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ABSTRACT

This paper presents a reinforcement learning (RL) algorithm prototype to solve the aircraft line maintenance
scheduling problem. The Line Maintenance Scheduling Problem (LMSP) is concerned with scheduling a set
of maintenance tasks during an aircraft’s ground time. To address this problem, we introduce a novel LMSP
method combining a hybrid simulation model and reinforcement learning to schedule maintenance tasks
at multiple airports. Initially, this paper briefly reviews the existing literature on optimization-based and
AI-enhanced aircraft maintenance scheduling. Secondly, the novel reinforcement learning LMSP method
is introduced, evaluated using industry data, and compared with optimization-based LMSP solutions. Our
experiments demonstrate that the LMSP method using reinforcement learning is capable of identifying
near-optimal policies for scheduling line maintenance jobs when compared to the exact and heuristics-
based methods. The proposed model provides an excellent foundation for future studies on AI-enhanced
scheduling problems.

1 INTRODUCTION

Aircraft maintenance challenges airlines in terms of costs and planning. According to IATA (2021), aircraft
maintenance expenses represent around 11.2% of the costs associated with the operation of fleets of a
typical airline. The global maintenance, repair, and overhaul (MRO) spending in 2022 amounted to $78.5
billion. Due to shifts in airline fleet configurations following the COVID-19 pandemic, coupled with
an increased focus on achieving long-term sustainability goals and supply chain complexities within the
aviation industry, it is expected that the global demand for MRO services will surge to $126.6 billion by
2032 (IATA 2021; OliverWyman 2022). Therefore, it is of high interest for airlines to explore ways to
reduce maintenance costs while guaranteeing the safety of their passengers and the airworthiness of their
fleet.

Airline scheduling is a complex task that includes a multitude of factors, such as the coordination of
thousands of daily flights, management of hundreds of aircraft, crew flight time limitations and fatigue, air
traffic control, and airport operational curfews (Barnhart and Cohn 2004; Belobaba et al. 2009). Traditionally,
the airline planning process is divided into four sequential sub-problems as shown by Bazargan (2016):
schedule design problem (SDP), fleet assignment problem (FAP), aircraft routing problem (ARP), and crew
scheduling problem (CSP). Historically, these airline schedule sub-problems have been tackled sequentially,
due to the high complexity within the four planning phases. Various efforts have been made toward achieving
a more integrated approach to planning airline schedules. However, Cadarso and de Celis (2017) emphasize
that it has been infeasible so far to produce a fully functional and optimal schedule using an approach that
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integrates the four sub-problems and finds the trade-off for critical aspects of airline operations, including
unpredictable operational constraints and stochastic demand.

Within the airline planning process, aircraft maintenance influences the phases of fleet assignment
and aircraft routing. While an airline’s maintenance and engineering capabilities may influence the fleet
choice for operating a route, aircraft maintenance is primarily incorporated in the aircraft routing problem
(ARP) which specifies which specific aircraft to fly each flight segment assigned to the fleet (Belobaba
et al. 2009; Zhou et al. 2020). Solving the aircraft routing problem includes assessing the feasibility of
the routing plan to satisfy both operational and maintenance criteria. Commercial aircraft are subject to
regular maintenance checks mandated by aircraft manufacturers and air transportation regulatory bodies.
These checks are triggered on various metrics, including the number of performed flight hours, take-offs
and landings (cycles), and elapsed time since the previous maintenance check. Adherence to safety and
maintenance standards is strictly enforced and aircraft failing to meet minimum requirements are subject
to grounding, as outlined by Barnhart and Smith (2012).

Line maintenance refers to minor maintenance activities performed on aircraft during the turn-around
time between two flights to ensure aircraft airworthiness. This may include inspections, minor repairs,
and modifications (Gupta et al. 2003). Real-time data collected through sensors on aircraft has advanced
significantly, allowing businesses to make data-driven decisions and optimize maintenance strategies (Černỳ
2019). Airlines can now adopt a condition-based maintenance approach based on the aircraft’s health status
and operational history, which is more efficient and cost-effective than predetermined maintenance schedules.
As a result, task-driven maintenance jobs can often be executed during line maintenance, reducing the need
for cyclic letter checks (Ruther et al. 2017).

The literature on the LMSP topic is scarce. Senturk and Ozkol (2018) underline that aircraft utilization
can be improved if individual jobs can be executed when an aircraft is on the ground, compared to the
traditional scheduling of periodic checks. This can improve capacity utilization in line maintenance and
balance the workload at maintenance bases, as highlighted by Hughes (2006). However, Senturk and Ozkol
(2018) do not provide a mathematical formulation of the underlying problem, and current LMSP solutions
in the literature are limited to simple heuristics.

Aircraft maintenance optimization strategies using reinforcement learning are proposed in Hu et al.
(2021) and Andrade et al. (2021). These studies highlight the benefits of using reinforcement learning
in aircraft maintenance planning, resulting in maintenance schedules that: maximize the flight hour usage
of aircraft between checks, reduce the number of scheduled checks throughout an aircraft’s lifespan, and
enable airlines to generate more revenue while reducing maintenance expenses. However, none of these
studies includes the planning of short-term line maintenance jobs.

In the context of a dynamic operating environment characterized by uncertainties and disruptions,
heuristics have proven to be an effective alternative to an optimization approach for solving the LMSP
efficiently. Previous research conducted by Shaukat et al. (2020) has demonstrated the effectiveness of
scheduling heuristics, which have yielded highly satisfactory scheduling results. In this paper, we build on
the work of Shaukat et al. (2020) and adopt an RL-enhanced scheduling method to solve the aircraft line
maintenance scheduling problem (LMSP).

This paper is organized, as follows: Section 2 provides relevant background on optimization-based
and RL-enhanced scheduling methods. Section 3 presents the research data and relevant model constraints
including the model implementation approach. Section 4 describes the experimental setup including
calibration, verification, and experimental results of the developed model. Section 5 summarizes the results
and addresses directions for future research on this topic.
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2 LITERATURE REVIEW

2.1 Optimization

The airline industry has a long history of using optimization methods and operations research to solve
airline planning problems (Barnhart et al. 2003). A linear integer programming approach to solve the
airline fleet scheduling and aircraft routing problem was introduced by Levin (1971). The study applied
exact optimization methods incorporating the branch and bound algorithm to find optimal solutions to
real-world problems. Research conducted by Feo and Bard (1989) applied a column generation method
to generate a flight schedule that met the cyclic constraints of aircraft maintenance requirements. Gopalan
and Talluri (1998) developed a fast and simple method using a polynomial-time algorithm that solves the
aircraft routing problem. The model satisfied both the three-day maintenance (A-Check) and balance-check
(quarter C-checks) requirements. The algorithm was designed for a dynamic finite-horizon model and a
static infinite-horizon model. Consequently, realistic airline maintenance constraints were included such
as only performing maintenance tasks during night shifts. Sriram and Haghani (2003) introduced a new
formulation for aircraft re-assignment and maintenance scheduling by applying a hybrid heuristic method
to solve large-scale integer programming problems. The heuristic combined random search and depth-first
search which produced results within a 5% gap of the global optimal solutions. The heterogeneity of the fleet
and several cyclic constraints made the problem more complex compared to traditional flight scheduling
and crew scheduling problems. Although limited in the scope of domestic services and planning A- and
B-checks only, the study is seen as an extension to the research by Feo and Bard (1989).

Papakostas et al. (2010) introduced an operational optimisation strategy for scheduling line maintenance
as a decision-support tool (DSS). The framework accurately modeled an airline’s maintenance policy using
criteria weights and analyzed several operational factors such as aircraft health data, maintenance records,
available resources, and maintenance costs. The DSS produced a set of feasible maintenance plan alternatives
for the decision maker based on objectives such as cost, flight delays, and remaining useful life. This work
aimed to tackle the inherently reactive approach in airline operations and focused on resolving unscheduled
maintenance activities. Another real-time decision tool that incorporated data from dynamic work progress
monitoring was presented by Callewaert et al. (2018). The tool generated alternative plans using heuristics
when one or more maintenance tasks deviated from their due dates. According to the findings of the case
study, the framework optimized maintenance planning by decreasing maintenance costs from 45 to 90%.

Lagos et al. (2020) introduced a dynamic take on the LMSP by integrating the aircraft maintenance
scheduling problem with tail assignments. The model was based on a dynamic Markov Decision Process
(MDP) which selects a daily set of aircraft and jobs to be performed and aims to minimize the expected costs
of expired maintenance jobs in the long term. The framework scheduled tasks to consume fewer resources
in order to utilize the available maintenance capacity. The model further allowed for flexible processing
times by adapting resource consumption rates with increased flexibility in scheduling. In addition, the
framework took advantage of outsourcing or sharing maintenance resources among multiple airlines and
therefore, considered factors enabled by the economies of scale. This approach was, however, simplified
to a single maintenance base.

Deng et al. (2020) presented a dynamic programming (DP) approach to optimize the long-term
maintenance check schedule for a heterogeneous aircraft fleet by integrating multiple check types into a
single schedule solution. The DP-based method aimed to maximize aircraft availability by reducing the
number of maintenance checks by approximately 7% over four years. From a financial perspective, this
method may save the industry partner between $1.1M to $3.4M in maintenance cost, while allowing to
generate $9.8M additional revenue due to increased aircraft availability. However, the study did not take
into account the potential for disruptions in aircraft usage or unexpected non-routine work that could affect
the duration of maintenance checks. Witteman et al. (2021) proposed a new approach to solve the task
allocation problem (TAP) in aircraft maintenance scheduling. The TAP assigned maintenance tasks to
maintenance opportunities which is a complex combinatorial problem that maintenance operators need
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to solve daily. The proposed approach was built on top of the DP approach for maintenance scheduling
introduced by Deng et al. (2020). The problem was defined as a time-constrained variable-sized bin
packing problem (TC-VS-BPP) and applied a worst-fit decreasing algorithm to solve it efficiently. The
approach was tested and validated with maintenance data sourced earlier from a project partner airline. For
a heterogeneous fleet of 45 aircraft, the method was found to be more than 30% faster than the previous
approach, with an optimality gap below 3% in most cases.

A DP-based scheduling method and task allocation approach was integrated into a decision support
system (DSS) by Deng et al. (2021). The solution allowed maintenance planners to initially plan an optimized
long-term aircraft maintenance check schedule. This was followed by allocating specific maintenance tasks
to each maintenance check with the help of the developed task allocation method. Lastly, the DSS allowed
efficient shift planning according to the allocated task sequence. The presented DSS provided a solution that
combined the traditionally separated problem-solving of maintenance check planning, task allocation, and
workforce planning. As a result, it offered significant advantages for both scientific research and industry
application.

2.2 RL-based Scheduling Methods

Reinforcement learning (RL) involves an agent engaging with its surroundings and utilizing trial and error
to learn an optimal policy for taking sequential decisions. The neural network structure of the RL model
is designed to employ rewards to train it, which involves taking different actions in a specific environment
following guided policies. The Markov-Decision Process (MDP) governs the decision-making process of
an RL model, as each action may result in different outcomes in the study environment, further referred
to as rewards. Therefore, training an RL model requires a balance between exploiting current knowledge
and exploring uncharted territory to discover the best policy for taking actions that yield maximum benefits
(Sutton and Barto 2018).

Andrade et al. (2021) incorporated a reinforcement learning approach on top of the dynamic programming
approach for long-term maintenance check scheduling previously presented by Deng et al. (2020). The
goal was to examine whether a reinforcement learning approach can maximize the flight hour usage of
aircraft between scheduled A-, C- and D-checks. The total number of scheduled maintenance checks
proposed by the RL-method was compared with the scheduling results achieved using the DP approach.
The reinforcement learning method applied the deep Q-learning algorithm with a double Q-learning variant,
and achieved better results in scheduling C-checks.

Hu et al. (2021) developed a novel maintenance planning strategy incorporating reinforcement learning
with an Extreme Learning Machine (ELM)-based Q-learning algorithm. Traditional aircraft maintenance
strategies included scheduled, corrective, prognostic, and health management methods. The applied ELM-
Q-learning algorithm considered the uncertainties and complexities of the current operational environment
and adapted current flight schedules based on aircraft health, failure rates, repair costs, and mission needs.
Therefore, the ELM method provided more dynamic decision support centered around the current state of
the maintenance environment, which the authors proposed to potentially replace traditional maintenance
strategies. However, the method developed by Hu et al. (2021) was tailored to one aircraft only. Therefore,
it would be beneficial to scale the model for multiple aircraft of a heterogeneous fleet and address challenges
related to flight scheduling, fleet assignment, crew assignment, and maintenance routing problems.

In contrast to Hu et al. (2021) and Andrade et al. (2021), Lee et al. (2022) presented a RL framework
using Q-learning and Double Q-learning algorithms to tackle the aircraft recovery problem during operational
disruptions. The RL approach allows for the re-timing of specific flights and swapping of aircraft without
duplicating flight arcs and can flexibly adapt to various objectives by modifying reward functions. The RL
method was tested using a South Korean airline’s domestic flight schedule and delivered promising results,
outperforming other methods in computation time. However, the method is prone to cause unnecessary
operational disturbance and higher non-operational costs due to increased crew duty swaps.
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Reinforcement learning is widely applied, including in board games. TD-Gammon, developed by
Gerald Tesauro, achieved a near-grandmaster level in backgammon with minimal prior knowledge (Tesauro
et al. 1995). AlphaGo and its successor, AlphaGo Zero, demonstrated the power of reinforcement learning
by mastering the game of Go and surpassing human performance. While AlphaGo utilized reinforcement
and supervised learning from expert human moves, AlphaGo Zero solely relied on reinforcement learning
without human data or guidance beyond the game rules (Silver et al. 2017).

Robotics is a critical platform to adopt new technologies for the development of AI solutions and a typical
application of reinforcement learning (Li, Yuxi 2018). Kober et al. (2013) describes several applications
such as learning helicopter flight, driving a radio-controlled vehicle, and learning a jumping behavior for a
robot dog. Moreover, RL is a crucial part of the development of natural language processing. OpenAI’s large
language model (LLM) ChatGPT was optimized for dialogue using RL with Human Feedback (RLHF).
This method involves using human demonstrations and preference comparisons as supervised fine-tuning
to guide the model toward desired behavior, as outlined by OpenAI (2023).

RL has found success in the field of intelligent transportation. Sallab et al. (2016) used deep
reinforcement learning (DRL) to create lane-keeping assistance methods for autonomous driving, training
the policy using raw sensory data as input. Applying DRL to autonomous driving poses challenges such
as addressing the gap between simulation and reality for accurate agent training and integrating safety
considerations into RL systems for autonomous agents (Kiran et al. 2022).

3 SCHEDULING ALGORITHMS AND CASE STUDY DATA

3.1 Line Maintenance Scheduling Algorithm

The Line Maintenance Scheduling Problem (LMSP) involves decision-making for two types of scheduling
problems: job assignments and timetable design. For job assignments, the LMSP assigns maintenance
jobs to maintenance opportunities provided by aircraft schedules. The job assignment problem aims to
allocate maintenance jobs to available maintenance opportunities with the objective of minimizing the total
deviation from the ideal due time for each job. The timetabling problem defines the start time for each job
within its designated maintenance time window. Maintenance jobs have due times which indicate the ideal
service time for maintenance jobs to be finished. As resource capacity at airports is limited, the timetabling
decisions must ensure that the limited resource capacity at each airport is not exceeded. A more detailed
description of the model constraints including a mathematical formulation of the LMSP as a mixed-integer
problem is available in Shaukat et al. (2020).

It is noted that the timetabling algorithm in this paper uses a bin structure allowing micro-timetabling
of maintenance jobs to ensure resource capacity is not exceeded within predetermined time intervals for
each maintenance opportunity. In this paper, the bin structure interval is designed by ten bins per hour,
i.e. 6 mins for each bin. The micro-timetabling structure aims to set the starting time of a maintenance
job as early as feasible within its allocated time slot. From this perspective, the optimisation formulation
in Shaukat et al. (2020) was more restricted in terms of job timetabling than the newly implemented bin
structure. We will further discuss the difference in the Discussion section of the paper.

The LMSP heuristic was created to replicate the manual procedure used by maintenance schedulers
of a study airline. This procedure involves prioritizing jobs based on deadlines and importance, allocating
them in a specific order, and estimating resource capacity to create feasible solutions. The first phase of the
process produces an initial solution, and the second phase involves manual fine-tuning to ensure resource
availability and accommodate unscheduled jobs. However, the manual procedure is not always guaranteed
to find a feasible solution. The LMSP heuristic aims to optimize this process and increase efficiency.

The LMSP algorithm involves two main stages:

1. Job assignment stage, which prioritizes mandatory jobs and assigns them to maintenance opportunities
in a greedy manner based on their deadlines, while considering capacity constraints.
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2. Timetabling stage, which takes the assigned jobs and searches for a feasible timetable considering
capacity consumption within determined time intervals (e.g., within every 6min), at every airport or
maintenance base, by detecting resource violations and attempting to reschedule the removed job
to restore feasibility. The algorithm tries to reschedule the job first within its current maintenance
opportunity at different starting times and then in its closest maintenance opportunity.

The LMSP objective function is defined as a weighted sum of earliness and tardiness of mandatory
scheduled jobs, plus the cost of jobs left unscheduled as outlined by Shaukat et al. (2020). A job is
recorded as unassigned if no maintenance opportunity subject to the above schedule feasibility criteria can
be found. In this case, an unassigned job is matched to a fictional maintenance opportunity designated to
hold unassigned jobs.

min ∑
j∈J

m j(e jy j + t jz j)+∑
j∈J

c j(1− ∑
m∈M

x jm) (1)

where,

e j: cost per unit of earliness for of job j.
y j: earliness of job j.
t j: cost per unit of tardiness of job j.
z j: tardiness of job j.
m j: binary, indicates whether job j is mandatory or non-mandatory; m j = 1 defines that job j is
mandatory and must be scheduled.
c j: cost for leaving job j unscheduled.
x jm: binary, indicates if job j is executed during maintenance opportunity m ∈ M. x jm = 1 indicates
that job j is scheduled.

3.2 Research Dataset

The line maintenance job assignment experiments are carried out using a dataset collected during a previous
study from a partner airline. The dataset consists of comprehensive information about flight schedules and
the corresponding maintenance tasks for a fleet of four aircraft. The airline operates four maintenance
bases, each with a defined maintenance personnel resource capacity (person-hours) available across three
maintenance trade categories: airframe, engine, and avionics. Job deadlines and due dates are recorded
in three units: flight hours, number of landing cycles, and calendar days. Due to operational consider-
ations, only maintenance opportunities with a minimum ground time of 30 minutes or more were considered.

3.3 Implementation

The LMSP heuristic, including the schedule feasibility constraints as described in section 3.1 is implemented
as a hybrid simulation model using the simulation software AnyLogic. The simulation environment replicates
the scheduling system of an airline and is implemented in the form of a deterministic Markov Decision
Process (DMDP) which provides a forecast schedule, although it does not incorporate factors of uncertainty.
The simulation model is connected to the Microsoft Project Bonsai AI platform, which enables the training
of RL agents using deep reinforcement learning.

A system overview is illustrated in Figure 1, which describes the interaction between the simulation
model and the RL environment. As introduced in Section 3.2, the simulation model uses a deterministic
set of maintenance tasks and opportunities as input. The model generates schedule performance metrics
as outputs, which are then used as states in the RL environment. These states include the current sorting
policy for jobs and opportunities, the count of unscheduled jobs, and the resulting objective function value.
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Figure 1: The interaction between the simulation model and the RL training environment.

The RL environment includes a training curriculum specifying the learning objective of the RL process.
According to the defined learning curriculum, the RL environment calculates a reward value based on the
received policy (state) from the simulation model and takes action by selecting a new policy configuration.

This new scheduling policy is sent to the simulation model, and this concludes one state-action iteration.
This process is repeated until the RL agent is fully trained according to the training objective defined in
the learning curriculum. The objective is evaluated using the goal satisfaction performance metric, which
records the average progress in the percentage of training iterations satisfying the objective, compared to
the total number of training iterations. A goal satisfaction of 100% indicates that the trained RL ’brain’ has
successfully completed the objective defined in the learning curriculum by reaching a terminal condition.
Bonsai allows the implementation of the RL objective by using custom reward and terminal functions or
through a low-code goal statement such as minimizing, maximizing, or avoiding a target value. In this
project, a one-step RL approach with a low-code objective is implemented to learn a scheduling policy
that minimizes the objective function value associated with the schedule solution.

The implemented RL environment aims to learn the best scheduling policy with the minimum objective
function value from a potential combination of 18 first-level job sorting policies and 22 first-level opportunity
sorting policies. The job sorting policies involve 9 job sorting priorities in both ascending and descending
order, such as job duration, deadline, or resource requirement: 9 x 2 = 18 job sorting policies. Similarly,
the maintenance opportunity sorting policies consist of 11 opportunity sorting priorities in ascending and
descending order: 11 x 2 = 22 opportunity sorting policies. In example, this includes sorting opportunities
by starting time, duration, or deadline. In total, there are 396 (18 x 22) possible policy choices applying
first-level sorting, which defines the discrete action space for the RL training environment. Two example
policies available to the RL training algorithm are provided as follows:

• Policy A: Sort jobs ascending to job deadline and match to opportunities sorted by ascending
opportunity starting time.

• Policy B: Sort jobs descending to job duration and match to opportunities sorted by descending
aircraft use measured in flight hours.
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The simulation model’s schedule output depends on the chosen sorting policy that pre-processes the
simulation model’s input data. Once the RL algorithm is fully trained using the Microsoft Project Bonsai
platform, the trained policy is referred to as a trained "Brain" and may be deployed as a web application.
A deployed Brain is then available to schedule line maintenance jobs by applying the learned scheduling
policy.

4 MODEL CALIBRATION, VERIFICATION AND EXPERIMENTAL RESULTS

The performance of the RL-enhanced LMSP model is compared to an optimization-based method (ILMSP)
and a heuristic-based method (SLMSP) developed in a previous study by Shaukat et al. (2020). The
methods are compared using a test set of 29 schedule variations which differ by the number of aircraft
(A), the length of the planning horizon (L), and the total number of jobs to be scheduled (J) as available
in Table 2.

The available resource capacity at any of the four maintenance bases is three person-hours for airframe
(AF), two for engine (EN), and one for avionics (AV). Due times of maintenance jobs are set to 15 hours,
10 cycles or 1 day before the deadline, according to the relevant unit for the job (flying hours, landing
cycles or calendar days). The following weighting factors are applied to both earliness and tardiness in
the objective function (1): weight factor 1 for flying hours, 2.5 for cycles, and 10 for calendar days. To
encourage the scheduling of all jobs during the planning horizon, a large weight factor ci = 50 is used to
account for any unscheduled jobs.

Two RL-scheduling brains were trained using two test instances from Table 2, differing in the number
of maintenance jobs and the number of aircraft. The Brain 148J was trained based on the test instance
(4/4/148) and the Brain 329J was trained on the test instance (9/4/329). Both RL methods were defined by
a training curriculum using a goal statement to minimize the objective function value as much as possible
within 200,000 iterations. As available in Table 1, both RL-trained methods were fully trained within 1h
30min to 3h 36min, achieving near-optimal goal satisfaction between 98.8% to 100% in selecting the best
scheduling policy that minimizes the schedule objective function value at 98,000 training iterations.

Table 1: RL-Brain training metrics.

No. of iterations
Brain 148J Brain 329J

Duration (min) Goal Satisfaction Duration (min) Goal Satisfaction
400 1 81.7% 1 66.2%

48,000 40 81.7% 71 86.2%
73,000 64 97.8% 177 100%
98,000 90 98.8% 281 100%

As shown in Table 2, both RL-trained methods generate feasible schedules with lower objective
function values and shorter runtimes for every test scenario in comparison to the exact ILMSP algorithm.
As illustrated in Figure 2, the objective function value for Brain 148J and Brain 329J is on average 20% lower
compared to the schedule results obtained by the ILMSP method, and 23% lower compared to the SLMSP
algorithm. The RL method is based on the approximate SLMSP approach. Nevertheless, both trained RL
models scheduled all mandatory and non-mandatory jobs to maintenance opportunities in line with the exact
ILMSP algorithm. However, the exact ILMSP algorithm may produce different job assignments compared
to approximate methods. The exact method’s objective to avoid penalties for unscheduled non-mandatory
jobs can lead to the displacement of mandatory jobs from their optimal maintenance slots. This caused the
difference in the schedule’s objective function value. For instance, in Table 3, the exact method assigns
the mandatory job (T00141) to opportunity 327, resulting in a spread value of 1 and an objective function
(O.F.) value of 2.5. In contrast, the RL method schedules the job closer to its due time using a neighboring
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Table 2: Comparative computational results from ILMSP, SLMSP, Brain 148J, and Brain 329J method.

(A/L/J) ILMSP O.F. Time (s) SLMSP O.F. Gap Time (s) Brain 148J O.F. Gap Time (s) Brain 329J O.F. Gap Time (s)

(3/2/57) 66.0 6 66.0 0.0% 3 53.0 -19.7% 3 53.0 -19.7% 2
(3/3/82) 92.0 13 98.0 6.5% 4 77.5 -15.8% 7 77.5 -15.8% 6
(3/4/112) 148.0 5 148.0 0.0% 5 109.5 -26.0% 5 109.5 -26.0% 5
(4/2/77) 58.0 14 58.0 0.0% 3 41.5 -28.4% 4 41.5 -28.4% 3
(4/3/112) 150.0 8 157.0 4.7% 4 122.0 -18.7% 6 122.0 -18.7% 6
(4/4/148) 155.0 10 155.0 0.0% 7 123.0 -20.6% 8 123.0 -20.6% 8
(4/3/157) 211.5 91 214.5 1.4% 7 171.5 -18.9% 8 171.5 -18.9% 8
(4/4/157) 204.5 10 204.5 0.0% 7 169.5 -17.1% 9 169.5 -17.1% 9
(5/2/94) 124.5 5 134.5 8.0% 2 111.0 -10.8% 4 109.0 -12.4% 4
(5/3/150) 193.0 10 197.0 2.1% 5 160.0 -17.1% 8 159.0 -17.6% 8
(5/3/187) 222.5 90 235.5 5.8% 9 166.5 -25.2% 10 166.5 -25.2% 11
(5/4/189) 305.5 42 307.0 0.5% 6 270.5 -11.5% 14 266.0 -12.9% 13
(5/4/202) 194.5 92 195.5 0.5% 10 128.0 -34.2% 16 131.5 -32.4% 15
(6/4/221) 286.0 400 286.0 0.0% 11 231.0 -19.2% 18 231.0 -19.2% 18
(6/3/229) 247.0 209 254.0 2.8% 11 214.0 -13.4% 13 206.5 -16.4% 12
(7/3/243) 309.5 236 309.5 0.0% 11 246.5 -20.4% 14 246.5 -20.4% 15
(7/4/263) 299.0 892 303.5 1.5% 14 232.0 -22.4% 24 231.5 -22.6% 24
(8/3/285) 357.0 685 362.0 1.4% 12 278.5 -22.0% 17 278.5 -22.0% 18
(8/4/298) 369.0 124 385.0 4.3% 15 313.5 -15.0% 33 311.0 -15.7% 34
(9/4/329) 388.0 938 428.5 10.4% 16 298.0 -23.2% 40 296.0 -23.7% 40
(9/3/348) 464.0 1230 477.0 2.8% 16 389.5 -16.1% 25 389.5 -16.1% 23
(10/4/372) 482.0 781 516.0 7.1% 17 391.0 -18.9% 49 394.0 -18.3% 48
(10/3/382) 490.5 3600 520.0 6.0% 18 394.5 -19.6% 32 396.5 -19.2% 31
(11/3/415) 611.0 1791 681.5 11.5% 18 460.5 -24.6% 39 450.0 -26.4% 40
(11/4/424) 434.5 1223 447.5 3.0% 20 337.0 -22.4% 46 339.0 -22.0% 46
(12/3/211) 238.0 123 242.5 1.9% 10 206.0 -13.4% 39 200.5 -15.8% 38
(12/4/337) 449.0 329 475.5 5.9% 13 355.5 -20.8% 64 357.0 -20.5% 62
(13/3/370) 469.0 743 509.5 8.6% 16 390.5 -16.7% 47 385.0 -17.9% 48
(13/4/467) 532.0 1822 554.5 4.2% 22 467.5 -12.1% 79 463.0 -13.0% 78
Average 294.8 535.2 307.7 3.5% 10.8 238.2 -19.5% 24.1 237.1 -19.8% 23.8

opportunity 328, resulting in a spread and O.F. value of 0. Both methods adhere to the available airport
resource capacity.

Table 3: Comparison of assignment for mandatory Job T00141 (deadline type: Flight Cycle) in schedule
instance (4/4/148): exact ILMSP method vs. RL

Method Job Id Opportunity Id Spread O.F.
ILMSP T00141 327 1 2.5
RL T00141 328 0 0

The runtime to produce feasible solutions vary significantly between the optimization-based method
(ILMSP) and the AI-enhanced LMSP method. On average, the ILMSP method produces schedules in 535
sec, while a trained brain solves the LMSP on average within 24 sec. The heuristics-based approach of
SLMSP is the most efficient method in terms of model runtime by producing results average within 10.4
sec.

The runtime and objective function values of all scheduling methods increase as the assignment problem
becomes larger and more complex with an increasing number of jobs, aircraft, and an extended planning
horizon. Nevertheless, the model runtime of the trained brains increases with a lower rate for more complex
schedule instances as compared to the exact ILMSP method as illustrated in Figure 3. While the trained
RL methods significantly reduce the calculation time for providing a new feasible schedule solution in
comparison to the exact ILMSP method, it is important to note that both brains require significant training
time of up to 3 and a half hours before being deployed to solve problems. Both trained brains generate
similar objective function gaps in comparison to the ILMSP method within 1.1% on average while the
model runtime differs up to 0.3 sec between the two brains, which is considered as insignificant.
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In terms of model runtime, the heuristics-based approach of the SLMSP performs especially efficiently
in complex test instances of more than 200 jobs. In schedule test instances of up to 200 jobs, the SLMSP
method records on average 25% less model runtime (avg. runtime ≤200 jobs: SLMSP = 5.2s; Brain 148J
= 7.2s; Brain 329J = 6.9s). However, in complex test instances of more than 200 jobs, feasible solutions are
produced by the SLMSP algorithm in half the calculation time compared to a trained brain (avg. runtime
≥ 200 jobs: SLMSP = 14.7s; Brain 148J = 35.0s; Brain 329J = 34.7s).

Figure 2: Objective function value comparison for increasing schedule instance complexity.

Figure 3: Model runtime comparison for increasing schedule instance complexity.

5 RESULTS AND DISCUSSION

This paper presents an AI-enhanced scheduling method that leverages RL to solve the Line Maintenance
Scheduling Problem (LMSP). Two RL-enhanced scheduling solutions were trained, and their performance
was compared to exact and heuristic methods developed in a previous study. The experimental results
demonstrated that the proposed AI-enhanced scheduling solutions achieved near-optimal schedules for all
test instances, reducing the objective function value by 20% on average compared to the exact ILMSP and
approximate SLMSP methods. The RL method in this study differs from the exact ILMSP algorithm in
two ways. Firstly, it is an approximate approach that aligns with real-world airline practices. Secondly,
it includes an adapted timetabling functionality. In contrast, the ILMSP guarantees an exact and feasible

609



Widmer, Shaukat, and Wu

solution. We observed that the exact method overemphasizes on scheduling non-mandatory jobs driven
by a high penalty cost associated with unscheduled non-mandatory jobs. Table 3 demonstrates that the
focus towards achieving an exact solution can lead to the displacement of mandatory jobs from their
optimal maintenance slots, thereby affecting the objective function value. In this regard, the approximate
RL methods offer a more practical scheduling result from a practical standpoint.

The RL solutions generate feasible schedules in under 24 sec on average, whereas the exact ILMSP
method takes approximately 10 min. An airline typically finds a solution time of up to 20 min acceptable
for a planning problem. The shorter runtime of the RL method benefits an airline by facilitating rapid
adaptation to changing conditions and exploration of multiple scenarios. In contrast to the exact method,
the RL models allow for iterative and experimental iterations within the same timeframe, providing added
value that the exact ILMSP solution lacks. However, it is noted that the RL-enhanced scheduling solutions
require significant training time of up to 3 h 36 min before deployment. This training time can be further
reduced by using more cloud computing resources. Further, the scheduling heuristic requires accurate
representation by a simulation environment which is a time-consuming development process.

Although the developed RL-brains were trained by specific schedule instances, the deployed LMSP
methods demonstrated near-optimal scheduling results across a set of different test instances with varying
sizes. A limitation of RL-enhanced methods is identified in complex test instances of more than 200
jobs, in which the heuristics-based method significantly outperforms the trained brains providing feasible
solutions in half the calculation time. Future studies could explore integrating multiple schedule variations
in the training process of RL-enhanced LMSP solutions to further improve the generalization of results
in complex scheduling scenarios. Additionally, including factors of uncertainty in the simulation model
would support efforts to increase the robustness of generated schedule results. Further, the current LMSP
utilizes a set of first-level sorting policies. However, it is of interest to investigate the potential of integrating
multi-stage sorting policies. Despite the higher model training effort expected when increasing the sorting
policy complexity, it is anticipated that multi-level sorting policies will enhance the scheduling performance
of future LMSP solutions using reinforcement learning.
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