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ABSTRACT

We formulate, analyze and solve the problem of best arm identification with fairness constraints on
subpopulations (BAICS). Standard best arm identification problems aim at selecting an arm that has the
largest expected reward where the expectation is taken over the entire population. The BAICS problem
requires that a selected arm must be fair to all subpopulations (e.g., different ethnic groups, age groups, or
customer types) by satisfying constraints that the expected reward conditional on every subpopulation needs
to be larger than some thresholds. The BAICS problem aims at correctly identify, with high confidence,
the arm with the largest expected reward from all arms that satisfy subpopulation constraints. We analyze
the complexity of the BAICS problem by proving a best achievable lower bound on the sample complexity
with closed-form representation. We then design an algorithm and prove the sample complexity to match
with the lower bound in terms of order. A brief account of numerical experiments are conducted to illustrate
the theoretical findings.

1 INTRODUCTION

Many decision making problems naturally give rise to settings where there are a number of different policies
(or systems, designs), each with unknown expected performances, from which the decision maker wants to
select the policy with the best expected performance. The decision maker generally has access to observe
independent noisy samples of the expected performance of each policy. The statistically principled way
of identifying the best policy through the noisy samples has been a fundamental research topic in several
research areas. Some early statistical works include Bechhofer (1954) and Bechhofer et al. (1995). In
the stochastic simulation literature, the research problem is called ranking and selection (R&S); see Hong
et al. (2021), Hunter and Nelson (2017), Chick (2006) and Kim and Nelson (2006) for reviews. In the
multi-armed bandit literature, the research problem is called best arm identification (BAI); see Audibert
et al. (2010), Garivier and Kaufmann (2016), Kaufmann et al. (2016), for references. Ma and Henderson
(2017) and Glynn and Juneja (2015) have discussed some connections between the two literature. The
R&S literature and BAI literature differ in assumptions and analysis tools. Our work is positioned in both
literature, and adopts the assumptions and analysis tools in the BAI literature.

In this work, we consider the problem of Best Arm Identification with fairness Constraints on Subpop-
ulations (BAICS). We briefly discuss the problem setting of BAICS and the meaning of fairness constraints
on subpopulations. The formal setting with precise mathematical formulation is introduced in Section
2. In BAICS, each arm represents a policy to be used on an entire population, and there are multiple
arms in competition. The expected reward of an arm is typically measured on the entire population, and
the classical BAI problem aims at identifying the arm with the largest expected reward. However, for
some applications, the population consists of several subpopulations. For example, a subpopulation may
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represent an ethnic group defined through a specific cultural background, or a group of customers defined
through a specific consumption need. Fairness constraints on subpopulations refer to that the expected
reward of an arm conditional on any subpopulation cannot be lower than some pre-specified threshold.
Such fairness constraints imply that a policy is required to be "fair" to all subpopulations and is not allowed
to "sacrifice" any subpopulation. Given the constraints on subpopulations, the set of arms are classified
as feasible (satisfying the constraints) and infeasble (not satisfying the constraints). The BAICS problem
aims at selecting an arm that has the largest expected reward among all the feasible arms.

The BAICS problem and its formulation have direct practical relevance when the decision maker cares
about not only the expected total reward, but also the benefit of each subpopulation. One specific example
is selecting the best updating plan for a system, under the constraint that the updating plan improves or at
least maintains the user experience of customers of all age groups. In particular, the presence of fairness
constraints prohibits a decision maker to improve expected reward over the entire population by implicitly
exploiting or hurting some subpopulation. The BAICS problem formulation also has relevance to the online
controlled experiments (A/B tests) with multiple treatments, where the goal is to select the treatment that
provide Pareto improvement to all subpopulations.

We make the following contributions in this work.

• To our best of knowledge, we are the first to consider the fairness constraints of subpopulations in the
context of the best arm identification problem with fixed confidence criterion, and we propose a new
formulation called Best Arm Identification with fairness Constraints on Subpopulations (BAICS),
which incorporates subpopulational fairness constraints into the arm selection process.

• We derive the asymptotic lower bound on the expected stopping time for all algorithms that are
guaranteed to solve the problem with a given confidence level. Such lower bounds provide the best
achievable sample complexity order for any algorithm that tackles the BAICS problem. We present
an explicit formula along with an intuitive interpretation of the sample complexity.

• We design an algorithm that is capable of serving two goals — to identify the best arm and to
ensure that it satisfies all subpopulation constraints. We provide theoretical results to show that it
achieves the asymptotically optimal sample complexity. We compare our algorithm with two other
methods and illustrate its efficiency through numerical experiments.

The theoretical tools that we develop in this work to analyze the lower and upper bounds on the expected
sample complexity are partially inspired by the analysis framework proposed in Garivier and Kaufmann
(2016) to address the standard BAI problem. In the BAI literature, there are works incorporating other
constraints, such as safety constrains (Wang et al. (2022)) and variance constraints (Hou et al. (2022)).
To the best of our knowledge, there are no works specifically considering constraints on the arm/policy
performances on each subpopulation. Related works in the R&S literature consider the constrained R&S
problem; see Andradóttir and Kim (2010), Healey et al. (2014) and Hong et al. (2015) for example. Tsai
et al. (2018), He and Kim (2019) and Shi et al. (2022) consider feasibility determination in the R&S
framework, and is related to the part of our problem on determining whether an arm satisfies subpopulation
constraints (the other part of our problem focuses on selecting the best arm). The analysis framework and
tools of the aforementioned works do not focus on developing matching lower and upper bounds for the
sampling complexity.

The framework of Garivier and Kaufmann (2016) for the standard BAI problem does not require
the outcome distribution of arms to be Gaussian. In this paper, the Gaussian assumption is adopted for
simplicity, and we will demonstrate in future works that our results can be generalized to single-parameter
exponential families. Further, in the R&S literature, the related selection problem is studied in the setting
with unknown variances; see Hong et al. (2021) for a thorough review that includes ranking and selection
problems with unknown variance and non-Gaussian distribution.
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2 SETTING AND FORMULATION

The mathematical formulation of Best Arm Identification with fairness Constraints on Subpopulations
(BAICS) is given as follows. Suppose we have the number of arms K ≥ 2, the number of subpopulations L,
and a vector q = (q1, · · · ,qL) ∈RL representing the importance of the subpopulations. A typical choice in
practice is to take ql as the proportion of subpopulation l in the total population for 1 ≤ l ≤ L. We further
make the stochastic assumption that observations from arm k and subpopulation l are i.i.d. random variables
drawn from Gaussian distributions with some known variance, and the variances are the same for all k
and l. Without loss of generality we assume the variance is 1, so observation of arm k and subpopulation
l is given by a normal distribution Pµk,l ∼ N (µk,l,1) for k ∈ [K] and l ∈ [L], here [K] = {1, · · · ,K} and
[L] = {1, · · · ,L}. Such distribution assumptions are commonly seen in the best arm identification literature,
e.g., Shang et al. (2020), Barrier et al. (2022). The assumption may also be viewed as a special case
of the exponential family distribution assumption with one unknown parameter (mean). The quality, or
expected performance, of arm k is µk = ∑l=1 qlµk,l , which is the weighted average of the means of the arm
in different subpopulations.

A standard best arm identification problem tends to find the arm kBAI with the maximum quality, i.e.,

kBAI = arg max
k∈[K]

µk.

However, arm kBAI may perform bad on some subpopulations. As discussed in Section 1, we hope to find an
arm k∗ with the best quality among all arms that work well on some given subpopulations. Mathematically,
we introduce the definition feasible arm as follows: an arm k is feasible if and only if it is in a feasible
set C, i.e.,

k ∈C = {k ∈ [K]
∣∣µk,m ≥ 0,∀m ∈ [M]} (1)

with some known M. Our problem can thus be formulated as finding the best arm k∗ in the feasible set C:

k∗ = argmax
k∈C

µk. (2)

If C = /0, we define k∗ = 0.
At each step t, the algorithm selects an arm At ∈ [K] and a subpopulation It ∈ [L] based on previous

outcomes. After that a sample is drawn from PµAt ,It
, which becomes the observation Xt . This naturally

defines a filtration generated by all information up to step t denoted Ft = σ({Is,As,Xs}s=1,2,··· ,t). The
algorithm then chooses At+1, It+1 which is Ft-measurable. We further define Na,i(t) = ∑

t
s=11(Is = i,As = a)

and Na(t) = ∑
t
s=11(As = a). In addition, since the distributions

(
Pµk,l

)
k∈[K],l∈[L] are assumed to be Gaussian

in P = {P
∣∣P ∼N (µ,1)}, we may hence identify any bandit instance with its matrix of means µ ∈RK×L.

Simple calculation shows that the Kullback-Leibler divergence between two Guassian distribution P ∼
N (µ,1) and Q ∼ N (ν ,1) is given by KL(P,Q) = 1

2(µ −ν)2.
Denote by S a set of Gaussian bandit models such that, each bandit model µ in S and the feasible set

C(µ) satisfy either of the following: (1) There is a unique optimal feasible arm with all constraints strictly
satisfied, i.e., ∃ k∗(µ) ∈C(µ) such that µk∗(µ) > maxk∈C{µk

∣∣k ̸= k∗(µ)} and µk∗(µ),l > 0 for l ∈ [M]. (2)
All arms have at least one subpopulation constraint strictly violated, i.e., C(µ) = /0 and k∗(µ) = 0. Note
that k∗(µ) is always unique for µ ∈ S .

In this paper, we focus on the fixed-confidence setting with risk level δ . An algorithm is called δ -PAC
if it gives a stopping time τδ with respect to Ft , a Fτδ

-measurable recommendation k̂τδ
∈ {0}∪ [K], and

∀µ ∈ S ,Pµ(τδ <+∞) = 1,

Pµ(k̂τδ
̸= k∗(µ))≤ δ .

(3)
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3 LOWER BOUNDS ON THE SAMPLE COMPLEXITY

In this section, we prove and analyze lower bounds on the sample complexity of δ -PAC algorithms for
the BAICS problem. The lower bounds represent the best achievable sample complexity for any algorithm
that can return the correct solution with the δ -PAC guarantee.

3.1 General Sample Complexity of Best Arm Identification

First, we introduce
Alt(µ) := {λ ∈ S

∣∣k∗(µ) ̸= k∗(λ )}, (4)

the set of bandit models where the optimal feasible arm is not the same as in µ , and ΣK×L = {w ∈
(R+∪{0})K×L ∣∣w1 + · · ·+wKL = 1} the set of probability distributions on [K]× [L]. We have following
lower bound for the sample complexity.
Theorem 1 Let δ ∈ (0,1) and q ∈ RL. For any δ -PAC policy and any bandit model µ ∈ S ,

Eµ [τδ ]≥ T ∗(µ)kl(δ ,1−δ ) and liminf
δ→0

Eµ [τδ ]

ln(1/δ )
≥ T ∗(µ), (5)

where
T ∗(µ)−1 =

1
2

sup
w∈ΣK×L

inf
λ∈Alt(µ)

∑
k∈[K]

∑
l∈[L]

wk,l (µk,l −λk,l)
2 , (6)

and kl(δ ,1−δ ) is the KL divergence of two Bernoulli distributions of parameter δ and 1−δ .
The proof of Theorem 1 can be directly adapted from Theorem 1 of Russac et al. (2021) by noting that

KL(Pµk,l ,Pλk,l ) =
(µk,l−λk,l)

2

2 . Here, T ∗(µ) characterizes the difficulty of the problem, and w∗ that achieves
the supreme of (6) can be intuitively understood as the optimal sampling proportions of total samples for
each arm and subpopulation. We will also see in next subsection that, the specific structure of Alt(µ)
in the BAICS problem makes T ∗(µ) in our problem essentially different from that in the traditional BAI
problem.

3.2 Implicit Tradeoff in BAICS Problem

We now focus specifically on our BAICS problem and demonstrate the tradeoff in sampling strategy that
arises naturally. To provide an intuition for this tradeoff, we begin with a simple example.
Example 1: Suppose we have K = 3,L = 2,M = 2 and q = (1

2 ,
1
2). µ1,1 = µ1,2 = 1; µ2,1 = 4,µ2,2 =−ε;

and µ3,1 = 1, µ3,2 = 1−ε , with some 0 < ε < 1. Without constraints, it is easy to see that the BAI problem
has kBAI = 2, because µ1 =

1
2 µ1,1 +

1
2 µ1,2 = 1, µ2 =

1
2 µ1,1 +

1
2 µ2,2 = 2− ε

2 and µ3 =
1
2 µ3,1 +

1
2 µ3,2 = 1− ε

2 .
Specifically, since the difference between the means of arms 2 and 1 is µ2−µ1 = 1− ε

2 , and the difference
between the means of arms 2 and 3 is µ2 − µ3 = 1, the gap between the best arm and the other arms is
relatively large when ε is much smaller than 1. However, when we consider subpopulation constraints
in the BAICS problem, the best arm is now k∗ = 1. To identify k∗ = 1, we must discover that µ2,2 < 0
because µ2 > µ1, and that µ3 < µ1. When ε goes to 0, these can be substantially more difficult than BAI
because both of above gaps are ε .

The simple example above highlights the fundamental difference between BAI and BAICS. In the BAI
problem, explorations are used to find the arm with the highest mean. However, in the BAICS problem,
explorations introduce an implicit tradeoff between optimality and feasibility. In Example 1 where ε is
small, to conclude that k∗ = 1, people need to estimate µ1, µ2,2, and µ3 accurate enough, which leads to
a natural problem of allocating samples among arm 1 and arm 3 for optimality, and subpopulation 2 of
arm 2 for feasibility. We also point out that Example 1 does not mean BAICS is always more difficult
than BAI. In fact, if we slightly change the setting to µ2,2 =−2− ε,µ3,2 =−1 and keep others the same
as in Example 1, then it is easy to see k∗ = kBAI = 1. This time BAICS is easy because we can easily
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tell µ2,2,µ3,2 < 0 and arm 1 is feasible, but BAI is hard because µ1 −µ2 =
ε

2 is small when ε is close to
0. We can gain a deeper understanding of the BAICS problem by considering another variant of Example
1. This time, we change µ2,1 = 1, µ3,2 =−1 and keep others the same. Since now µ1 = 1,µ2 =

1−ε

2 and
µ3 = 0, it is again easy to identify k∗ = 1. The interesting thing in this example is that it is not necessary
to identify the feasible set C before we find k∗ = 1. Indeed, it is possible that our algorithm can not tell
whether µ2,2 ≥ 0 when ε is small, but it can still recommend k∗ = 1 with risk at most δ because µ2 is much
smaller than µ1 and we do not need to know the feasibility of arm 2. In this example, a naive algorithm
that attempts to find the feasible set C before searching for the best arm in C can be inefficient in general,
so the BAICS problem is not a straightforward synthesis of finding the feasible set and a standard BAI
problem.

Above examples and discussions show that the complexity of a BAICS problem need not be related
to the corresponding BAI problem without constraints, and the BAICS problem naturally leads to an
optimality-feasibility tradeoff and presents unique challenges. We now formally state the theorem that
captures this intuition. Based on the theorem, we derive in Section 4 an algorithm that solves the BAICS
problem by solving a sequence of optimization subproblems with moderate computational complexity.
Theorem 2 For any µ ∈ S , if k∗(µ) = 0,

T ∗(µ)−1 =
1
2

max
w∈ΣK×L

min
k∈[K]

∑
l∈[M],µk,l<0

wk,lµ
2
k,l; (7)

If k∗(µ) ̸= 0, without loss of generality we assume k∗(µ) = 1, then

T ∗(µ)−1 =
1
2

max
w∈ΣK×L

min
(

f opt
µ (w), f fea

µ (w)
)
, (8)

where

f opt
µ (w) = min

2≤k≤K
min

λ∈RK×L

λk≥λ1
∀l∈[M],λk,l≥0

(
∑

l∈[L]
w1,l(µ1,l −λ1,l)

2 + ∑
l∈[L]

wk,l(µk,l −λk,l)
2

)
,

and
f fea
µ (w) = min

l∈[M]
w1,lµ

2
1,l.

The proof of Theorem 2 is given in Section 3.3. In Theorem 2, (7) gives the sample complexity
lower bound when there is no feasible arm, i.e. C(µ) = /0. As for the case C(µ) ̸= /0, the complexity
of the problem T ∗(µ) defined in (6) now consists of two terms f opt

µ (w) and f fea
µ (w), which reflect the

credibility of optimality and the credibility of feasibility, respectively. Briefly, f opt
µ (w) can be interpreted

as a measure of assurance that other feasible arms are not as good as arm 1, and f fea
µ (w) is a measure of

assurance that arm 1 is feasible. The smaller these two values are, the less assurance and therefore the
more difficult the problem becomes. The notion w is the proportions of samples for each arm and each
subpopulation. T ∗(µ)−1 is then obtained through maximizing the minimum of f opt

µ (w) and f fea
µ (w), which

can be interpreted as a trade-off between minimizing the complexity of optimality and the complexity of
feasibility.

3.3 Proof of Theorem 2

In this part, we discuss the proof of Theorem 2. The basic idea is to construct a close-by alternative bandit
instance λ ∈ Alt(µ) such that ∑k∈[K] ∑l∈[L] wk,l (µk,l −λk,l)

2 achieves infimum, for fixed w ∈ ΣK×J .
Recall that

T ∗(µ)−1 =
1
2

sup
w∈ΣK×J

inf
λ∈Alt(µ)

∑
k∈[K]

∑
l∈[L]

wk,l (µk,l −λk,l)
2 .
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First we consider the case C(µ) = /0, then k∗(µ) = 0, so Alt(µ) = {λ ∈ S
∣∣k∗(λ ) ̸= 0}. That is, as long

as λ has one feasible arm, then it is in the alternative set Alt(µ). Fix w, for any i ∈ [K], to make sure
i ∈C(µ), we only require λi,l ≥ 0 for all l ∈ [M], so we only need to set λi,l = 0 for those l ∈ [M] such that
µi,l < 0, and take other λk,l just to be µk,l , then

inf
λ∈Alt(µ)

∑
k∈[K]

∑
l∈[L]

wk,l (µk,l −λk,l)
2 = min

k∈[K]
∑

l∈[M],µk,l<0
wk,lµ

2
k,l.

It is easy to see this is a continuous function of w and the domain of w is compact, so the supremum can
be attained by some w∗(µ), and we obtain (7).

As for the case C(µ) ̸= /0, without loss of generality we assume k∗(µ) = 1. Again we fix w. To construct
an alternative instance λ ∈ Alt(µ), we have two different ways. The first option consists in taking an arm
i > 1 and augment means of its subpopulations on the alternative model such that it becomes above arm 1.
Otherwise, it is possible to shrink the mean of one subpopulation of arm 1 such that it becomes infeasible
on the alternative. We will now consider each of them separately.

For the first option, suppose we want to take arm i (i ̸= 1) and augment its means. Then in the alternative
model λ , we would expect λk ≥ λ1 and ∀l ∈ [M],λi,l ≥ 0, and for other k ̸= 1, i, we take λk,l = µk,l to
minimize ∑k∈[K]

k ̸=1,i
∑l∈[L] wk,l (µk,l −λk,l)

2 to be 0. Note here we only require λk ≥ λ1 because we can always

add a small number to some λk,l to make the inequality strict. Then in this case, we obtain

f opt
µ (w) = min

2≤k≤K
min

λ∈RK×L

λk≥λ1
∀l∈[M],λk,l≥0

(
∑

l∈[L]
w1,l(µ1,l −λ1,l)

2 + ∑
l∈[L]

wk,l(µk,l −λk,l)
2).

For the other way, we want to shrink the mean of one subpopulation of arm 1 to make it infeasible. Thus,
we only need to modify λ1,l to be 0 for some l ∈ [M] and set all other λk,l = µk,l . Again we only need
λ1,l = 0 because we can subtract it by an arbitrarily small number to make it negative. Now by iterating
over l ∈ [M] we can define

f fea
µ (w) = min

l∈[M]
w1,lµ

2
1,l.

Combine above two cases together and we obtain

inf
λ∈Alt(µ)

∑
k∈[K]

∑
l∈[L]

wk,l (µk,l −λk,l)
2 = min

(
f opt
µ (w), f fea

µ (w)
)
.

It is easy to see min
(

f opt
µ (w), f fea

µ (w)
)

is continuous, so the supremum on a compact set can be replaced
by the maximum, then

T ∗(µ)−1 =
1
2

sup
w∈ΣK×J

inf
λ∈Alt(µ)

∑
k∈[K]

∑
l∈[L]

wk,l (µk,l −λk,l)
2 =

1
2

max
w∈ΣK×L

min
(

f opt
µ (w), f fea

µ (w)
)
.

which finishes the proof.

4 ALGORITHM DESIGN AND COMPLEXITY ANALYSIS

In this section, we develop an algorithm to solve the BAICS problem with δ -PAC guarantee. We prove
upper bound on the sample complexity of the proposed algorithm. We show that the upper bound matches
the proved lower bound in the order.

To develop our algorithm, we adapt the Track-and-Stop algorithm introduced in Garivier and Kaufmann
(2016) to the BAICS problem. We first discuss the sampling rule and its calculation. Then we give the
stopping rule, our recommendation of the best feasible arm, and the threshold for stopping. Finally, we
give the convergence result of our algorithm to show it is asymptotically optimal in the sense that E[τδ ]
matches the sample complexity lower bound asymptotically as δ → 0.
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4.1 The Sampling Rule and its Calculation

In this part, we first give a high level overview of the sampling rule and then give the details of our
implementation. Suppose we are given the number of arms K, subpopulations L, constraints M and
weights q. In each round t = 1,2, · · · , the algorithm first computes the empirical means of all arms and all
subpopulations, denoted by µ̂(t)∈RKL, which is given by µ̂k,l(t) = 1

Nk,l(t) ∑
t
s=1 Xs1(Is = l,As = k). Then the

algorithm computes a maximizer wt ∈ w∗(µ̂(t)) of problem (6) with µ replaced by µ̂(t), which can further
be simplified to (7) or (8). Here, since the maximizer may not be unique, so w∗(µ̂(t)) is defined as the set
consists of all maximizers, and we can take wt to be any element in w∗(µ̂(t)). Now, we use the C-tracking
rule proposed by Garivier and Kaufmann (2016). To be specific, for some given ε ∈ (0, 1

KL ], let w(ε)
t be a

L∞ projection of wt onto Σε
K×L = {(w1, · · · ,wKL) ∈ [ε,1]

∣∣w1 + · · ·+wKL = 1}. Take εt =
(
K2L2 + t

)− 1
2 /2

and

(At+1, It+1) ∈ argmax
(k,l)

t

∑
s=0

wεs
k,l(µ̂(s))−Nk,l(t). (9)

Later we will see, this sampling rule ensures that Nk,l(t) is close to ∑
t
s=0 wεs

k,l(µ̂(s)) and thus close to
tw∗

k,l(µ), so it is asymptotically optimal and can achieve the lower bound given by (5).
Now we talk about the calculation of our sampling rule. From above we can see the only challenging

aspect is calculating wt , which is a good approximation of the maximizer of problem (6) with µ replaced
by µ̂(t). By Theorem 2, solving problem (6) can be further simplified into solving problems (7) and (8)
with some given µ . For (7), it is not hard to see we would expect ∑l∈[M],µk,l<0(wt)k,lµ

2
k,l to be the same

for k ∈ [K]. Define l(k) = argmaxl∈[M],µk,l<0 µ2
k,l and break the tie arbitrarily, then under the constraint

∑k∈[K],l∈[L] wk,l = 1 we can see

(wt)i,l(i) =
1

µ2
i,l(i)

(
∑

k∈[K]

1
µ2

k,l(k)

)−1

for i ∈ [K] and (wt)k,l = 0 for l ̸= l(k). Thus, (7) can be explicitly solved. The optimization problem in
(8) is more difficult. We first define Fµ(w) = min

(
f opt
µ (w), f fea

µ (w)
)

and calculate F(w) for fixed w as an
optimization problem. Given w, f fea

µ (w) = minl∈[M] w1,lµ
2
1,l is known, so it suffices to calculate f opt

µ (w).
Recall that

f opt
µ (w) = min

2≤k≤K
min

λ∈RK×L

λk≥λ1
∀l∈[M],λk,l≥0

(
∑

l∈[L]
w1,l(µ1,l −λ1,l)

2 + ∑
l∈[L]

wk,l(µk,l −λk,l)
2

)
,

and for fixed w and each k, the internal minimization programming is a convex quadratic problem with
linear constraints, so it can be easily solved through standard optimization methods, say the Lagrangian
multiplier method used in Lemma 5 of Russac et al. (2021). Thus f fea

µ (w) can be calculated through
solving K −1 optimization subproblems.

Now that Fµ(w) is known, and it is the minimum of several linear functions of w, so it is concave. In
addition, from the definition of Fµ(w) we know there exist λ ,k ∈ [K] such that ∑l∈[L] w1,l(µ1,l −λ1,l)

2 +

∑l∈[L] wk,l(µk,l −λk,l)
2 = Fµ(w) or there exists L ∈ [M] such that w1,lµ

2
1,l = Fµ(w). In both cases we can

write Fµ(w) = c(w)T w for some c(w) ∈RKL, so we can obtain a subgradient of −Fµ(w) given by −c(w)
by definition. Recall that Fµ(w) can be written as the infimum of linear functions (each λ ∈ Alt(µ) gives
a linear function), so it is concave. Now, by performing projected subgradient method, we can solve the
minimization problem maxw∈ΣK×L F(w) by updating w(n+1) = PΣK×L

(
w(n)+αnc(w(n))

)
iteratively with the

projection operator PΣK×L(·) and some proper stepsizes {αn}. It is known the projected subgradient method
converges under mild conditions, see for example Boyd et al. (2003). This finishes the calculation of wt
and also our sampling rule.
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4.2 The Stopping Rule and the Threshold

Following the idea of Garivier and Kaufmann (2016) and Russac et al. (2021), we consider the Chernoff’s
Generalized Likelihood Ratio statistic:

Z(t) =
1
2

inf
λ∈Alt(µ)

∑
k∈[K]

∑
l∈[L]

Nk,l(t)(µ̂k,l(t)−λk,l)
2 . (10)

Note if we define the empirical sampling weights (ŵt)k,l =
Nk,l(t)

t , then Z(t) can be written as Z(t)= t
2 Fµ̂(t)(ŵt),

which can be efficiently calculated as dicussed in Section 4.1. For a given risk level 0 < δ < 1, we define
the stopping time τδ as follows:

τδ = inf
t∈N

{Z(t)> β (t,δ )}.

Here the threshold β (t,δ ) should be tuned appropriately. By Proposition 21 of Kaufmann and Koolen
(2021), a choice of β (t,δ ) = O

(
L ln ln t + log K

δ

)
would ensure our policy to be δ -PAC, while in practice,

as suggested by Garivier and Kaufmann (2016), we use instead the stylized ln((1+ ln t)/δ ) which is less
conservative. The final recommendation k̂τδ

is just the optimal feasible arm in µ̂(τδ ), i.e.

k̂τδ
= arg max

k∈C(µ̂(τδ ))
µ̂k.

Again, we take k̂τδ
= 0 if C(µ̂(τδ )) = /0.

4.3 The Convergence Result

We now give the convergence result of our algorithm, which matches the asymptotic optimal lower bound
given by (5):
Theorem 3 For every bandit model µ ∈ S , our algorithm is δ -PAC and

lim
δ→0

Eµ [τδ ]

ln(1/δ )
= T ∗(µ). (11)

The proof of Theorem 3 is given as follows. By applying Lemma 7 of Garivier and Kaufmann (2016)
to our C-Tracking rule with KL weights, we have

max
k∈[K],l∈[L]

∣∣Nk,l(t)−
t−1

∑
s=0

wt
∣∣≤ KL(1+

√
t). (12)

With force exploration rate εt , since tεt = O(
√

t), each subpopulation of each arm would be sampled infinite
times as t → ∞, so µ̂(t)→ µ almost surely. In addition, since Fµ(w) is concave, so the set of maximizers
w∗(µ) is convex, then by Lemma 6 of Degenne and Koolen (2019) we know infw∈w∗(µ) ∥1

t ∑
t−1
s=0 wt −w∥∞ → 0

as t →∞.Combine this with (12) we know that infw∈w∗(µ)

∥∥ŵt −w
∥∥

∞
→ 0 almost surely, that is, our empirical

weights ŵt gets close to some oracle weights. Further, considering the numerical error γt of solving wt
from an optimization problem as discussed in section 4.1, we note that as long as ∥γt∥∞ → 0, we have
∥1

t ∑
t−1
s=0 γt∥∞ → 0, which does not change the convergence result regarding sequences converging to w.

Since µ ∈ S so the problem is single-answered, so by Theorem 7 of Degenne and Koolen (2019) we
know our algorithm has asymptotically optimal complexity, i.e. limδ→0

E[τδ ]
ln(1/δ ) = T ∗(µ). In addition, by

our choice of β (t,δ ) and Proposition 21 of Kaufmann and Koolen (2021), our algorithm is δ -PAC.
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5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficiency of the Track-and-Stop with fairness Constraints on Subpop-
ulations (T-a-SCS) strategy for addressing BAICS problems through two examples. In the first example,
the arm k of maximum quality is infeasible on one subpopulation l. More specifically, µk,l < 0 but is close
to 0. The second example presents a situation where two arms have maximum quality, but one of them is
infeasible, further, there is a third arm which is feasible and has a quality close to the maximum quality.
Through these examples, we demonstrate the behavior of the algorithm where there is a tradeoff between
testing for optimality and testing for feasibility. In comparison with the T-a-SCS strategy, we consider two
other benchmark sampling strategies. The first is the original Track-and-Stop (T-a-S) strategy (Garivier
and Kaufmann (2016)), which does not incorporate subpopulation constraints when calculating the weight
assignment for each arm. When this strategy is performed, it yields arm At to be sampled at iteration t. We
then randomly allocate the sample to subpopulation It of arm At with probability qIt/∑l∈[L] ql . The second
is the uniform sampling strategy. In each iteration, we sample arm k(t) with probability 1/K, and randomly
allocate the sample to subpopulation It of arm At with probability qIt/∑l∈[L] ql . The choice of sampling
strategy does not affect the stopping rule. In our experiment, all three algorithms use the Chernoff’s
Generalized Likelihood Ratio statistic Z(t) given by (10), and the same threshold β (t,δ ) = ln((1+ ln t)/δ ).

5.1 The First Example

In the first numerical case, we set the number of arms and subpopulations, and the respective arm values on
each subpopulation as follows: let K = 3, L= 3, µ1 = (0.2,0.6,0.8), µ2 = (0.4,0.4,0.3), µ3 = (−0.2,1,1.5),
we have noise level σ = 1. In calculating the overall quality of an arm, we set for the three subpopulations
q1 = 0.2, q2 = 0.3, q3 = 0.5, and µk = ∑

3
l=1 qkµk,l . In this case, we have µ1 = 0.62, µ2 = 0.35, µ3 = 1.01,

but arm 3 is infeasible because µ31 < 0, and arm 1 is the best feasible arm. The probability threshold of
correct selection is set as δ = 0.1.

We initialize each arm with 5 draws on each subpopulation. For simplicity, we perform projected
subgradient method (see Section 4.1) to update w one time with stepsize α = 1 in each iteration. The
optimal weights wt = (w1, · · · ,wK) for implementing the T-a-S strategy are calculated by solving a rational
equation; we refer to the Gaussian case of Garivier and Kaufmann (2016) for details. We also use the
C-tracking rule for projecting the T-a-S weights. We run 300 experiments to record the average stopping
time τ̂δ and empirical probability of correct selection P̂µ(k̂τδ

= k∗(µ)). The results are given in table 1.

T-a-SCS T-a-S Uniform
τ̂δ 530 1703 2432
P̂µ 0.987 0.990 0.983

Table 1: Average stopping time and empirical probability of correct selection of the three sampling strategies
in example 1.

We further look at how the samples are allocated to each of the arms and subpopulations in the T-a-SCS
strategy, in comparison with the T-a-S strategy. For each experiment, we record the number of samples
on each arm and subpopulation, {Nk,l(τδ ) : k ∈ [K], l ∈ [L]}, and compute the empirical sampling weights
(ŵ)k,l =

Nk,l(τδ )
τδ

. We then take an average over the 300 copies of experiments. The results are given in
Figure 1, demonstrating a tradeoff between optimality and feasibility. Compared to the T-a-S strategy, we
notice that the T-a-SCS strategy assigns more empirical sampling weights to the subpopulations on which
the arm values are close to 0 (e.g., subpopulation 1 of arm 1, subpopulation 1 of arm 3). Further, as the
infeasibility of arm 3 is "discovered" by T-a-SCS, it allocates more samples to arm 2 (compared to the
T-a-S strategy), which is now the only competitor for arm 1 of being the best feasible arm.
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(a) T-a-SCS (b) T-a-S

Figure 1: Average sample allocation to the arms and the subpopulations in example 1.

5.2 The Second Example

In the second numerical case, we set the number of arms and subpopulations, and the respective arm
values on each subpopulation as follows: let K = 4, L = 3, µ1 = (−0.2,0.4,1.2), µ2 = (0.2,0.6,0.6),
µ3 = (0.3,0.3,0.6), µ4 = (−0.6,0.8,0.4), we have noise level σ = 1. In calculating the overall quality of
an arm, we set for the three subpopulations q1 = q2 = q3 = 1/3, and µk = ∑

3
l=1 qkµk,l . In this example we

have µ1 = µ2 = 0.47, which equals the maximum quality, but arm 1 is infeasible. Also, µ3 is 0.4, which
is close to µ2. The probability threshold of correct selection is set as δ = 0.1.

The numerical settings are similar to that of Section 5.1. In this example, both the T-a-S and the
Uniform sampling strategy exceed the limit of τmax = 15000 iterations in a large proportion of experiment
copies. For T-a-SCS we have τ̂δ = 3131 and P̂µ(k̂τδ

= k∗(µ)) = 0.980.
We further look at how the samples are allocated to each of the arms and subpopulations in the T-a-SCS

strategy, in comparison with the T-a-S strategy. The results are given in figure 2. In this example, although
arm 1 has the maximum quality, the T-a-SCS strategy "realizes" that arm 1 is very likely infeasible because
of the negative values on subpopulation 1. The T-a-SCS strategy thus assigns less empirical sampling
weight to arm 1 (in comparison to the T-a-S strategy) aside from checking its feasibility on subpopulation
1. This further allows the T-a-SCS strategy to assign more empirical weight to the other feasible arm 3,
and to arrive at the conclusion that arm 2 has better quality than arm 3, and is therefore the best feasible
arm, with less sampling times.

6 CONCLUSION

We formulate, analyze and solve the problem of best arm identification with fairness constraints on
subpopulations (BAICS). The BAICS problem requires that an selected arm must be fair to all subpopulations
by satisfying constraints to regulate conditional expected rewards on each subpopulation. The BAICS
problem aims at correctly identify the best arm among all feasible arms. We analyze the complexity of
the BAICS problem by proving a best achievable lower bound on the sample complexity. We then design
an algorithm, and prove the sample complexity to match with the lower bound in terms of order. A brief
account of numerical experiments is conducted to illustrate the theoretical findings.
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(a) T-a-SCS (b) T-a-S

Figure 2: Average sample allocation to the arms and the subpopulations in example 2.
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