
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

CGPT: A CONDITIONAL GAUSSIAN PROCESS TREE FOR GREY-BOX BAYESIAN
OPTIMIZATION

Mengrui (Mina) Jiang
Tanmay Khandait
Giulia Pedrielli

School of Computing and Augmented Intelligence
Arizona State University

699 S Mill Ave
Tempe, AZ 85281, USA

ABSTRACT

In black-box optimization problems, Bayesian optimization algorithms are often applied by generating inputs
and measure values to discover hidden structure and determine where to sample sequentially. However, in
some situations, information about system properties can be available, such as the trajectory of a dynamical
system, discrete states executed during a simulation, the model generating the trajectories. In different
learning tasks, we may know that the objective is the minimum of functions, or a network. In this paper
we consider the case where the structure of the objective function can be encoded as a tree. In particular,
each node of the tree performs a computation on the input and based on the outcome, a different branch
is chosen. We propose the new Conditional Gaussian Process tree (CGPT) model for “tree functions” to
embed the function structure and improving the prediction power of the Gaussian process. We utilize the
intermediate information made available at the tree nodes, to formulate a novel likelihood for the estimation
of the CGPT parameters under different levels of knowledge of the structure. We formulate the learning and
investigate the performance of the proposed approach with a preliminary investigation. Our study shows
that CGPT always outperforms a single Gaussian process model.

1 INTRODUCTION

Bayesian optimization (BO) is commonly used in complex systems to model expensive black-box func-
tions (Frazier 2018). In their traditional implementation, BO procedures treat the function to be optimized
as a black box function and, given an input location, the value of the function at that location is used
to build a surrogate of the function, without using any information about the structure, the properties of
the object being optimized. Intuitively, if more information is available to characterize the function, the
search procedure should achieve better solutions (Astudillo and Frazier 2021a). A question arises on how
to change the surrogate and/or the search procedure in a way that embeds such additional information. In
this paper, we focus on the first approach, i.e., embedding the additional information in the surrogate model
under the principle that improving the quality of the surrogate will result in improved search performance.
In fact, while intuitively this enhanced surrogate should improve the prediction power, in practice models
that embed additional structure are more complex to train, thus potentially overwhelming the potential
advantage coming from the additional structure.

In this paper, we consider a particular class of functions whose structure can be encoded as a tree where
nodes contain functions of the input (generally nonlinear non convex) and based on the value produced
by the node operator, determine which child function to apply next (i.e., there are branching conditions).
Given input x ∈X to the root node, a specific path will be executed as a result of the function values at the

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 564

Jiang, Khandait, and Pedrielli

intermediate nodes. Once arriving at a node, there can be multiple child nodes to go to based on different
conditions. If the function value for the intermediate nodes is not a-priori (i.e., it is only available upon
evaluation) the CGPT approach will fit a GP for each node in the tree. We assume the structure of the tree
is known to us, so does the number of leaf nodes and all the intermediate layers and number of nodes.
We will distinguish two scenarios: (1) the intermediate node information is known without simulation. In
this case, given x, we will know which leaf function to apply; (2) the intermediate information can only
be evaluated by simulation. In this case, fitting GP models on the nodes will give an estimation of the
leaf function. In both scenarios, the threshold applied to the functions output at the intermediate nodes for
branching are known. For this class of functions, we propose the novel conditional Gaussian process tree
(CGPT) that embeds the tree structure with the intermediate condition information (true or predicted based
on the scenario). This model leverages the information of the tree structure (number of nodes, levels), and
threshold values for the branch selection, to build an improved predictor for the leaf functions. In this
manuscript, we focus on the preliminary problem of single level trees, i.e., the case where a root function
is defined and a number of possible branches can result from the root.

Example. Figure 1 illustrates the concept of a conditional tree function for a case with 10 conditions
and 9 branches resulting in 6 leaf functions. We also provide a 1-dimensional toy case for a single
layer tree with a root node and two leaf nodes. The function tree is the following:

f (x) =

{
y1 (x) := sin(x) If x ∈ B1 = [0,0.4]
y2 (x) :=−sin(x) If x ∈ B2 = (0.4,1]

(1)

The tree function is discontinuous at x = 0.4 as a result of the condition. Figure 2 shows the true
function, the prediction produced by a GP that ignores the branch structure and only evaluates input,
outputs, and the predictions produced by our CGPT. We can see that our model outperforms the
single GP especially in areas where function is discontinuous. The single GP is not able to handle
the discontinuity and attempts to connect the jump which causes a big error, while CGPT fits the
true function well and is robust to the magnitude of the discontinuity. The MSE is 1e−7 for CGPT
and 2e−3 for the single GP model.

Conditional Gaussian processes are relevant to a broad range of applications. In particular, we present
the example of program analysis in the context of Cyber Physical Systems.

Example (Program Analysis for Cyber Physical Systems). Monte-Carlo methods have recently
gathered important attention in the field of analysis of software for Cyber Physical Systems. This
is a special class of programs since input variables are typically (continuous) physical quantities
and the program itself implements a controller. In these scenarios, the identification of bugs within
the code can be translated into an optimization problem (Mathesen et al. 2019). In particular,
after obtaining the system trajectory from the simulation of a specific input (e.g., initial conditions,
control, environment), a monitor evaluates how far the trajectory is from a given unsafe set. Such
distance is referred to as robustness. Negative robustness implies that the controller is eliciting
unsafe behaviors. A very important question is: if we know the structure of the program can we
identify bugs quicker. It is important now to note how a program execution can be seen as a tree,
where at each node a function (known) is performed over the input. The result of this function
determines the path we take in the code and the path results in a specific robustness function.
This is precisely the context of CGPT. Most of the literature in program analysis focuses solely on
sampling, ignoring the properties of the robustness. We argue that a better model of the robustness
that reflects the tree structure is a better way to formulate the problem.

565

Jiang, Khandait, and Pedrielli

𝑓!

𝑓!,! 𝑓!,# 𝑓!,$

𝑓#,#𝑓#,! 𝑓#,%𝑓#,$ 𝑓#,&

𝑋

𝑦! 𝑦"

𝑦#

𝑦$ 𝑦%𝑦&

𝐵!,! 𝐵!," 𝐵!,#

𝐵",! 𝐵"," 𝐵",# 𝐵",$ 𝐵",&

Figure 1: Illustration of a conditional tree function.
Bi, j represents the conditions of entering j-th node at
the i-th level of the tree. Each node is a function of
the type fi j (x) and the branch is chosen based on the
value produced by fi j (x). For a given value of x only
a leaf function is activated yh,h = 1, . . . ,H, H = 6 in
the figure and the evaluation returns the corresponding
value yh (x).

0.00 0.25 0.50 0.75 1.00
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4
true
CGPT
sGP

0.36 0.38 0.40 0.42 0.441.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Figure 2: 1-d true sinusoidal function (cir-
cles) against the predictions produced by
the single GP (asterisk) and the CGPT (tri-
angles).

The remainder of the paper is structured as follows: Section 2 discusses several approaches in the literature
that are related to the proposed work. Section 3 introduces the mathematical formulation and learning
for the proposed model, for the different knowledge scenarios while the preliminary numerical analysis is
presented in Section 4. Finally, Section 5 discusses the conclusions and future work.

2 RELATED LITERATURE

Bayesian optimization has become widely used for searches over expensive black-box functions. Applications
are in areas such as manufacturing, biology, and machine learning (Brochu et al. 2010; Torun et al. 2018;
Sano et al. 2020). While the ultimate objective is optimization, this paper focuses on surrogates modeling
and learning. Interested readers may refer to (Shahriari et al. 2015; Frazier 2018; Greenhill et al. 2020) for
a review of BO and surrogate models. As BO becomes more popular, the challenges of costly simulations
arise, which motivate the research into a class of approaches that leverages structure of the objective
function. This broad class of approaches is referred to as grey-box BO (Astudillo and Frazier 2021b).

In grey-box BO, additional information about the objective function can be available in different
forms, e.g., derivative evaluations, function structures such as composition, nested evaluations or sequential
evaluations. Astudillo and Frazier (2021a) models the objective using a function network structure which
allows the usage of evaluations from the intermediate nodes. Similarly, composite structures have been
dealt with by sequential GP modeling of nested nodes (Astudillo and Frazier 2019). Deep Gaussian
Processes can also be interpreted as a network structure, where the number of nodes are related to the input
dimensionality, while the output is given by evaluating all nodes in the previous layer (Sauer et al. 2022).
Other works leverage the derivative evaluations as additional information from the objective function to
improve the model predictions (Wu et al. 2017; Joy et al. 2020). Important effort has also been devoted to
approaches that attempt to learn the structure of the problem. Cost-aware methods have also been recently
proposed, which take into consideration the cost produced by the evaluation of functions under different
settings (Lee et al. 2020; Guinet et al. 2020). In Multi-fidelity BO, complex structure dependencies and
multiple objective functions and costs are used (Song et al. 2019; Zhang et al. 2017; Imani et al. 2019).
More recently, Foumani et al. (2023) combines the cost-aware and multi-fidelity approaches to further
utilize low-fidelity sources to learn more information about the objective. Part-X proposed in (Pedrielli

566

Jiang, Khandait, and Pedrielli

et al. 2021) sequentially learns partitions of the input space in a way that allows for the estimation of the
0-level set of the function.

Our work differs from the above approaches in that the additional information about the objective
function is a sequence of conditions imposed on the output of intermediate functions of the problem input
along a known tree. The function network model in (Astudillo and Frazier 2021a) does not allow a node
to have several paths as each node takes the output of the previous layer node by definition. On the other
hand, our approach allows the output from the previous layer to enter different child branches based on the
different conditions. Different from the composite structure introduced by (Astudillo and Frazier 2019),
which is a one-step-composition, the setup of our problem is mode generalized in the sense that it can
model multiple compositions if one looks at a single path given all the conditions. In fact, based on the
path, completely different functions will be applied to the input.

Our model is also closely related to the class of trees typically used for classification and regression.
Using Gaussian processes to fit tree nodes have been shown to improve regression performances by
dealing with large datasets. Gaussian process trees have applications in multiple fields such as machine
learning (Gramacy et al. 2004; Lee et al. 2015; Will et al. 2011) and complex systems (Fulgenzi et al. 2008;
Gramacy and Lee 2008; Civera et al. 2020). Shen et al. (2005) reduces the training and prediction time of
Gaussian process regressions using KD-trees on data structures. Similarly, transformations on data using
a tree prior to GP approximations are proven in (Bui and Turner 2014) to accelerate the approximations.
In classification problems, Achituve et al. (2021) develops the GP-tree model to scale with both large data
and a big number of classes. These tree models with Gaussian processes have also shown to be used in
many applications (Lee et al. 2015; Civera et al. 2020). Treed partitioning of Gaussian Process models
was used in statistical inference by Gramacy and Lee (2008) where the input space was divided to fit
independent GP models on each region. The overall prediction was based on an average of all possible
trees using a Monte Carlo Markov Chain method. (Park 2022) proposed a Jump GP where local GPs are
fit on sets of local data that are partitioned according to the response of training data, in order to adapt the
model to problems where the input regions have discontinuity. Also, the classification and regression tree
(CART) (Breiman et al. 2017) determines the classes of input according to their features. Similar to these
approaches, our CGPT model inherits a tree structure, but different from the above mentioned approaches
where classification is based on the input space, we partition the input according to the evaluations from
the parent node, and the condition threshold is known as well as the tree structure.

Finally, mixture of Gaussian processes are share aspects with our study (Stachniss et al. 2008; McDowell
et al. 2018; Li et al. 2019). Rasmussen and Ghahramani (2001) uses a divide-and-conquer strategy to
fit infinite experts of GPs on smaller data sets and achieve predictions respectively. Similarly, Meeds and
Osindero (2005) adapts the infinite mixture framework by Rasmussen and Ghahramani (2001) to improve
model efficiency. Gaussian Mixture Model (Reynolds 2009) takes the weighted average of several GPs
from the branches as the final prediction. Our model differs in that the input can only enter one path at a
time, whereas input of GMM can “enter” multiple models at the same time. Moreover, the goal of our work
is to find the optimal path of sampling as opposed to the aforementioned approaches used for regression.

To further articulate the difference between our proposed model and the ones in the literature, we
summarize and categorize the above methods into the following three kinds:

(1) Learned partitions via treed GPs: local GPs are fit to separate regions for regression and classification.
The trees are learnt, thus cannot directly address problems where the objective function structure
is encoded as a given tree with known branch conditions.

(2) Grey-box models with networks structure: a network of functions where the input of a child node is
the output of the parent node. This model does not allow encoding conditional (binary) conditions.
As a result, no “path” structure can be defined.

(3) Grey-box models with condition-directed paths: a given tree structure with known conditions,
encoded as functions of the input, that determine the branch structure. Each path is associated with
a different output function. This is the scenario supported by our novel CGPT model.

567

Jiang, Khandait, and Pedrielli

Our proposed model belongs to the third category, which specifies a given tree structure with paths
that depend on conditions. The first category focuses on the task of learning and the tree structure in this
case needs to be learned, such as in discontinuous processes, trees are used as a mechanism to sequentially
separate the space, whereas we are given the problem encoded as a tree. Trees that are built through
learning cannot serve as a structure for simulation, which is what the proposed model is able to achieve. On
the other hand, we are also not to be confused with the grey-box models which have a network structure.
This category of models contains a flow of the full input from one node to another, thus is incapable of
incorporating the concept of “path” into the problem, unlike our model which has known conditions that
direct only partial input flow and formulate multiple flows into different paths.

3 STATISTICAL MODELING

In this paper we will start considering a single level tree, where there is one root node and b child nodes. The
notation will consider a single index, simplifying the, more general, notation used previously in Figure 1.
Let function fr be modeled by a GP in the root node; the evaluations that result from the root GP are
referred to as yr. Given b branches, each with associated functions f1, . . . , fb, an input will be associated
to a branch according to the intervals B1, . . . ,Bb on the root function value yr, thus forming b, potentially
disconnected, sets of inputs S1, . . . ,Sb. Namely, the function can be written as:

f (x) =

f1(x), if yr = fr(x) ∈ B1

...

fb(x), if yr = fr(x) ∈ Bb

We divided the theoretical derivations of the problem into two phases (scenarios) according to how
much information about the root node is available ahead of evaluation of the location value:

(1) The value of the root function is given for all locations a-priori, i.e., without requiring evaluation.
Equivalently, given and input x, we know what path in the tree corresponds to the location;

(2) The value root test function is not given for all locations a-priori, but we are given a Gaussian
Process prediction for each location. Equivalently, given and input x, we can predict which path in
the tree corresponds to the location;

3.1 Scenario 1: Known a-priori Root Function

When the root node test function is known, we can simply define the likelihood function for each branch-
associated Gaussian processes i, with i = 1, . . . ,b, namely:

Li (y|x,θ i) =
ni

∑
j=1

log [p(yi|yr,X j)] =−1
2
(yi −µi)

T (Ki +η
2
i Ini

)−1
(yi −µi)−

− 1
2

log |Ki +η
2
i Ini |−

ni

2
log(2π) , i = 1, . . . ,b

where ni is the number of samples in branch i, ηi is the model noise associated with the i-th branch GP.
For each of the Gaussian processes, we use the best linear unbiased predictor from (Santner et al. 2013)

µ̂i =
(
1T K−1

i 1
)−1 1T K−1

i fi

where fi is the true function output associated with branch i. In this paper we adopted the squared exponential
kernel for the variance-covariance matrix Ki, namely:

Ki, j,k =
d

∏
l=1

e−(θi,l |xi, jl−xi,kl |)2

568

Jiang, Khandait, and Pedrielli

where (j,k) are the indexes of the cell in the matrix and refer to locations (x j,xk) within the region of the
input space Si implied by branch i, and θ is the d-dimensional smoothing length-scale parameter. When
the root function is known a-priori, the branch Gaussian processes can be estimated individually using the
form above. The predictor will be:

ŷ(x) =
b

∑
i

I (yr ∈ Bi)
(
µ̂i + rT

i K−1
i (yi − µ̂i)

)
,

where ri = r j(x j) for each r j(x j) = Corr(Zi(x j),Z(x j)) and j = 1, . . . ,ni (Santner et al. 2013), for each
Zi(X) realized from a Gaussian process corresponding to branch i. That is, for each new sample, if the
evaluation of the root function determines that the sample falls in branch i, the corresponding branch i GP
will be used for the prediction.

3.2 Scenario 2: Known Root GP

In the case of known root Gaussian process, we use a pre-trained Gaussian process on a set of given data
and consider the hyperparameters to be known in the training phase of CGPT. Hence, these hyperparameters
will remain fixed in the subsequent steps of the learning process, i.e., for the branch Gaussian processes
training, denoted as conditioning on θr. The probability of a sample going into a specific branch is induced
by the root GP. It follows intuitively that there is no optimization or any change regarding the root GP
during the maximum likelihood optimization of each of the branch Gaussian processes.

For a specific branch i, the log-likelihood can be formalized in this way:

Li (y|x,θi,θr) =
ni

∑
j=1

log [p(yi|yr,X j) p(yr ∈ Bi|X j,θr)] =
ni

∑
j=1

log [p(yi|yr,X j) p j]

=−1
2
(yi −µi)

T (Ki +η
2
i Ini

)−1
(yi −µi)−

1
2

log |Ki +η
2
i Ini |−

ni

2
log(2π)+nilog(p j)

Since for each sample, with the pre-trained GP hyperparameters, the probabilities induced are no more
than just constants during the optimization phase, we express the constant probabilities as p j in the above
likelihood where the subscript j indicates each sample. The final predictor is given by

ŷ(x) =
b

∑
i

p(yr ∈ Bi)
(
µ̂i + rT

i K−1
i (yi − µ̂i)

)
=

b

∑
i

p
(

cℓi ≤ yr < cu
i |θpt

)(
µ̂i + rT

i K−1
i (yi − µ̂i)

)
=

b

∑
i

(
Φ

(
cu

i −µr

σr
|θpt

)
−Φ

(
cℓi −µr

σr
|θpt

))(
µ̂i + rT

i K−1
i (yi − µ̂i)

)

where cℓi and cu
i are the lower and upper bounds of the interval defining the region Bi for the i-th branch, and

θpt represent the hyperparameters from the pre-trained (pt) root Gaussian process, which remain unchanged
during the training and prediction stages.

Extension to Multi-level trees We provide the procedure of fitting a 2-level tree with one root node,
two child nodes, one of which has another two child nodes, referring to nodes fr, f1,1, f1,2, f2,1 and f2,1
in Figure 1. The function can be formulated as:

569

Jiang, Khandait, and Pedrielli

f (x) =

f2,1(x), if fr(x) ∈ B1,1 and f1,1(x) ∈ B2,1

f2,2(x), if fr(x) ∈ B1,1 and f1,1(x) ∈ B2,2

f1,2(x), if fr(x) ∈ B1,2

The modeling for the root and first level of child nodes is the same as mentioned above for both
scenarios of single-level tree. When it reaches the second level of child nodes, node one of level one
becomes the parent node. Thus, according to the given conditions, input that entered node f1,1 will be
partitioned again into nodes f2,1 and f2,1 according to the intermediate output from the GP fit on node f1,1.
Two additional GPs will then be fit on these two nodes. Given an input X , the weight of final prediction
associated with leaf node output y1 will be the multiple of the probability of it entering node f1,1 and f2,1.

4 PRELIMINARY ANALYSIS

Experimental setup. The preliminary numerical experiments will be presented in a one-depth tree with 2,
4, and 8 child nodes for both the learning scenarios presented in Section 3. The same 2-dimensional samples
generated using a Latin Hypercube Sampling on the interval [0,1] were used across all the experiments.
We kept the number of test samples to be 2000 for all models. For both scenarios, the root test function is
a 2-d parabola: f (x1,x2) = x2 −x2

1. The child node test functions are multiples of the tetramodal function:

f (x1,x2) =−5(1− (2x1 −1)2)(1− (2x1 −1)2)(4+2x1 −1)× (0.05(2x1−1)2 −0.05(2x2−1)2
)2.

Section 4.4 presents a practical test case with known root test function. Data used is 2000 samples generated
using uniform sampling. We investigate both balanced and imbalanced partitions: in balanced cases the
measure associated to the branches as volume of the partition is similar across branches, in the imbalanced
case there are branches with different measure.
Analysis. For each case (number of nodes, scenario, and balance), we plot the true function and the
associated contour overlaid with the root function splitting levels. We then show the performance for
the balanced and imbalanced cases for both scenarios. For the practical test case, we experimented both
balanced and imbalance cases for scenario 1 by the problem setup. We compare the median of relative
error (r̃e) and MSE of the CGPT model against the single GP model (sGP), across models and cases,
summarized in Table 1 and 2.

4.1 2-node Case

The first case has two branches, with leaf functions being the tetramodal and negative tetramodal, respectively.
Figure 3(a) shows the contour plots of the root splitting at yr = 0.16 for the balanced case, and Figure 3(b)
shows the case for the yr = 0 split, i.e., the imbalanced data.
Scenario 1. In the case of a-priori known root function, the relative error appears to be similar for
both single GP and CGPT, however, the median relative error achieved by our model is one order of
magnitude smaller than the one achieved by the single GP (See Table 1). Moreover, we observed that
CGPT performance is robust to the imbalanced setting, while the single GP performance deteriorates. In
fact, we observed that the relative errors are strongly concentrated around 0 for CGPT in both balanced
and imbalanced cases, and larger errors are located in regions where the true function values change sign
(see Figure 4). The performance of CGPT is confirmed by the results in Table 2, where we can see how
the CGPT achieves orders of magnitude lower MSE.
Scenario 2. In this scenario, no a-priori information of the root function is given. Instead, we use a
pre-trained Gaussian process for the root node, so the hyperparameters of the root GP are fixed during the
model fitting. Similar performance and behaviors are observed for this case in terms of comparison with
the single GP (See Table 1). While we see from Table 2 that the performance of CGPT deteriorates for
the imbalanced case, it is still orders of magnitude superior to the single GP.

570

Jiang, Khandait, and Pedrielli

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

5.6
4.2
2.8
1.4

0.0
1.4
2.8
4.2
5.6
7.0

(a) Contours with split at yr = 0.16.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

5.6
4.2
2.8
1.4

0.0
1.4
2.8
4.2
5.6
7.0

(b) Contours with split at yr = 0.

Figure 3: 2-node true function contour plots overlaid with splitting levels at root node.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

<0.5
0.5-5
5-50
50-150
>150

(a) re distribution of single GP in input space.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

<0.5
0.5-5
5-50
50-150
>150

(b) re distribution of CGPT in input space.

Figure 4: Comparison of re distribution in input space for the 2-node tree, balanced case.

4.2 4-node Case

We explore CGPT performance extended to 4 child nodes in one depth. The results are presented by
scenario, and divided into balanced and imbalanced cases. For the balanced data, the root function has
split values at {−0.1,0.16,0.48}, and the imbalanced split values are at {−0.3,0.2,0.6}. The root function
and branch function forms are the same as the 2-node case, with the branch functions multipliers set to
{−1.5,1.5,−2.5,2.5} times the original tetramodal function at nodes i = 1, . . . ,4, respectively. We imposed
large values of the multiples in order to see how both models would perform with severe function rate
changes. The corresponding true functions and contour plots for root splits for balanced and imbalanced
partitions are presented in Figure 5 for the balanced and imbalanced cases.
Scenario 1. Similar performance as those in the 2-node case and behaviors were observed for this case
in terms of comparison with the single GP. However, we can observe from Table 1 how the increased
number of splits leads to deterioration of performance of the single GP, while CGPT is robust to the splits.
Table 2 confirms this observation and while the MSE performance of CGPT deteriorates, it is still orders
of magnitude superior to the single GP in both balanced and imbalanced cases.
Scenario 2. The results for the case of no a-priori knowledge of the root function is similar, as shown
in both tables. As the number of nodes increases and more drastic the difference between branch output
values, it is more clear that the CGPT has much better performance compared to the single GP. Moreover,
CGPT remains robust to changes in the experimental setting.

571

Jiang, Khandait, and Pedrielli

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0
x 2

0.10

0.16

0.48

14.0
11.2
8.4
5.6
2.8

0.0
2.8
5.6
8.4
11.2

(a) Contours with root levels, balanced case.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.3

0.2

0.6

12.8
9.6
6.4
3.2

0.0
3.2
6.4
9.6
12.8

(b) Contours with root levels, imbalanced case.

Figure 5: 4-node true function contour plots overlaid with splitting levels at root node.

4.3 8-node Case

In this case, for each of the branch, in addition to the four functions used in the previous 4-node case,
we add four more multiples of the tetramodal function, with multipliers {−3.5,3.5,−4.5,4.5}, with the
objective to maximize the rate of variation of the leaf node evaluations at the boundaries. The true function
and contour plots with splitting level sets for both balanced and imbalanced data is shown in Figure 6.
For balanced partition (Figure 6(a)), the splitting levels are at {−0.32,−0.1,0.04,0.16,0.3,0.48,0.68},
while for the imbalanced case (Figure 6(b)) we set the splits at levels {−0.4,−0.1,0,0.2,0.4,0.5,0.8}. The
performance for the single GP is much more deteriorated as the structure of the model gets more complex.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.32

0.10

0.04

0.16

0.30

0.48

0.68

14.4
9.6
4.8

0.0
4.8
9.6
14.4
19.2
24.0

(a) Contours with root levels, balanced case.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.4

0.1

0.0

0.2

0.4

0.5

0.8

14.4
9.6
4.8

0.0
4.8
9.6
14.4
19.2
24.0

(b) Contours with root levels, imbalanced case.

Figure 6: 8-node true function contour plots overlaid with splitting levels at root node.

Scenario 1. Similar performance as those in the 4 node case and behaviors were observed for this case in
terms of comparison with the single GP (See Table 1). Again, we can observe how the increased number
of splits leads to deterioration of performance of the single GP, while CGPT is robust to the splits. Table 2
confirms this observation and while the performance of CGPT deteriorates, it is still orders of magnitude
superior to the single GP in both balanced and imbalanced cases.
Scenario 2. Similar performance is observed (refer to Table 1 and 2) for the case of no a-priori knowledge
of the root function. As the number of nodes increases and more drastic the difference between branch
output values, it is more clear that the CGPT has much better performance compared to the single GP.
Moreover, CGPT remains robust to changes in the experimental setting. The single GP has poor accuracy
in both scenarios. Larger spread of values were observed, meaning that the relative error is deviated from
0, thus having bad model performance.

572

Jiang, Khandait, and Pedrielli

Figure 7: Kripke Structure for the 2−state Automaton

4.4 Analyzing a Cyber Physical System

As a second test case, we consider the 2-state hybrid automaton proposed in (Dokhanchi et al. 2015)
and is shown in Fig. 7. The search is performed over the initial state defined in a 2-dimensional space
O = [−1,1]2. Based on the initial state, the hybrid automaton follows the dynamics shown in Fig. 7. If at
any point in time the state of the automaton is in region O2 = [0.85,0.95]2, the system is in discrete state
S2; otherwise, it is in state S1, defined by the region O1 = O\O2 (see Fig. 7). Note that the system has
different, continuous, dynamical behavior in each discrete state. If the system starts in S1 and enters state
S2, it switches the dynamics, resulting in different robustness functions and system behaviors.

The input space and the region of the states are modified to adjust for the examination of both balanced
and imbalanced partitions, while the setup remains the same. As seen in the last two columns of Table 1
and 2, CGPT achieves performance twice better than single GP for both balanced and imbalanced cases.
By setup, the automaton system belongs to scenario 1 where root test function is known, in this case, the
root function is an identity function of the input.
Summary. We see that from the multiple cases across different number of nodes, our CGPT model is
robust under either balanced and imbalanced models. The median of relative error for CGPT model is
dominantly better than the sGP under all cases. Plotting the distribution of the relative error across the input
space (not shown here in the interest of space), we see that the larger errors are consistently distributed
around the areas where the true function has high rates of variation. This corresponds to our intuition that
additional information about partition improves the tree model performance whereas the single GP keeps
deteriorating as the splits increase. The relative errors can be unusually large due to the denominators
that are really close to zero, but we expect to achieve good results of the standard error of re as we
macro-replicate each experiment.

Table 1: Relative error median (r̃e) calculated for single GP model and CGPT model across all experiments.

2 node 4 node 8 node CPS

balanced imbalanced balanced imbalanced balanced imbalanced balanced imbalanced

sGP 0.011 0.043 0.122 0.065 0.439 0.498 0.807 0.770

CGPT
known root function 0.005 0.005 0.006 0.005 0.007 0.007 0.407 0.368

known root GP 0.005 0.005 0.005 0.004 0.005 0.006 * *

Table 2: Mean squared error (MSE) calculated for single GP model and CGPT model across all experiments.

2 node 4 node 8 node CPS

balanced imbalanced balanced imbalanced balanced imbalanced balanced imbalanced

sGP 0.004 0.167 2.361 1.900 13.848 15.363 0.494 0.484

CGPT
known root function 0.0004 0.0004 0.002 0.002 0.008 0.008 0.200 0.209

known root GP 0.0002 0.018 0.002 0.0004 0.006 0.013 * *

5 CONCLUSIONS AND FUTURE WORK

We propose the conditional Gaussian Process Tree (CGPT) for conditional tree functions with single level
trees. The model can embed information on the tree structure and the branching condition values that

573

Jiang, Khandait, and Pedrielli

describe the structure of the function to model. We provide the model form and the estimation procedure for
the scenarios where the root function is known a-priori and the case where a surrogate for the root function
is known. To demonstrate the efficiency of our CGPT, we present a set of preliminary numerical results
with a different number of leaf nodes. Our model consistently outperforms the single Gaussian process
model showing little to no deterioration as the balance of the branches changes and as the number of nodes
increases. These are promising results; we will next investigate how to embed the estimation of the root
GP a one-shot likelihood optimization. We will study multiple tree levels. Another important aspect would
be to integrate linear functions and convex functions at the intermediate nodes and see how to exploit such
knowledge. Moreover, we will investigate search criteria to couple with CGPT for optimization.

6 ACKNOWLEDGEMENTS

This work is supported in part by NSF grants #2046588, #2134256, and by DARPA ARCOS program
under contract #FA8750-20-C-0507, and Lockheed Martin funded contract #FA8750-22-9-0001.

REFERENCES
Achituve, I., A. Navon, Y. Yemini, G. Chechik, and E. Fetaya. 2021. “Gp-Tree: A Gaussian Process Classifier for Few-Shot

Incremental Learning”. In International Conference on Machine Learning, 54–65. PMLR.
Astudillo, R., and P. Frazier. 2019. “Bayesian Optimization of Composite Functions”. In International Conference on Machine

Learning, 354–363. PMLR.
Astudillo, R., and P. Frazier. 2021a. “Bayesian Optimization of Function Networks”. Advances in Neural Information Processing

Systems 34:14463–14475.
Astudillo, R., and P. I. Frazier. 2021b. “Thinking Inside the Box: A Tutorial on Grey-Box Bayesian Optimization”. In Proceedings

of the 1994 Winter Simulation Conference, edited by S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and
M. Loper, 1–15. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 2017. Classification and Regression Trees. Routledge.
Brochu, E., V. M. Cora, and N. De Freitas. 2010. “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with

Application to Active User Modeling and Hierarchical Reinforcement Learning”. arXiv preprint arXiv:1012.2599.
Bui, T. D., and R. E. Turner. 2014. “Tree-Structured Gaussian Process Approximations”. Advances in Neural Information

Processing Systems 27.
Civera, M., G. Boscato, and L. Z. Fragonara. 2020. “Treed Gaussian Process for Manufacturing Imperfection Identification of

Pultruded GFRP Thin-Walled profile”. Composite Structures 254:112882.
Dokhanchi, A., A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G. Fainekos. 2015. “Requirements Driven Falsification with

Coverage Metrics”. In 2015 International Conference on Embedded Software (EMSOFT), 31–40. Institute of Electrical
and Electronics Engineers.

Foumani, Z. Z., M. Shishehbor, A. Yousefpour, and R. Bostanabad. 2023. “Multi-Fidelity Cost-Aware Bayesian Optimization”.
Computer Methods in Applied Mechanics and Engineering 407:115937.

Frazier, P. I. 2018. “A Tutorial on Bayesian Optimization”. arXiv preprint arXiv:1807.02811.
Fulgenzi, C., C. Tay, A. Spalanzani, and C. Laugier. 2008. “Probabilistic Navigation in Dynamic Environment Using Rapidly-

Exploring Random Trees and Gaussian Processes”. In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 1056–1062. IEEE.

Gramacy, R. B., H. K. Lee, and W. G. Macready. 2004. “Parameter Space Exploration with Gaussian Process Trees”. In
Proceedings of the Twenty-First International Conference on Machine Learning, 45.

Gramacy, R. B., and H. K. H. Lee. 2008. “Bayesian Treed Gaussian Process Models with an Application to Computer Modeling”.
Journal of the American Statistical Association 103(483):1119–1130.

Greenhill, S., S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh. 2020. “Bayesian Optimization for Adaptive Experimental
Design: A Review”. IEEE access 8:13937–13948.

Guinet, G., V. Perrone, and C. Archambeau. 2020. “Pareto-Efficient Acquisition Functions for Cost-Aware Bayesian Optimization”.
arXiv preprint arXiv:2011.11456.

Imani, M., S. F. Ghoreishi, D. Allaire, and U. M. Braga-Neto. 2019. “MFBO-SSM: Multi-Fidelity Bayesian Optimization for
Fast Inference in State-Space Models”. In Proceedings of the AAAI Conference on Artificial Intelligence, Volume 33,
7858–7865.

Joy, T. T., S. Rana, S. Gupta, and S. Venkatesh. 2020. “Fast Hyperparameter Tuning Using Bayesian Optimization with
Directional Derivatives”. Knowledge-Based Systems 205:106247.

574

Jiang, Khandait, and Pedrielli

Lee, D., H. Park, and C. D. Yoo. 2015. “Face Alignment Using Cascade Gaussian Process Regression Trees”. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 4204–4212.

Lee, E. H., V. Perrone, C. Archambeau, and M. Seeger. 2020. “Cost-aware Bayesian Optimization”. arXiv preprint
arXiv:2003.10870.

Li, L.-L., J. Sun, C.-H. Wang, Y.-T. Zhou, and K.-P. Lin. 2019. “Enhanced Gaussian Process Mixture Model for Short-Term
Electric Load Forecasting”. Information Sciences 477:386–398.

Mathesen, L., S. Yaghoubi, G. Pedrielli, and G. Fainekos. 2019. “Falsification of Cyber-Physical Systems with Robustness
Uncertainty Quantification through Stochastic Optimization with Adaptive Restart”. In 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE), 991–997. IEEE.

McDowell, I. C., D. Manandhar, C. M. Vockley, A. K. Schmid, T. E. Reddy, and B. E. Engelhardt. 2018. “Clustering Gene Expres-
sion Time Series Data Using an Infinite Gaussian Process Mixture Model”. PLoS Computational Biology 14(1):e1005896.

Meeds, E., and S. Osindero. 2005. “An Alternative Infinite Mixture of Gaussian Process Experts”. Advances in Neural Information
Processing Systems 18.

Park, C. 2022. “Jump Gaussian Process Model for Estimating Piecewise Continuous Regression Functions”. Journal of Machine
Learning Research 23(278):1–37.

Pedrielli, G., T. Khandait, S. Chotaliya, Q. Thibeault, H. Huang, M. Castillo-Effen, and G. Fainekos. 2021. “Part-x: A Family of
Stochastic Algorithms for Search-Based Test Generation with Probabilistic Guarantees”. arXiv preprint arXiv:2110.10729.

Rasmussen, C., and Z. Ghahramani. 2001. “Infinite Mixtures of Gaussian Process Experts”. Advances in Neural Information
Processing Systems 14.

Reynolds, D. A. 2009. “Gaussian Mixture Models.”. Encyclopedia of Biometrics 741(659-663).
Sano, S., T. Kadowaki, K. Tsuda, and S. Kimura. 2020. “Application of Bayesian Optimization for Pharmaceutical Product

Development”. Journal of Pharmaceutical Innovation 15:333–343.
Santner, T. J., B. J. Williams, and W. I. Notz. 2013. The Design and Analysis of Computer Experiments. Berlin: Springer

Science & Business Media.
Sauer, A., R. B. Gramacy, and D. Higdon. 2022. “Active Learning for Deep Gaussian Process Surrogates”. Technometrics:1–15.
Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. 2015. “Taking the Human out of the Loop: A Review

of Bayesian Optimization”. Proceedings of the IEEE 104(1):148–175.
Shen, Y., M. Seeger, and A. Ng. 2005. “Fast Gaussian Process Regression Using Kd-Trees”. Advances in Neural Information

Processing Systems 18.
Song, J., Y. Chen, and Y. Yue. 2019. “A General Framework for Multi-Fidelity Bayesian Optimization with Gaussian Processes”.

In The 22nd International Conference on Artificial Intelligence and Statistics, 3158–3167. PMLR.
Stachniss, C., C. Plagemann, A. J. Lilienthal, and W. Burgard. 2008. “Gas Distribution Modeling Using Sparse Gaussian

Process Mixture Models”. In International Conference on Robotics Science and Systems, Robotics: science and systems,
2008, Zürich, Switzerland, June 25-28, 2008, Volume 4, 310–317. MIT Press.

Torun, H. M., M. Swaminathan, A. K. Davis, and M. L. F. Bellaredj. 2018. “A Global Bayesian Optimization Algorithm and its
Application to Integrated System Design”. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26(4):792–802.

Will, J., L. Peel, and C. Claxton. 2011. “Fast Maritime Anomaly Detection Using Kd-Tree Gaussian Processes”. In IMA Maths
in Defence Conference.

Wu, A., M. C. Aoi, and J. W. Pillow. 2017. “Exploiting Gradients and Hessians in Bayesian Optimization and Bayesian
Quadrature”. arXiv preprint arXiv:1704.00060.

Zhang, Y., T. N. Hoang, B. K. H. Low, and M. Kankanhalli. 2017. “Information-Based Multi-Fidelity Bayesian Optimization”.
In NIPS Workshop on Bayesian Optimization, 49. Journal of Machine Learning Research JMLR. org Cambridge, MA.

AUTHOR BIOGRAPHIES
MENGRUI (MINA) JIANG is a Ph.D. student in the School of Computing and Augmented Intelligence at Arizona State
University. Her research interest is primarily in Bayesian optimization. Her email address is mjiang42@asu.edu.

TANMAY KHANDAIT is a Ph.D candidate and graduate research assistant in School of Computing and Augmented Intelligence
at ASU. He graduated with Masters in Computer Science from Arizona State University. His research interests include machine
learning, verification of cyber-physical systems, computer vision, and bilevel optimization. Email: tkhandai@asu.edu.

GIULIA PEDRIELLI is Associate Professor in the School of Computing and Augmented Intelligence at Arizona State
University. She is interested in the area of stochastics and simulation based optimization, and deals with applications in
biomanufacturing, power systems, supply chains, safety critical systems. Her email address is giulia.pedrielli@asu.edu.

575

mailto://mjiang42@asu.edu
mailto://tkhandai@asu.edu
mailto://giulia.pedrielli@asu.edu

	INTRODUCTION
	Related Literature
	Statistical Modeling
	Scenario 1: Known a-priori Root Function
	Scenario 2: Known Root GP

	Preliminary Analysis
	2-node Case
	4-node Case
	8-node Case
	Analyzing a Cyber Physical System

	Conclusions and Future Work
	Acknowledgements

