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ABSTRACT

We consider bandwidth selection for kernel density estimation. The performance of kernel density estimator
heavily relies on the quality of the bandwidth. In this paper, we propose an efficient plug-in kernel density
estimator which first perturbs the bandwidth to estimate the optimal bandwidth, followed by applying a
kernel density estimator with the estimated optimal bandwidth. The proposed method utilizes the zeroth-
order information of kernel function and has a faster convergence rate than other plug-in methods in
existing literature. Simulation results demonstrate superior finite sample performance and robustness of
the proposed method.

1 INTRODUCTION

Kernel density estimation is a non-parametric method for estimating the probability density function of
a random variable from samples. Owing to its flexibility, interpretability, and ease of use, kernel density
estimation has become a common tool for empirical studies in various fields. In operations research, it
can be used to model uncertain input parameters in simulation models (Steckley and Henderson 2003).
In statistics, it is frequently employed for exploratory data analysis and estimating the density of data
with unknown distributions (Silverman 1986). In econometrics, it has been used to investigate income
distribution, price dynamics, and financial market volatility (Zambom and Ronaldo 2013). In environmental
science, it has been utilized to analyze the spatial distribution of various phenomena, such as air pollution
and forest fires (Okabe et al. 2009). In machine learning, it has been proved useful for anomaly detection,
generative modeling, and fairness-aware algorithms (Cho et al. 2020).

The basic idea of kernel density estimation is to estimate the probability density function of a random
variable by sampling a kernel function at each data point and then taking the sample average to obtain a
smoothed estimate of the density function (Tsybakov 2009). The effective use of kernel density estimation
requires the choice of a smoothing parameter, i.e., bandwidth (Wand and Jones 1994; Simonoff 2012). If
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the bandwidth is too small, the estimate can become overly sensitive to individual data points, leading to a
rough estimate with spurious features that are not representative of the underlying data-generating process.
On the other hand, too large bandwidth can result in oversimplification of the estimate, leading to a loss
of important features in the data that could be crucial for understanding the underlying model structure.
Therefore, it is essential to select the optimal bandwidth to strike a balance between reducing noise and
preserving the underlying features of the data (i.e., reducing bias).

Bandwidth selection has become one of the most widely studied topics in kernel density estimation
(for details see Wand and Jones (1994), Jones et al. (1996), and Heidenreich et al. (2013)). There are
two major categories of bandwidth selection methods in existing literature. Cross-validation methods,
introduced by Rudemo (1982) and Bowman (1984), aim to minimize the integrated squared error, which
is a stochastic process indexed by bandwidth. Plug-in methods, which trace back to Woodroofe (1970)
and Nadaraya (1974), minimize the mean integrated squared error, which is a deterministic function of
bandwidth. The expression of the optimal bandwidth involves some unknown parameters that need to be
estimated. Plug-in methods based on the derivatives of kernel function, proposed by Park and Marron
(1990) and Sheather and Jones (1991), are widely used for bandwidth selection. Recently, Tenreiro (2020)
proposes a new class of Hermite series-based plug-in bandwidth selectors for kernel density estimation.
Our study focuses on plug-in methods due to their faster convergence rate than cross-validation methods.

In this paper, we propose a new, zeroth-order, plug-in method to obtain kernel density estimator with
a nearly optimal bandwidth. This method first estimates the unknown parameter in the expression of the
optimal bandwidth. In contrast to existing plug-in methods, we utilize the zeroth-order information of
the kernel function with bandwidth perturbation to derive an estimate of parameter. Then we apply the
estimated parameter to obtain a nearly optimal bandwidth and conduct standard kernel density estimation.
The proposed method is proved in theory to achieve a fast convergence rate that is close to the best
possible rate. Finite sample performance and robustness of the proposed method are demonstrated through
simulation experiments.

The rest of the paper is organized as follows. In Section 2, we introduce the setting of the kernel density
estimation and bandwidth selection problems. Section 3 proposes a new plug-in kernel density estimator
with asymptotic optimality. Section 4 discusses the convergence rate of bandwidth estimate. Section 5
presents simulation results. The last section concludes the paper and outlines future directions.

2 SETTING AND MOTIVATION

In this paper, we focus our discussions on the single-dimensional case. Let X1, . . . ,Xn be i.i.d. realizations
of a univariate random variable with an unknown probability density function f . Suppose that the density
f (·) is sufficiently smooth, i.e., it has bounded, integrable and continuous derivatives up to order 4. We
would like to estimate the density f (x) for any x ∈ R.

In estimating f (x), a kernel density estimator is defined as

f̂ (x)≜
1
nh

n

∑
i=1

K
(

x−Xi

h

)
, (1)

where h is the bandwidth and kernel function K(·) satisfies K(x) ≥ 0,
∫ +∞

−∞
K(x)dx = 1, K(x) = K(−x),∫ +∞

−∞
x2K(x)dx <+∞,

∫ +∞

−∞
K2(x)dx <+∞. The positivity and normality of K(x) guarantee a positive density

estimate f̂ (x). For example, for rectangle kernel function

K(x) =

{
1/2 if |x| ≤ 1,
0 otherwise,

kernel density estimator is a frequency histogram f (x) = 1
2nh #{i|Xi ∈ (x− h,x+ h]}. More smooth and

commonly used kernels are Gaussian kernel K(x) = (2π)−1/2e−x2/2 and Epanechnikov kernel K(x) =
3
4(1−|x|2)1(|x| ≤ 1).
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For any point of interest x ∈ R, the mean squared error (MSE) of f̂ (x) can be expressed as

MSE(x)≜ E
[(

f̂ (x)− f (x)
)2
]
=
(
E
[

f̂ (x)− f (x)
])2

+Var
[

f̂ (x)
]
.

The bias of kernel density estimator is given by

E
[

f̂ (x)− f (x)
]

=
∫ 1

h
K(

x− y
h

) f (y)dy− f (x)

=
∫

K(z)( f (x+hz)− f (x))dz

=
h→0

1
2

h2 f ′′(x)
∫

z2K(z)dz+o(h2), (2)

and the variance of kernel density estimator is given by

Var
[

f̂ (x)
]

= n−1
∫ 1

h2 K2(
x− y

h
) f (y)dy−n−1 ( f (x)+E

[
f̂ (x)− f (x)

])2

= (nh)−1
∫

K2(z) f (x+hz)dz−n−1 ( f (x)+E
[

f̂ (x)− f (x)
])2

=
h→0, nh→∞

(nh)−1 f (x)
∫

K2(z)dz+o((nh)−1). (3)

The bandwidth h > 0 is a tuning parameter, which controls both the bias and variance of kernel density
estimator. In general, we use a common bandwidth h > 0 for all x and aim to minimize the mean integrated
squared error (MISE)

MISE ≜
∫

MSE(x)dx

=
h→0, nh→∞

∫ [(1
2

h2 f ′′(x)
∫

z2K(z)dz+o(h2)

)2

+

(
(nh)−1 f (x)

∫
K2(z)dz+o((nh)−1)

)]
dx

=
h→0, nh→∞

1
4

h4
∫
( f ′′(x))2dx

(∫
z2K(z)dz

)2

+o(h4)+(nh)−1
∫

K2(z)dz+o((nh)−1)

≜
1
4

h4R( f ′′)(σ2(K))2 +(nh)−1R(K)+o(h4)+o((nh)−1),

where R( f )≜
∫

f 2(x)dx and σ2(K)≜
∫

x2K(x)dx. Therefore, the optimal bandwidth becomes

hopt = n−1/5
(

R(K)

R( f ′′)(σ2(K))2

)1/5

. (4)

When the constant R( f ′′) is known, the optimal bandwidth hopt can be determined by (4), which is
the idea of plug-in bandwidth selection methods. However, R( f ′′) is typically unknown and involves the
second-order derivative of the density f (·), which is arguably more challenging to estimate than the density
itself. In addition, it is observed in numerical experiments that choosing R( f ′′) in an ad hoc fashion may
lead to substantially different MISEs. This motivates us to investigate the issue of how to effectively
estimate R( f ′′) that ensures a kernel density estimator with small MISE, and is adaptive to different forms
of f (·).
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3 PLUG-IN KERNEL DENSITY ESTIMATOR

To tackle this issue, we propose a new plug-in kernel density estimator, which we call Kernel Density
Estimator with Bandwidth Perturbation (KDE-BP). In this approach, we first perturb the bandwidth to
estimate R( f ′′), which will be discussed in detail in the rest of this section. Then we plug the estimated
parameter R̂( f ′′) into the optimal bandwidth hopt in (4). At last, we utilize the kernel density estimator (1)
with the estimated optimal bandwidth to estimate the density f (x) for any x ∈ R. The entire process of
implementing KDE-BP is summarized in Algorithm 1.

Algorithm 1 Kernel Density Estimator with Bandwidth Perturbation
Input: i.i.d. samples Xi, i = 1, . . . ,n and a kernel function K(·);
Parameter estimation: compute (1/hi)K ((x−Xi)/hi) , i = 1, . . . ,n, where bandwidths hi, i = 1, . . . ,n are
i.i.d. generated from a distribution P . Then estimate f ′′(x) and R( f ′′) by f̂ ′′(x) and R̂( f ′′) (see the rest
of this section).
Density estimation: compute (1/hBP)K ((x−Xi)/hBP) , i= 1, . . . ,n, where the estimated optimal bandwidth
is

hBP = n−1/5
(

R(K)

R̂( f ′′)(σ2(K))2

)1/5

.

Then estimate f (x) by

f̂BP(x) =
1

nhBP

n

∑
i=1

K
(

x−Xi

hBP

)
.

Output: the estimated optimal bandwidth hBP and the density estimator f̂BP(x).

From (2) and (3), we have as h → 0

1
nh

n

∑
i=1

K
(

x−Xi

h

)
= f (x)+

1
2

h2 f ′′(x)σ2(K)+(C(x)h4 +o(h4))+ ε(x,h,X),

where C(x) = f ′′′′(x)
∫

z4K(z)dz/24 and ε(x,h,X) ∈ R is a random variable such that E[ε(x,h,X)|h] = 0
and Var[ε(x,h,X)|h] = (nh)−1 f (x)R(K)+o((nh)−1). Such expansion of kernel density estimator motivates
us to use linear regression for estimating f ′′(x). Specifically, let

yyy(x) =

[
1

nh1

n

∑
i=1

K
(

x−Xi

h1

)
, . . . ,

1
nhn

n

∑
i=1

K
(

x−Xi

hn

)]⊤
,

XXX =

[
1 · · · 1

h2
1σ2(K)/2 · · · h2

nσ2(K)/2

]⊤
,

βββ (x) = [ f (x), f ′′(x)]⊤,

rrr(x) =
[
(C(x)h4

1 +o(h4
1))+ ε(x,h1,X), . . . ,(C(x)h4

n +o(h4
n))+ ε(x,hn,X)

]⊤
,

where h1, . . . ,hn are the perturbed bandwidths and i.i.d. generated. Then, yyy(x) = XXXβββ (x)+ rrr(x), and we
can estimate βββ (x) given by β̂ββ (x) = (XXX⊤XXX)−1XXX⊤yyy(x). Consider the second component of β̂ββ (x), we have

f̂ ′′(x) =
n∑

n
i=1 h2

i yi(x)− (∑n
i=1 h2

i )(∑
n
i=1 yi(x))

σ2(K)
(
n∑

n
i=1 h4

i − (∑n
i=1 h2

i )
2
)
/2

, (5)
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where yi(x) represents the i-th component in yyy(x). Then we use R̂( f ′′) = R( f̂ ′′(x)) =
∫
( f̂ ′′(x))2dx to

estimate R( f ′′). The integral R̂( f ′′) can be calculated analytically since a closed-form expression for f̂ ′′(x)
is known.

The following theorem gives the convergence property of R̂( f ′′). It shows that the estimate R̂( f ′′) is
consistent.
Theorem 1 Suppose f (·) has bounded, integrable and continuous derivatives up to order 4. If hi, i= 1, . . . ,n
are i.i.d. samples of h with n−2h−5 → 0 a.s. and nh9 → 0 a.s., we have

lim
n→+∞

E
[
(R̂( f ′′)−R( f ′′))2]= 0.

Proof. Since random variables hi, i = 1, . . . ,n, are i.i.d. generated, the following property is given by
the Central Limit Theorem: for any x1,x2 ∈ R, x1 ̸= x2,

√
n





(1/n)∑
n
i=1 ri(x1)

(1/n)∑
n
i=1 h2

i ri(x1)
(1/n)∑

n
i=1 ri(x2)

(1/n)∑
n
i=1 h2

i ri(x2)
(1/n)∑

n
i=1 h2

i
(1/n)∑

n
i=1 h4

i

−


C(x1)E[h4]
C(x1)E[h6]
C(x2)E[h4]
C(x2)E[h6]

E[h2]
E[h4]




d−−−−→

n→+∞
N
(
000,ΣΣΣ2) ,

where

ΣΣΣ
2 =


E[(nh)−1] f (x1)R(K) E[n−1h] f (x1)R(K) o((nh)−1) o(n−1h) C(x1)Cov(h4,h2) C(x1)Cov(h4,h4)
E[n−1h] f (x1)R(K) E[n−1h3] f (x1)R(K) o(n−1h) o(n−1h3) C(x1)Cov(h6,h2) C(x1)Cov(h6,h4)

o((nh)−1) o(n−1h) E[(nh)−1] f (x2)R(K) E[n−1h] f (x2)R(K) C(x2)Cov(h4,h2) C(x2)Cov(h4,h4)
o(n−1h) o(n−1h3) E[n−1h] f (x2)R(K) E[n−1h3] f (x2)R(K) C(x2)Cov(h6,h2) C(x2)Cov(h6,h4)

C(x1)Cov(h2,h4) C(x1)Cov(h2,h6) C(x2)Cov(h2,h4) C(x2)Cov(h2,h6) Cov(h2,h2) Cov(h2,h4)
C(x1)Cov(h4,h4) C(x1)Cov(h4,h6) C(x2)Cov(h4,h4) C(x2)Cov(h4,h6) Cov(h4,h2) Cov(h4,h4)


and we use n−2h−1 → 0 a.s. and nh9 → 0 a.s. to argue the negligibility of higher-order terms.

Note that

β̂ββ (x)−βββ (x) = (XXX⊤XXX)−1XXX⊤yyy(x)−βββ (x) = (XXX⊤XXX)−1XXX⊤(XXXβββ (x)+ rrr(x))−βββ (x) = (XXX⊤XXX)−1XXX⊤rrr(x),

then we have

f̂ ′′(x)− f ′′(x) =
∑

n
i=1 h2

i ri(x)/n− (∑n
i=1 h2

i /n)(∑n
i=1 ri(x)/n)

σ2(K)
(
∑

n
i=1 h4

i /n− (∑n
i=1 h2

i /n)2
)
/2

.

With the multivariate delta method, we obtain

√
n

[ f̂ ′′(x1)− f ′′(x1)

f̂ ′′(x2)− f ′′(x2)

]
−

 C(x1)(E[h6]−E[h2]E[h4])
σ2(K)(E[h4]−(E[h2])2)/2
C(x2)(E[h6]−E[h2]E[h4])
σ2(K)(E[h4]−(E[h2])2)/2

 d−−−−→
n→+∞

N

[0
0

]
,

 ((E[h2])2E[h−1]−2E[h]E[h2]+E[h3]) f (x1)R(K)
n(σ2(K)/2)2(E[h4]−(E[h2])2)2 o(n−1h−5)

o(n−1h−5) ((E[h2])2E[h−1]−2E[h]E[h2]+E[h3]) f (x2)R(K)
n(σ2(K)/2)2(E[h4]−(E[h2])2)2

 ,

where we use n−2h−5 → 0 a.s. and nh9 → 0 a.s. to argue the negligibility of higher-order terms.
Note that we have

R̂( f ′′)−R( f ′′) =
∫
( f̂ ′′(x))2 − ( f ′′(x))2dx =

∫
( f̂ ′′(x)− f ′′(x))2 +2 f ′′(x)( f̂ ′′(x)− f ′′(x))dx.
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With the multivariate delta method, we obtain

√
n
(
[R̂( f ′′)−R( f ′′)]−

[
(E[h6]−E[h2]E[h4])2 ∫ (C(x))2dx
(σ2(K)(E[h4]− (E[h2])2)/2)2 +

(E[h6]−E[h2]E[h4])
∫

2 f ′′(x)C(x)dx
σ2(K)(E[h4]− (E[h2])2)/2

])
d−−−−→

n→+∞
N
(

0,
∫ ∫

4 f ′′(x1) f ′′(x2)Cov
(

f̂ ′′(x1)− f ′′(x1), f̂ ′′(x2)− f ′′(x2)
)

dx1dx2

)
.

Specifically, the bias of R̂( f ′′) is given by

E
[
R̂( f ′′)−R( f ′′)

]
= O

(
(E[h6]−E[h2]E[h4])2 ∫ (C(x))2dx
(σ2(K)(E[h4]− (E[h2])2)/2)2 +

(E[h6]−E[h2]E[h4])
∫

2 f ′′(x)C(x)dx
σ2(K)(E[h4]− (E[h2])2)/2

)
+O(n−1/2−ξ )

= O(h2)+O(n−1/2−ξ ),

where ξ > 0 depicts the order of gap between convergence in distribution and moment convergence, then
lim

n→+∞
E
[
R̂( f ′′)−R( f ′′)

]
= 0 due to h → 0 a.s.; the variance of R̂( f ′′) is given by

Var
[
R̂( f ′′)−R( f ′′)

]
= O

(
1
n

∫ ∫
4 f ′′(x1) f ′′(x2)Cov

(
f̂ ′′(x1)− f ′′(x1), f̂ ′′(x2)− f ′′(x2)

)
dx1dx2

)
= O(n−2h−5),

then lim
n→+∞

Var
[
R̂( f ′′)−R( f ′′)

]
= 0 due to n−2h−5 → 0 a.s.. Therefore, lim

n→+∞
E
[
(R̂( f ′′)−R( f ′′))2

]
= 0.

We note that the proposed method utilizes the zeroth-order information of kernel function as shown
in (1) and (5). In contrast to derivatives of kernel function used in Park and Marron (1990) and Sheather and
Jones (1991) or Hermite series used in Tenreiro (2020), kernel function itself is much easier to compute.
Therefore, our proposed method can ease the inherent computational burden of plug-in methods.

4 CONVERGENCE RATE OF BANDWIDTH ESTIMATE

We plug R̂( f ′′) into (4) to obtain a nearly optimal bandwidth and then estimate the density f (·) by (1).
The following theorem gives the relative convergence rate between hBP and hopt.
Theorem 2 Suppose f (·) has bounded, integrable and continuous derivatives up to order 4. If hi, i= 1, . . . ,n
are i.i.d. samples of h with h = O(n−2/9), we have

hBP −hopt

hopt
= O(n−4/9).

Proof. Note that
hBP −hopt

hopt
=

(R̂( f ′′))−1/5 − (R( f ′′))−1/5

(R( f ′′))−1/5 .

With the multivariate delta method, we obtain

√
n

(
(R̂( f ′′))−1/5 −

[
R( f ′′)+

(E[h6]−E[h2]E[h4])2 ∫ (C(x))2dx
(σ2(K)(E[h4]− (E[h2])2)/2)2 +

(E[h6]−E[h2]E[h4])
∫

2 f ′′(x)C(x)dx
σ2(K)(E[h4]− (E[h2])2)/2

]−1/5
)

d−−−−→
n→+∞

N
(

0,
1

25
(R( f ′′))−12/5

∫ ∫
4 f ′′(x1) f ′′(x2)Cov

(
f̂ ′′(x1)− f ′′(x1), f̂ ′′(x2)− f ′′(x2)

)
dx1dx2

)
.
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Specifically, the bias of (R̂( f ′′))−1/5 is given by

E
[
(R̂( f ′′))−1/5 − (R( f ′′))−1/5

]
= O

(
(E[h6]−E[h2]E[h4])2 ∫ (C(x))2dx
(σ2(K)(E[h4]− (E[h2])2)/2)2 +

(E[h6]−E[h2]E[h4])
∫

2 f ′′(x)C(x)dx
σ2(K)(E[h4]− (E[h2])2)/2

)
+O(n−1/2−ξ )

= O(h2)+O(n−1/2−ξ ),

where ξ > 0 depicts the order of gap between convergence in distribution and moment convergence; the
variance of (R̂( f ′′))−1/5 is given by

Var
[
R̂( f ′′)−R( f ′′)

]
= O

(
1
n

∫ ∫
4 f ′′(x1) f ′′(x2)Cov

(
f̂ ′′(x1)− f ′′(x1), f̂ ′′(x2)− f ′′(x2)

)
dx1dx2

)
= O(n−2h−5).

In order to obtain a fast rate of convergence of hBP, we should balance the squared bias term and the variance
term to the same order in terms of n. Therefore, h is set to be order n−2/9, otherwise by perturbing the order
of h either of the two terms would increase. When h = O(n−2/9), we have (hBP−hopt)/hopt = O(n−4/9).

Table 1 displays the relative rates of convergence of bandwidth selection in various existing plug-in
methods. Park and Marron (1990) demonstrate that their bandwidth has a convergence rate of n−4/13.
Sheather and Jones (1991) prove that the relative rate of convergence of their bandwidth is of order
O(n−5/14), which is slightly better than that of Park & Marron’s plug-in. Consider plug-in for (4), the order
n−2/5 is achieved for the rate of convergence by Tenreiro (2020). Theorem 2 establishes that the bandwidth
hBP given by KDE-BP has a faster convergence rate than other plug-in methods in existing literature. Note
that Hall and Marron (1991) show the best possible rate of convergence is n−1/2, and thus we call hBP
nearly optimal.

Table 1: Comparison on the relative rates of convergence among plug-in methods.

Bandwidth Perturbation Park & Marron Sheather & Jones Hermite Series
(ĥ−hopt)/hopt O(n−4/9) O(n−4/13) O(n−5/14) O(n−2/5)

5 SIMULATION RESULTS

In this section, we conduct simulation experiments to test the finite sample performance of the proposed
KDE-BP method. Consider the fact that any density can be approximated arbitrarily closely by a normal
mixture. Hence, we employ four normal mixture densities in (Marron and Wand 1992) as our experimental
examples:

1. Skewed Unimodal Density: 1
5 N(0,1)+ 1

5 N(1
2 ,(

2
3)

2)+ 3
5 N(13

12 ,(
5
9)

2).
2. Bimodal Density: 1

2 N(−1,(2
3)

2)+ 1
2 N(1,(2

3)
2).

3. Asymmetric Bimodal Density: 3
4 N(0,1)+ 1

4 N(3
2 ,(

1
3)

2).
4. Asymmetric Claw Density: 1

2 N(0,1)+∑
ℓ=2
ℓ=−2(2

1−ℓ/31)N(ℓ+ 1
2 ,(2

−ℓ/10)2).

The above density functions are visualized in Figure 1.
The proposed KDE-BP method is compared with three other plug-in methods: Park & Marron’s plug-in,

Sheather & Jones’ plug-in, and Hermite series-based plug-in. In particular,

• Park & Marron’s plug-in (PM): consider f̂ ′′(x) = (1/(ng3))∑
n
i=1 K′′((x − Xi)/g) and R̂( f ′′) =

R( f̂ ′′(x))− (1/(ng5))R(K′′). The bandwidth (gPM,hPM) is yielded by numerically solving g =
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Figure 1: Normal mixture densities for simulation experiments.

C1(K)C2( f )h10/13 and h= n−1/5(R(K)/((σ2(K))2R̂( f ′′)))1/5, whereC1(K) is known andC2( f ) is es-
timated using Silverman’s rule-of-thumb. Then it estimates f (x)by f̂PM(x)= (1/(nhPM))∑

n
i=1 K((x−

Xi)/hPM).
• Sheather & Jones’ plug-in (SJ): consider f̂ ′′(x) = (1/(ng3))∑

n
i=1 L′′((x − Xi)/g) and R̂( f ′′) =

R( f̂ ′′(x)). The bandwidth (gSJ,hSJ) is yielded by numerically solving g = C3(K,L)C4( f )h5/7

and h = n−1/5(R(K)/((σ2(K))2R̂( f ′′)))1/5, where C3(K,L) is known and C4( f ) is estimated using
Silverman’s rule-of-thumb. Then it estimates f (x) by f̂SJ(x) = (1/(nhSJ))∑

n
i=1 K((x−Xi)/hSJ).

• Hermite series-based plug-in (HS): consider R̂( f ′′) = ∑
m
k=0 â2

k , where m = m(n) is a sequence of
integers converging to infinity with n, âk = (1/n)∑

n
i=1 h′′k (Xi) is an estimate of the k-th Hermite

coefficient of f ′′(x), hk(x) = (2kk!π1/2)−1/2(−1)kex2
(dk/dxk)e−3x2/2 is the Hermite orthonormal

basis of L2. Then it uses the bandwidth hHS = n−1/5(R(K)/((σ2(K))2R̂( f ′′)))1/5 and estimates
f (x) by f̂HS(x) = (1/(nhHS))∑

n
i=1 K((x−Xi)/hHS).

In all simulation experiments, the performance of each tested plug-in method is measured by the MISE.
Empirical MISE is estimated by 1,000 independent experimental replications. The sample size n is set as
n = 25×2k, k = 0, . . . ,7, and Gaussian kernel is used. The MISE is reported as a function of k = log2(n/25)
in each experiment.

The behaviour of our proposed KDE-BP method and three other plug-in methods is presented in
Figures 2, 3, 4 and 5. In each figure, we can see that our proposed KDE-BP method is the most efficient
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plug-in method among the four, whereas Park & Marron’s plug-in is the worst. Hermite series-based plug-in
performs slightly better than Sheather & Jones’ plug-in for skewed unimodal density and bimodal density,
while both methods perform similarly for asymmetric bimodal density and asymmetric claw density. In
other words, KDE-BP is more robust against different shapes of density. Moreover, as the sample size
increases, the MISE of KDE-BP decreases and gets close to zero. Such observation is in accord with the
consistency of KDE-BP in Theorem 1.

Figure 2: Empirical MISE of all tested plug-in methods for skewed unimodal density.

Figure 3: Empirical MISE of all tested plug-in methods for bimodal density.
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Figure 4: Empirical MISE of all tested plug-in methods for asymmetric bimodal density.

Figure 5: Empirical MISE of all tested plug-in methods for asymmetric claw density.

6 CONCLUSION

This paper studies bandwidth selection for kernel density estimation. We propose an efficient plug-in
kernel density estimator named KDE-BP, which utilizes the zeroth-order information of kernel function
and has a nearly optimal convergence rate. Simulation experiments demonstrate that KDE-BP has a good
finite sample performance and is robust to different density functions. In future work, we will explore the
estimator with the best possible convergence rate, investigate multi-dimensional generalizations, consider
higher-order kernels, and conduct more extensive simulations.

561



Li, Wang, Peng, and Wang

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation of China (NSFC) under Grants
72201006, 72022001, 92146003, 71901003.

REFERENCES
Bowman, A. W. 1984. “An Alternative Method of Cross-Validation for the Smoothing of Density Estimates”. Biometrika 71(2):353–

360.
Cho, J., G. Hwang, and C. Suh. 2020. “A Fair Classifier Using Kernel Density Estimation”. In Advances in Neural Information

Processing Systems, edited by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, 15088–15099. Cambridge,
Massachusetts: The Massachusetts Institute of Technology Press.

Hall, P., and J. S. Marron. 1991. “Lower Bounds for Bandwidth Selection in Density Estimation”. Probability Theory and
Related Fields 90(2):149–173.

Heidenreich, N.-B., A. Schindler, and S. Sperlich. 2013. “Bandwidth Selection for Kernel Density Estimation: a Review of
Fully Automatic Selectors”. AStA Advances in Statistical Analysis 97:403–433.

Jones, M. C., J. S. Marron, and S. J. Sheather. 1996. “A Brief Survey of Bandwidth Selection for Density Estimation”. Journal
of the American Statistical Association 91(433):401–407.

Marron, J. S., and M. P. Wand. 1992. “Exact Mean Integrated Squared Error”. The Annals of Statistics 20(2):712–736.
Nadaraya, E. 1974. “On the Integral Mean Square Error of Some Nonparametric Estimates for the Density Function”. Theory

of Probability & Its Applications 19(1):133–141.
Okabe, A., T. Satoh, and K. Sugihara. 2009. “A Kernel Density Estimation Method for Networks, Its Computational Method

and a GIS-Based Tool”. International Journal of Geographical Information Science 23(1):7–32.
Park, B. U., and J. S. Marron. 1990. “Comparison of Data-Driven Bandwidth Selectors”. Journal of the American Statistical

Association 85(409):66–72.
Rudemo, M. 1982. “Empirical Choice of Histograms and Kernel Density Estimators”. Scandinavian Journal of Statistics 9:65–78.
Sheather, S. J., and M. C. Jones. 1991. “A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation”.

Journal of the Royal Statistical Society: Series B (Methodological) 53(3):683–690.
Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.
Simonoff, J. S. 2012. Smoothing Methods in Statistics. New York: Springer.
Steckley, S. G., and S. G. Henderson. 2003. “A Kernel Approach to Estimating the Density of a Conditional Expectation”. In

Proceedings of the 2003 Winter Simulation Conference, edited by S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice,
383–391. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Tenreiro, C. 2020. “Bandwidth Selection for Kernel Density Estimation: a Hermite Series-Based Direct Plug-In Approach”.
Journal of Statistical Computation and Simulation 90(18):3433–3453.

Tsybakov, A. B. 2009. Introduction to Nonparametric Estimation. London: Springer.
Wand, M. P., and M. C. Jones. 1994. Kernel Smoothing. New York: Chapman & Hall.
Woodroofe, M. 1970. “On Choosing a Delta-Sequence”. The Annals of Mathematical Statistics 41(5):1665–1671.
Zambom, A. Z., and D. Ronaldo. 2013. “A Review of Kernel Density Estimation with Applications to Econometrics”.

International Econometric Review 5(1):20–42.

AUTHOR BIOGRAPHIES
HAIDONG LI is an Assistant Professor in the Department of Management Science at University of Chinese Academy of
Sciences, Beijing, China. He received his B.S. Degree from the Department of Engineering Mechanics at Peking University, and
his Ph.D. Degree from the Department of Industrial Engineering and Management at Peking University. His research interests
include simulation optimization, network analysis, and stochastic gradient estimation. His email address is haidong.li@pku.edu.cn.

LONG WANG is a Professor in the Department of Advanced Manufacturing and Robotics at Peking University, Beijing,
China. He received his Bachelor, Master, and Doctor’s degrees in Dynamics and Control from Tsinghua University and Peking
University in 1986, 1989, and 1992, respectively. His research interests are in the fields of networked systems, hybrid systems,
swarm dynamics, cognitive science, collective intelligence, and bio-mimetic robotics. His email address is longwang@pku.edu.cn.

YIJIE PENG is an Associate Professor in the Department of Management Science and Information Systems in Guanghua
School of Management at Peking University, Beijing, China. He received the B.S. degree in mathematics from Wuhan University,
Wuhan, China, in 2007, and the Ph.D. degree in management science from Fudan University, Shanghai, China, in 2014,
respectively. His research interests include stochastic modeling and analysis, simulation optimization, machine learning, data

562

mailto://haidong.li@pku.edu.cn
mailto://longwang@pku.edu.cn


Li, Wang, Peng, and Wang

analytics, and healthcare. His email address is pengyijie@pku.edu.cn.

DI WANG is an Assistant Professor with the Department of Industrial Engineering and Management, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai, China. She received the B.S. degree in industrial engineering from
Nankai University, Tianjin, China, in 2015, and the Ph.D. degree in management science and engineering from Peking University,
Beijing, China, in 2020. Her research interests include statistical modeling and artificial intelligence of process modeling,
monitoring, and prognostics. Her email address is d.wang@sjtu.edu.cn.

563

mailto://pengyijie@pku.edu.cn
mailto://d.wang@sjtu.edu.cn

	INTRODUCTION
	SETTING AND MOTIVATION
	PLUG-IN KERNEL DENSITY ESTIMATOR
	CONVERGENCE RATE OF BANDWIDTH ESTIMATE
	SIMULATION RESULTS
	CONCLUSION

