation, and control of low-cost aerial
platforms.

4 CONCLUSIONS

A neural network-based approach has been developed for determining the N ambiguity in GNSS phase
attitude calculation, which offers the potential for reduced costs and additional sources of information during
GNC in aerospace platforms. Compared to other methods, this novel approach has been demonstrated
to improve or match levels of accuracy. To validate the proposed approach, trajectory simulations were
conducted to obtain "real" attitude, and the results were compared with the attitude obtained using the
neural network method. The computational results show that the differences are negligible, making the
proposed approach a viable option for use in a control algorithm, with total errors below 2.5 degrees for all
three attitude angles in all cases. Moreover, the use of low-cost components makes this approach highly
attractive for a range of low-cost professional applications.
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