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ABSTRACT 

Space-filling designs (SFDs) underpin many large-scale simulation studies.  The algorithms that construct 
SFDs are mostly stochastic and cannot guarantee that optimal solutions can be found within a practical 
amount of time.  This paper uses massive experimentation to find the empirical distributions of a diverse 
set of design-quality measures in highly-used classes of SFDs constructed by leading software packages.  
The objective is to provide simulation practitioners with a better understanding of what they can expect 
from different SFD choices.  The results show substantial variability in measures of correlation and space-

fillingness in the design classes and dimensions investigated.  Therefore, computer experimenters should 
generate and assess several candidate designs using different random-number-generator seeds to reduce the 
risk of using a poor design simply due to random chance.  We also find that in the largest designs 
investigated, the uniform designs generally perform best for both our correlation and uniformity measures.   

1 INTRODUCTION 

The simulations researchers use often contain many input variables, nonlinear relationships, stochastic (or 

pseudo-random) elements, and generate multiple diverse responses (Kleijnen et al. 2005).  To obtain insight 
from such complex computer models, researchers often construct metamodels of the responses as functions 
of the input variables (Law and Kelton 2000).  The metamodels that can be fit, and hence, the insights that 
can be gleaned, depend critically on the design of experiments (DOE) used to construct the metamodels.  
The DOE specifies the settings of the input factors over the simulation runs.  

Computer experimenters desire designs that “allow one to fit a variety of models and should provide 

information about all portions of the experimental region” (Santner et al. 2018, p. 148).  They also seek 
designs with zero or minimal correlations among columns in the design matrix since multicollinearity 
adversely effects many statistical techniques (Montgomery 2013).  Achieving these design objectives is 
challenging when there are many input factors and limits on the number of experiments.  In such situations, 
computer experimenters often use space-filling designs (SFDs), see Sanchez et al. (2020).  Intuitively, an 
SFD has “points everywhere in the experimental region with as few gaps or holes as possible” (Joseph 

2016, p. 29).  Or, as Lin and Tang (2015, p. 593) write, SFDs “fill a bounded design region as uniformly as 
possible.” 

There are many classes of SFDs and methods to construct them (Fang et al. 2005).  Unfortunately, 
building large-scale SFDs is usually challenging.  Most construction algorithms use stochastic heuristic 
search methods that do not guarantee an optimal design will be found within a reasonable amount of time 
(Lin and Tang 2015).  Depending on the random-number-generator seed, initial conditions for the search, 

stopping criteria, processing time, computing power, and search-algorithm parameters, different “optimal” 
solutions with substantially disparate measures of design quality can be obtained (Parker 2022).   

From among the many available classes of SFDs, what should simulation experimenters use, and when?  
What design-quality measures can they expect?  What risk are they taking from the randomness in most 
design generation algorithms?  Of course, the answers depend on the experimenter’s goals and will vary 
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greatly in different circumstances.  To provide insight to simulation researchers about their design options, 
this investigation moves toward addressing Jin et al.’s (2003, p. 554) call for a “thorough future 
investigation” of the “many optimality criteria available in the literature” for SFDs.  Two decades later, we 

cannot find substantial progress towards understanding the performance, variability, and relationships 
among different measures of design quality for the most used classes of SFDs.  This research takes a long-
overdue first step in this direction. 

This paper presents the empirical distributions of three diverse design-quality measures in five 
commonly used classes of SFDs built using leading software packages.  Section 2 specifies the experimental 
setting, defines our notation, explains the three design-quality measures we investigate, and introduces the 

five classes of SFDs explored.  Section 3 uses a sequence of box plots to display the empirical distributions 
of a measure of correlation, a distance-based space-filling criterion, and a uniformity measure for nine 
design sizes in the five classes of SFDs.  Section 4 summarizes the main findings and identifies areas for 
future research.   

2 BACKGROUND 

2.1 The Simulation Setting 

We consider situations where simulation experimenters select continuous input values over a rectangular 
region.  The n×k design matrix, X, specifies the simulation’s input settings for n runs involving k continuous 
factors (i.e., input variables).  Row i of X, denoted xi, is called a design point (DP).  DP xi specifies the 
values for each of the k factors for which the simulation will be run, for i = 1, …, n.  The cth column of X, 
which we label as Xc, stipulates the settings for factor c over the n DPs.  xic specifies the input value for 
factor c in DP i.  Furthermore, to make our design comparisons are meaningful, we scale the input so that 

xi[0,1]k = , the k-dimensional unit cube that comprises the experimental region.   

2.2 Design-Quality Measures 

Practitioners use a variety of measures to assess their designs (Santner et al. 2018).  In situations involving 
considerable a priori uncertainty about the forms of many diverse responses, these measures are typically 
based on X and mostly fall into three broad classes, which are measures of correlation, uniformity, and 
distance.  This subsection defines the three prominent design-quality measures in the literature we study, 

one from each category. 

2.2.1 A Measure of Correlation 

Minimizing the correlation among factors in a design has been a goal since the early days of the science of 
DOE (Fisher 1925).  Following Moon et al. (2012, p. 378), we prefer designs with zero or minimal 
correlations among columns in X “to allow independent [or nearly independent] assessments of the [main] 
effects of the different inputs.”  The correlation between columns Xc and Xd of X is given by: 
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Here, 
cX  and 

dX  are the means of columns Xc and Xd, respectively.   

We express the maximum absolute pairwise (map) correlation among columns of X as 

 ,max | |,   .map c d c d =  
 

517



Lucas and Parker 
 

 

map quantifies how far from orthogonal the columns of X are, with map = 0 indicating X is orthogonal.  
Minimizing map bounds the worst-case pairwise correlation among columns in design matrix X.  A design 
with map ≤ 0.05 is called nearly orthogonal (Hernandez et al. 2012a).  Designs with lower map values are 

preferred when evaluated by this criterion.   

2.2.2 A Measure of Distance  

Distance measures are likely the most common approach to constructing and quantifying the space-
fillingness of a design (Joseph 2016).  For a fixed number of DPs in , large inter-point distances are 
desirable; i.e., the points are spread out rather than many being clustered in a portion of a bounded space.  
The pth order distance between any two design points xi and xj is defined as  
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where p = 1 is the Manhattan distance and p = 2 is the Euclidean distance. 
An approach to measuring the largest gap or hole in  is by the maximum distance from any point x in 

 from its nearest DP.  A common design goal is to find the design that minimizes this “worst case” distance 
for all possible designs of the same dimension (i.e., n and k).  A design that achieves this is called a minimax 

(mM) distance design (Johnson et al. 1990).  Since finding minimax distance designs is computationally 
challenging, maximin (Mm) distance designs (Johnson et al. 1990) are more common in practice.  A design 
is called an Mm distance design if it maximizes the minimum distance between any two DPs, with larger 
values preferred. However, finding an Mm distance design is still difficult for large designs.  Morris and 
Mitchell (1995) developed Mm distance designs with X constrained to a Latin hypercube design (McKay 
et al. 1979) with evenly spaced levels for each factor. This ensures good projective properties in each 

factor’s subspace. These designs are known as maximin Latin hypercube designs (MmLHDs).  According 
to Joseph (2016, p. 31) “MmLHD seems to be the most commonly used experimental design for computer 
experiments in practice because of its simplicity and availability in software packages.”  While MmLHDs 
are common in practice, Joseph (2016) found that minimizing the maximum projection (MaxPro) criterion 
leads to better space-fillingness in projections of X into low-dimensional subspaces.  This feature is highly-
valued when only a small number of factors have significant effects on responses. 

2.2.3 A Measure of Uniformity 

Another approach to measuring the space-fillingness of a design is to quantify how uniformly the DPs are 
spread throughout  (Fang 1980).  Specifically, the uniformity or discrepancy of design X is defined as 
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Here, Rz is the subregion 1[0, ) , )[0 kz z  within , vol(Rz) is the volume of subregion Rz, and N(X, Rz) 
is the number of design points of X within Rz.  The objective is to construct X with D*(X) as close to zero 

as possible.  Since D*(X) is computationally burdensome, following Hickernell (1998), this research uses 
the modified L2 discrepancy (ML2)2 to quantify the discrepancy of a design: 
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2.3 SFD Construction Algorithms, Design Classes, and Generating Software 

Constructing large-scale designs that optimize space-filling measures is challenging due to nonlinear 
objective functions, integer constraints, and high dimensionality.  Most SFD construction methods use 
heuristic stochastic search algorithms, such as simulated annealing or genetic algorithms, which cannot 
guarantee that an optimal design will be found within a constrained time limit (Lin and Tang 2015).  Indeed, 

518



Lucas and Parker 
 

 

Parker (2022) found that variability remained even when some search algorithms ran for up to two days on 
a MacBook Pro with a 3.1GHz processor, Intel Core i7, and a memory of 16GB.  For all stochastic 
optimization methods, each random instantiation will likely provide a different “optimal” solution, thereby 

generating a distribution of design-quality measures. 
This paper explores the variability in design-quality measures for five diverse design classes and 

software at their default settings.  From the many possibilities, we chose to investigate SFD classes that are 
featured in the leading texts on computer experiments (e.g., Santner et al. 2018; Fang et al. 2005), among 
the most frequently used in our experience, available to most practitioners, or reported to be among the 
most used (Joseph 2016; Wang et al. 2020).  Using the “space-filling designer” in JMP (SAS 2021), sphere-

packing (i.e., Mm distance) designs and maximin distance Latin hypercube designs (MmLHDs) were 
constructed.  We generated state-of-the-art MaxPro designs and uniform designs (UDs) using the R 
software packages MaxPro (Ba and Joseph 2018) and UniDOE (Zhang et al. 2018).  Following the 
recommendation of Ba and Joseph (2018), the MaxPro designs were initialized with a MaxProLHD (i.e., 
first optimizing the MaxPro criterion with design matrix X constrained to be an LHD) and then minimized 
with the LHD restriction removed.  Custom R functions were used to generate the LHDs.   

3 THE EMPIRICAL DISTRIBUTIONS OF THREE DIVERSE DESIGN-QUALITY 

MEASURES FOR FIVE SFD CLASSES OF A VARIETY OF SIZES 

This section shows the empirical distributions of three design-quality measures in five SFD classes for nine 
design sizes (i.e., n and k combinations).  These results provide guidance to simulation experimenters in 
choosing the design class to use and what quality measures they can expect.   

3.1 Our Experiments 

Our experiments vary three factors.  The design class has five categorical levels (LHD, MaxPro, MmLHD, 
SphereP, and UniDOE).  We vary k and n to yield nine design dimensions, with k = 5, 10, and 20 and  
n = k+1, 3k+2, and 10k.  This allows us to explore the distributions of the measures in each class for three 
levels of k and three levels relating to design density (i.e., the number of DPs per input variable), which we 
classify as low, mid, and high.  A full-factorial design was run, yielding 45 DPs.  For each combination, we 
generated 100 independent designs using JMP or R at their default settings—yielding 4,500 designs.  For 

each of these designs, our design-quality measures were calculated.  Thus, all the measures were calculated 
from the same designs.  When n = k+1, the low-density designs are fully saturated.  Saturated designs are 
more common when the number of feasible simulation runs is constrained.  In cases where n = 10k, these 
high-density designs have more degrees of freedom for fitting metamodels.  Having n = 10k matches the 
rule-of-thumb guidance given by Loeppky et al. (2009).  Designs with n = 3k+2, our mid-density designs, 
have DP densities between the two extremes.  This mid-level value was chosen since nearly orthogonal and 

good space-filling Latin hypercubes are known to exist at this design size (Cioppa and Lucas 2007).  

3.2 Distributions of map 

We begin our exploration by looking at the distributions of map in the five SFD classes for our smallest 
design size.  Figure 1 displays side-by-side box plots of map for n = 6 and k = 5 (i.e., 6×5 design matrices).  
Each box plot shows the empirical distributions from 100 independent randomly generated designs.  Since 
there are five design types, the figure encompasses 500 map values.  The map values across the designs 

range from 0.030 (i.e., a nearly orthogonal sphere-packing design) to 1.000 (i.e., there is a completely 
confounded LHD).  For the LHD, MaxPro, and UniDOE designs, the map values have substantial 
variability, with ranges of around 0.50.  Thus, users of these designs, at this size, face considerable risk if 
they generate a single “optimal” design. 

For these small fully-saturated designs, sphere-packing designs consistently provide the lowest map 
values and have the least variability—that is, they would be preferred under this criterion.  Only three of 

the 500 designs are nearly orthogonal, and all three are sphere-packing designs.  The intuition is that JMP’s 
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sphere-packing algorithm optimizes on the Mm Euclidean distance and low map values can be a byproduct 
of placing DPs near the corners of , as in fractional factorial designs.  The median map value for sphere-
packing designs is 0.092.  The next three lowest median map values are from UniDOE, MaxPro, and 

MmLHDs, with 0.200, 0.221, and 0.257, respectively—which are roughly comparable.  Interestingly, the 
ordering of the 3rd quartile for those three classes is reversed.  While LHDs are frequently used in practice, 
due in part because they are easy to construct, the highest map values occur in LHDs, by a considerable 
margin, with a median map value of 0.771.  Thus, there is likely benefit in using more sophisticated 
algorithms to construct SFDs than LHDs, such as the other four types.  A more expansive treatment of map 
values in LHDs is contained in Hernandez et al. (2012b).  The ranges in map values obtained within each 

design class highlight the importance of practitioners generating and evaluating multiple candidate designs.   

 

Figure 1:  Box plots of map for 100 6×5 LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. 

We extend our exploration by increasing the design density, while holding k at five.  Figure 2 shows 

the distributions of map in our five SFD classes for k = 5 and n = 6, 17, and 50.  Figure 1 is the leftmost 
panel in this graphic.  As n increases, i.e., greater design density, map values generally trend lower, as does 
their variance.  However, there is a notable exception, as 17×5 sphere-packing designs have generally 
higher map values than 6×5 sphere-packing designs.  We also see that the preferred design class by this 
measure changes as n increases.  For n = 50, our highest density designs, the R software package UniDOE 
designs perform best with respect to map, with a median map value of 0.047 and most of its designs being 

nearly orthogonal.  The next best performing design classes when n = 50 and k = 5, with respect to median 
map, are, in order, sphere-packing (0.080), MmLHD (0.096), MaxPro (0.124), and LHD (0.253).  When  
n = 6 or 17, the sphere-packing designs have the lowest (i.e., best) map values.  For all design densities 
when k = 5, LHDs perform worst.  Interestingly, the third-best median map value switches from MaxPro to 
MmLHD between design sizes 17×5 and 50×5. 
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Figure 2:  Box plots of map for LHD, MaxPro, MmLHD, SphereP, and UniDOE designs when k = 5. 

Our investigation continues by looking at designs with more factors.  Figure 3 appends two rows (for 
k = 10 and k = 20) to what is displayed in Figure 2, forming nine total panels of side-by-side box plots.  
Panels in the same row show box plots for designs with the same number of factors.  Panels in the same 
column display box plots for designs with similar DP densities, i.e., with n/k = 1+1/k, 3+2/k, and 10, for 
columns one through three, respectively—i.e., our low, mid, and high categories of design density.  Smaller 

designs are towards the top left and larger designs are towards the bottom right.  These panels cover the 
nine combinations we explore of the number of factors and the three design density categories.     

Looking across the nine panels in Figure 3, map values range from 0.020 to 1.000, with an overall 
median value of 0.214.  Except for 6×5 sphere-packing designs, map values for saturated designs (column 
one) are consistently among the highest obtained.  As design density increases, i.e., moving left to right 
within a row, map values and their range tend to decrease—with the notable exception of sphere-packing 

designs for k = 5 when n goes from 6 to 17.  When n = 10k, all 1,500 designs have map values less than 
0.50. For large designs with mid to high density, those towards the lower right of the figure, we observe 
that the UniDOE R software package consistently generates designs with the lowest map values and with 
the least variability—and are thus preferred by this measure.  Moreover, the high density UniDOE designs 
are often nearly orthogonal.  No other SFD class of any size produces more than an occasional nearly 
orthogonal design.  Within all nine panels, the highest map values occur in LHDs.  A clear ordering 

for design class preference using map emerges in the four lower-right panels, which correspond to the larger 
designs.  The best-performing class by this measure is UniDOE, followed by sphere packing.  The MmLHD 
and MaxPro designs seem roughly comparable, while the LHD designs perform the worst.  It’s worth noting 
that none of these design-generation algorithms explicitly consider map. 
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Figure 3: Box plots of map for LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. 

 

Since we are most interested in simulations with many factors, we extract and display the bottom row 
(i.e., when k = 20) of Figure 3.  This “zooming in” allows us to better identify differences obscured by plot 

size.  Figure 4 shows the box plots of map for each design type for designs of sizes 21×20, 62×20, and 
200×20.  We see that in the large, saturated designs (left panel), all map values are greater than 0.30.  
Notably, nearly orthogonal LHDs of this dimension have been constructed by Hernandez et al. (2012a).  As 
n increases, map values trend lower for all design classes and map variability decreases.  In fact, the 
maximum (i.e., worst) map value from all of the 500 200×20 designs in the far-right panel is 0.280, which 
is lower than (i.e., preferred to) the minimum map value (0.300) from all 500 21×20 designs in the left 

panel.  This highlights how valuable larger sample sizes (i.e., bigger n) can be to experimenters.  We also 
see that UniDOE designs perform substantially better than the other methods for our largest (i.e., 200×20) 
designs, with many nearly orthogonal and a median map value of 0.052.  In fact, the largest map value in 
the 200×20 UniDOE designs is 0.075.  This is lower than the best map value for the LHD, MaxPro, and 
MmLHD designs.  The sphere-packing designs are a clear number two in the 62×20 and 200×20 designs.  
For these design dimensions, MaxPro and MmLHD are generally comparable, while LHDs consistently 

yield the poorest-performing designs according to the map criterion.   
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Figure 4: Box plots of map for LHD, MaxPro, MmLHD, SphereP, and UniDOE designs when k = 20. 

 

3.3 Distributions of Mm Euclidean Distance 

Mm distance criteria are widely used to construct and assess SFDs (Joseph 2016).  Figure 5 presents 
comparative box plots for the Euclidean Mm distance across nine design dimensions.  Greater Mm distances 
(higher values in the plots) are generally preferred for a given design size and bounded region, meaning no 

two DPs are “closer than they need to be.”  As expected, the sphere-packing designs, which optimize over 
this measure without any constraints, other than requiring all DPs be in , perform best for all design sizes.  
In fact, in all panels, the worst-performing sphere-packing design is greater than the best of any other design.  
The sphere-packing design’s dominance by this measure grows as k increases.  The MmLHDs tend to have 
the second-highest average Mm distance, except for the saturated designs with k = 10 and 20, where the 
MaxPro designs beat them.  The LHDs consistently have the lowest (i.e., worst) Mm distances, even though 

LHDs are constructed to have optimal space-filling in projections into each factor’s subspace.  For higher 
design densities, especially when n = 10k, the MmLHDs emerge as the second-best option by this measure. 

We have seen that sphere-packing designs perform best with respect to Mm distance for all design sizes 
explored, often by a considerable amount.  Thus, to obtain more discrimination in examining the other 
design classes in our largest designs, we “zoom in” on the lower right panel with the pest-performing 
sphere-packing designs removed, see Figure 6.  We see that MmLHDs dominate MaxPro designs with 

respect to this measure.  The MaxPro designs appear slightly better, as a whole, than the UniDOE designs. 
Again, the LHDs have the least desired (i.e., lowest) Mm values.  We also observe much less variability in 
Mm distance for MmLHDs than in the other SFD classes in these large designs. 
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Figure 5: Box plots of Mm distances for LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. 

 

Figure 6: Box plots of Mm distances for 200×20 LHD, MaxPro, MmLHD, and UniDOE designs. 
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3.4 Distributions of (ML2)2 

The final measure we explore is our uniformity measure, a very different measure of space-fillingness than 
the distance-based ones.  (ML2)2 is a surrogate measure of the discrepancy between the empirical cumulative 

distribution function (CDF) from the design’s DPs compared to the CDF of a theoretical k-dimensional 
uniform distribution over .  Figure 7 presents nine panels for different design dimensions of side-by-side 
box plots for (ML2)2.  Again, read rowwise for k = 5, 10, and 20 and columnwise for n = k+1, 3k+2, and 
10k.  As expected, the uniDOE designs, which optimize for discrepancy, have the lowest median (ML2)2 
values in each panel, and are thus preferred by this measure.  This is difficult to see in the figure due to the 
great differences in ranges, which obscure the results in many subpanels.  Optimizing for the Mm distance 

criterion in the sphere-packing designs results in the highest (i.e., worse) discrepancies, by far, for all design 
sizes.  The insight is that spreading-out DPs using the Mm distance criterion likely increases the number of 
DPs near the boundary of , resulting in a nonuniform distribution of points in the interior.  This effect is 
most apparent when k = 20.  The difference in (ML2)2 values between the sphere-packing designs and 
MmLHDs shows a benefit of imposing an LHD structure.  Also, note how much worse the (ML2)2 values 
are in the 21×20 designs, i.e., the large-saturated designs.  This pattern arises because it is far more 

challenging to have DPs uniformly cover  when n is small and k is large.   
Other insights gleaned from the figure include that (ML2)2 values decrease rapidly as design density 

(i.e., n) increases, though proportionally less so for sphere-packing designs.  For the designs that are ranked 
between uniDOE and sphere-packing, the preference by median (ML2)2 values is MmLHD, LHD, and 
MaxPro, respectively, in eight of the nine panels.  The exception is for our 200×20 designs, where the 
preference ordering is MaxPro, MmLHD, and LHD.  

 

Figure 7: Box plots of (ML2)2 values for LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. 
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4 CONCLUSION 

Complex computer simulations are increasingly being used by scientists, businesses, and governments 
(Powers et al. 2012).  Modern SFDs help us efficiently learn from simulation experiments.  Unfortunately, 

as Jin et al. (2003) noted, there is a dearth of understanding of the many measures of design quality for 
SFDs.  The results in this paper can assist simulators in selecting their design and the quality they can 
expect.  First and foremost, we show there is substantial variability in measures of correlation and space-
fillingness in most of the design classes and dimensions investigated.  It follows that practitioners should 
generate and assess several candidate designs using different random-number-generator seeds to reduce the 
risk of using a poor design due simply to random chance.  As design density increases, the design-quality 

measures tend to steadily improve and their variability decreases.  This highlights and quantifies how larger 
sample sizes benefit experimenters.  While the recommended design depends on the quality measure and 
design size, for designs with many factors and runs, the uniform designs stood out as clearly the best for 
our correlation and uniformity measures.   

Other top-level lessons learned from our experiments include the following.  With respect to map, for 
our small, saturated designs, sphere-packing designs perform best by a substantial margin.  For high-density 

designs, the uniDOE designs are the best and often nearly orthogonal.  In all design dimensions, LHDs 
perform worst.  For Mm Euclidean distance, sphere-packing designs perform best for all design sizes 
explored, often by a considerable amount, especially for large k.  For higher design densities, especially 
when n = 10k, MmLHDs emerge as the second-best option.  Regarding (ML2)2, in all nine design 
dimensions, the uniDOE designs have the lowest (i.e., best) median values and sphere-packing designs have 
the highest (i.e., worst) median values.  Results from more experiments, measures, and design classes, as 

well as additional insights, are available in Parker (2022). 
While this exploration is far more comprehensive than any other of this type in the literature the authors 

are aware of, it barely scratches the surface of what is possible.  To begin with, several other measures, 
design classes, design dimensions, software packages, and search algorithm settings can be investigated.  
In addition, all our designs were created before any simulation experiments were run.  There is a rich 
literature on sequential designs for computer experiments (Kleijnen 2015).  The above type of analysis can 

be extended to sequential designs.  Of course, with many sequential procedures, the results may depend, 
i.e., adapt, dramatically based on responses.  In such cases, some response forms would need to be assumed.  
Finally, our analysis focuses on univariate distributions of design-quality measures.  It is also of interest to 
quantify the correlations and other relationships among the measures.   
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