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ABSTRACT

Batching methods operate by dividing data into batches and conducting inference by aggregating estimates
from batched data. These methods have been used extensively in simulation output analysis and, among
other strengths, an advantage is the light computation cost when using a small number of batches. However,
under computation budget constraints, it is open to our knowledge which batching approach among the range
of alternatives is statistically optimal, which is important in guiding procedural configuration. We show that
standard batching, but also certain carefully designed schemes using uneven-size batches or overlapping
batches, are large-sample optimal in the sense of so-called uniformly most accurate unbiasedness from a
dual view of hypothesis testing.

1 INTRODUCTION

Batching methods are commonly used in simulation analysis for confidence interval (CI) construction.
These methods work by dividing data into batches, and suitably combining the batch estimates to cancel
out the nuisance variability parameter. This approach thus enables the construction of CIs without the need
to estimate standard error, which can be difficult for many problems such as quantile estimation (Nakayama
2014) whose variance estimation involves density estimation, and serially dependent and steady-state
estimation (Asmussen and Glynn 2007; Nakayama 2007).

Compared with other resampling approaches such as the bootstrap, an advantage of batching is the light
computation cost. Indeed, the bootstrap requires resampling and repeated model running for a sufficient
number of times in order to approximate the resample distribution and hence the original sampling counterpart.
In contrast, batching methods have the flexibility of dividing the data into only a small number of batches
(as small as 2). This offers a significant advantage when the computation effort for even one model run is
gigantic, such as in a big simulation or high-dimensional problems. On the other hand, the price to pay for
such computation saving is the longer CI, stemming from the inflated uncertainty in the variance estimator
and manifesting in the use of t instead of normal critical values in the CI.

In view of the above, it is natural to ask the question: Given a fixed computation budget in terms of the
number of model runs, do the classical batching methods give statistically optimal CIs? To be concrete, we
need to make clear the meaning of computation budget and define the optimality of a CI. For the former,
we consider the setting where the target quantity is a functional of the input distribution. Given the input
distribution, evaluating the target quantity is resource-consuming, but is not significantly affected by the
choice of the input distribution, e.g., if the input distribution is an empirical distribution, the data size
constructing this distribution does not significantly matter. An example is steady-state estimation under
input uncertainty, in which case constructing a CI would involve capturing the statistical uncertainty of the
input distributions, and each model run would be a steady-state simulation using fitted input distributions

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 433



He and Lam

from each data batch. Here, the runtime of the steady-state simulation could be insensitive to these input
distributions and depend primarily on the system dynamic.

To define optimality, we use the so-called uniformly most accurate unbiased notion, in an asymptotic
sense as the data size grows. This notion is based on the duality between CIs and hypothesis tests, and is
equivalent to having the dual hypothesis test being uniformly most powerful (UMP) unbiased asymptotically.
Note that there are other possible, perhaps even more straightforward, approaches to measure accuracy
and define the optimality of CIs. These include the expected CI length, and the variance of the variance
estimator (Alexopoulos et al. 2011). However, as we will see, our approach allows a systematic and clean
analysis on batching CI comparisons by connecting to Neyman-Pearson-type arguments, and the leveraging
of the extensive literature on UMP tests. Moreover, we will also see that the optimal CIs in the sense we
define do exhibit the same expected length asymptotically under mild regularity conditions.

With these, we present several fundamental results in a roughly increasing level of sophistication. First,
given a fixed computation budget and among any methods using equal-sized batches, standard batching
gives an asymptotically uniformly most accurate unbiased CI. This ensures the reasonableness in using
standard batching. Next, we consider more general schemes where batch sizes can vary and overlap with
each other, and we derive the optimal way to combine the batch estimates among these schemes. In
particular, we connect our derived optimal overlapping batching CIs to illustrate how these can coincide
or differ from suggestions in the existing literature. Regarding the expected CI length, we show that the
asymptotically most accurate unbiased CIs in all these comparisons are given by asymptotically equivalent
t-based intervals. Lastly, we note that in the analysis of this paper, we assume i.i.d. samples for technical
convenience. However, this assumption is not essential and can be properly extended to the dependent case
using the approach outlined in Section 5.

We briefly review the literature on the analysis of batching methods. Schmeiser (1982) shows that
when the number of data is sufficiently large, the expected length of standard batching would decrease as
the number of batches increases, but the rate of decrease would become much slower when the number of
batches is large. Song and Schmeiser (1995), Flegal and Jones (2010) derive batch sizes that minimize the
mean squared errors of batching variance estimators for steady state estimation problems. Meketon and
Schmeiser (1984) shows that for steady-state mean estimation, the variance estimator using the overlapping
batching scheme they propose has a smaller variance than non-overlapping batching. Compared to these
works, we are different in two aspects: 1) We consider a fixed computation budget, while these papers
do not focus on the computational cost and allow different computation costs for each method. 2) Our
criterion for comparing CIs is based on the power of hypothesis tests, and is arguably more directly related
to CI accuracies than other criteria such as the variance of variance estimators.

The rest of this paper is organized as follows. Section 2 shows the optimality of standard batching
among all equal-batch-size methods. Section 3 derives the optimal batching method when the batch sizes
are unequal and compares it with standard batching. Section 4 derives the optimal batching method when
the batches can overlap and introduces several concrete examples. Section 5 discusses the generalizations of
our results to dependent data situations. Section 6 extends the analysis of our paper to the cheap bootstrap,
a recently proposed computationally light bootstrap method that relates to batching. Section 7 concludes
the paper. Some useful results in statistics and math details are presented in the appendix.

2 OPTIMALITY AMONG BATCHING WITH EQUAL BATCH SIZES

Suppose that we are interested in estimating ψ(P) given samples X1, . . . ,Xn i.i.d. drawn from P. We
consider the case where ψ(·) is a functional that is hard to compute, so the major computational cost is to
evaluate ψ(·) at different distributions. We set the simulation budget as K, which means that we can only
evaluate ψ(·) for at most K times. We assume that ψ(·) is smooth in the sense that the following central
limit theorem (CLT) holds.
Assumption 1 √

n
(
ψ(P̂n)−ψ(P)

)
⇒ N(0,σ2)
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where P̂n is the empirical distribution of X1, . . . ,Xn and σ is unknown.
To begin with, we consider the case where the batches are divided into equal length (for sim-

plicity, assume that n is a multiple of K). Correspondingly, we have independent batch estimates
ψ j := ψ(P̂( j)

n/K), j = 1,2, . . . ,K where P̂( j)
n/K is the empirical distribution for the samples in the j-th batch

(i.e., X( j−1)n/K+1, . . . ,X jn/K).
By the standard batching we mean the following CI:

CIB := ψ̄ ± tK−1;1−α/2S/
√

K

where ψ̄ = ∑
K
j=1 ψ j/K, tK−1;1−α/2 is the 1−α/2 quantile of the t distribution with K − 1 degrees of

freedom, and

S2 =
K

∑
j=1

(ψ j − ψ̄)2 /(K −1).

We want to understand, within the class of methods that construct CI by combining ψ1, . . . ,ψK , whether
the standard batching is optimal. To facilitate understanding, an example of an alternative candidate in this
class of methods is the CI with variance estimator set as

S2(α) =
K

∑
j=1

γ j (ψ j − ψ̄)2 .

where different batches can have different weights γ j in the variance estimator, and we could calibrate the
interval using an associated limiting distribution different from tK−1.

To answer the above, we first define optimality:
Definition 1 Given data Yn, a CI Cn(Yn) = (Ln(Yn),Un(Yn)) is asymptotically unbiased at level 1−α if

limn→∞P(ψ(P) ∈ Cn(Yn))≥ 1−α

and for any δ ̸= 0,
limsup

n→∞

P(ψ(P)+n−1/2
δ ∈ Cn(Yn))≤ 1−α.

Cn is asymptotically uniformly most accurate unbiased at level 1−α if it minimizes the probabilities

limsup
n→∞

P(ψ(P)+n−1/2
δ ∈ C ′

n(Yn))

among all asymptotically unbiased level 1−α tests C ′
n for any δ ̸= 0.

Definition 1 is an asymptotic version of the uniformly most accurate unbiased CI introduced in Lehmann
et al. (2005) page 165, which is the dual of UMP unbiased hypothesis tests (a review of this is provided in
Appendix A.1). Here, we use the alternative value ψ(P)+n−1/2δ instead of a fixed ψ1 ̸= ψ(P) because
for most CIs, P(ψ1 ∈ Cn(Yn))→ 0 as n → ∞.
Theorem 1 Suppose that Assumption 1 holds. When the batch estimates are given by Yn,B = (ψ1, . . . ,ψK)

T ,
CIB is asymptotically uniformly most accurate unbiased at level 1−α .

Sketch of Proof. With our CLT assumption, we have that
√

n/K(Yn,B −ψ(P)1K)⇒ N(0,σ2I) where
1K is a column K-dimensional vector whose entries are all 1. Therefore, asymptotically, the problem is
equivalent to constructing a CI for µ given Z1, . . . ,ZK ∼ N(µ,σ2) where µ and σ2 are both unknown.
Asymptotically, CIB can be written in terms of Z as Z̄±tK−1;1−α/2S/

√
K where S2 =∑

K
j=1(Z j− Z̄)2/(K−1).

The corresponding hypothesis test is the standard two-sided t-test, which rejects µ if
√

K |Z̄ −µ|
S

≥ tK−1;1−α/2.
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It is shown in Section 5.2 of Lehmann et al. (2005) that this standard t-test is UMP unbiased, which is
equivalent to saying that the CI is uniformly most accurate unbiased (as claimed on page 165 of Lehmann
et al. (2005), a CI constructed based on a UMP unbiased test is uniformly most accurate). Hence we have
shown the desired result.

3 OPTIMALITY AMONG BATCHING WITH GENERAL BATCH SIZES

To further our investigation, we consider potential alternative schemes where different batches can have
different sizes. More precisely, suppose that the j-th batch has γ jn samples (assume for simplicity that
γ jn, j = 1,2, . . . are integers) where γ1+γ2+ · · ·+γK = 1. Correspondingly, the batch estimates are given by
ψ

(γ)
j = ψ(P̂γ jn) where P̂γ jn is the empirical distribution of X(∑

j−1
i=1 γin)+1, . . . ,X∑

j
i=1 γin

The comparison between
this setting and the equal-size case cannot be covered by the notion of optimality specified in Definition
1 because the batch estimates are different. Therefore, to start with, we study the optimal CI using batch
estimates ψ

(γ)
1 , . . . ,ψ

(γ)
K when γ is fixed.

Theorem 2 Suppose that Assumption 1 holds. When the batch estimates are given by Y(γ)
n,B =

(ψ
(γ)
1 , . . . ,ψ

(γ)
K )T , an asymptotically uniformly most accurate unbiased CI at level 1−α is given by

CI(γ)B := ψ̄
(γ)± tK−1;1−α/2

√√√√ K

∑
j=1

γ j(ψ
(γ)
j − ψ̄(γ))2/

√
K −1

where ψ̄(γ) = ∑
K
j=1 γ jψ

(γ)
j .

Sketch of Proof. We have that
√

n(Y(γ)
n,B −ψ(P)1K) ⇒ N(0,σ2Diag{1/γ1, . . . ,1/γK}). Therefore, the

problem is asymptotically equivalent to constructing a CI for µ given Z j ∼ N(µ,σ2/γ j) and Z1, . . . ,ZK
are independent. The corresponding hypothesis test is to test for a given null hypothesis µ0 against the
two-sided alternative µ ̸= µ0. Without loss of generality, we suppose that µ0 = 0 (otherwise, we can subtract
µ0 in every Z j and reduce to the case where µ0 = 0).

The joint density of Z = {Z1, . . . ,ZK} can be written as

p(z,µ,σ ,γ) =C(σ2,γ)exp

{
−

K

∑
j=1

γ j

2σ2 (z j −µ)2

}

=C(σ2,γ)exp
{
− µ2

2σ2

}
exp

{
∑

K
j=1 γ jz jµ

σ2

}
exp

{
−

∑
K
j=1 γ jz2

j

2σ2

}

Note that, when µ0 = 0, the test is equivalent to the test with null hypothesis θ := µ

σ2 = 0 and we can
regard ϑ :=− 1

2σ2 as the nuisance parameter. Then, we have that U(Z) = ∑
K
j=1 γ jZ j and T (Z) = ∑

K
j=1 γ jZ2

j
in the notation of (5.1) of Lehmann et al. (2005).

Let

V :=
∑

K
j=1 γ jZ j√

∑
K
i=1 γi

(
Zi −∑

K
j=1 γ jZ j

)2
=

U(Z)√
T (Z)−U(Z)2

where we used the decomposition ∑
K
j=1 γ jZ2

j = ∑
K
i=1 γi

(
Zi −∑

K
j=1 γ jZ j

)2
+
(
∑

K
j=1 γ jZ j

)2 in the second equal-
ity. Note that under the null hypothesis, V and T are independent as a result of Corollary 5.1.1 of Lehmann
et al. (2005). Therefore, from Theorem 7 in Appendix A.2 and the fact that the distribution of V is
symmetric about 0, we have that the test which rejects the null hypothesis when |V | is larger than its 1−α

436



He and Lam

quantile under the null hypothesis (denoted by v1−α ) is UMP unbiased. When µ0 ̸= 0, the aforementioned

subtraction argument will give a test which rejects µ0 when

∣∣∣∣∣ ∑
K
j=1 γ jZ j−µ0√

∑
K
i=1 γi(Zi−∑

K
j=1 γ jZ j)

2

∣∣∣∣∣ > v1−α . This justifies

the form of the claimed CI (by replacing Z j with ψ
(γ)
j to go back to the finite-sample version).

It remains to show that v1−α = tK−1;1−α/2/
√

K −1. Indeed, we will show a stronger claim: the
distribution of

√
K −1V is exactly tK−1 when µ = 0. From the property of normal distribution, we know

that ∑
K
j=1 γ jZ j is independent of Zi −∑

K
j=1 γ jZ j (since their covariance is 0). It is not hard to see that the

numerator of V has distribution N(0,σ2), so it suffices to show that the denominator of V has distribution√
σ2χ2

K−1. Denote Z̃ j := √
γ jZ j/σ which has distribution N(0,1). Then the denominator of V can be

expressed as the square root of σ2
∑

K
i=1
(
Z̃i −

√
γi ∑

K
j=1

√
γ jZ̃ j

)2. We have the sum-of-squares decomposition
written in terms of Z̃ j, j = 1,2, . . . ,K:

K

∑
i=1

Z̃2
i =

K

∑
i=1

(
Z̃i −

√
γi

K

∑
j=1

√
γ jZ̃ j

)2

+

(
K

∑
j=1

√
γ jZ̃ j

)2

Therefore, by applying Cochran’s theorem (Theorem 8 in Appendix A.3), we have that
∑

K
i=1
(
Z̃i −

√
γi ∑

K
j=1

√
γ jZ̃ j

)2 ∼ χ2
K−1, which finishes the proof.

The idea arguing Theorem 2 is to reduce the problem to finding a uniformly most accurate CI for
the mean using Gaussian data with equal mean but unequal variances. From the duality between CI and
hypothesis testing, this is equivalent to finding a UMP unbiased hypothesis test, which can be done via
the test representation for exponential families in Theorem 7. Next, with the optimal interval we found
in Theorem 2, we can compare different choices of γ by considering the expected length of the optimal
intervals under these batch sizes.
Theorem 3 Suppose that the conditions in Theorem 2 hold. For any γ = (γ1, . . . ,γK) such that γi > 0 and
γ1 + · · ·+ γK = 1, we have that

lim
n→∞

expected length of CI(γ)B
expected length of CIB

= 1.

Sketch of Proof. From the CLT assumption, we have that

n
K

∑
j=1

γ j(ψ
(γ)
j − ψ̄

(γ))2 ⇒
K

∑
i=1

γi

(
Zi −

K

∑
j=1

γ jZ j

)2

(1)

where Z j ∼ N(0,σ2/γ j). From the proof sketch of Theorem 2, the RHS of (1) has distribution σ2χ2
K−1

(regardless of the choice of γ). Therefore, for any γ , the expected length is asymptotically equivalent to

n−1/2σtK−1;1−α/2E
√

χ2
K−1/(K −1). This gives the desired result.

Theorem 3 implies that regardless of the way to divide into batches, an asymptotically uniformly most
accurate unbiased CI has the same asymptotic length.

4 OPTIMALITY AMONG BATCHING WITH OVERLAPPING BATCHES

The initial overlapping batching proposed in Meketon and Schmeiser (1984) considers the case where the
distance between the starting indexes of adjacent batches is only 1. For the mean estimation example
studied in Meketon and Schmeiser (1984), one can use the trick of computing the next batch mean by
updating from the previous batch mean. However, when the output is a general functional, such a trick
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is not available. Therefore, for a general output functional, to study overlapping batching under a fixed
simulation budget, we consider the setting where we have K overlapping batches and correspondingly
K batch estimates ψ1,OB, . . . ,ψK,OB. Suppose that the j-th batch has batch size γ jn and for 1 ≤ i, j ≤ K,
batch i and batch j share βi jn samples. We assume that the batch estimates converge in distribution to a
multivariate normal distribution.
Assumption 2 Let Yn,OB := (ψ1,OB, . . . ,ψK,OB)

T .
√

n(Yn,OB−ψ(P)1K)⇒ N(0,σ2V ) where Vii = 1/γi and
Vi j =

βi j
γiγ j

for i ̸= j,1 ≤ i, j,≤ K. Moreover, V is invertible.

It can be checked that the CLT in Assumption 2 holds under regularity conditions. The assumption
that V is invertible guarantees that the asymptotic distribution of Yn,OB is not degenerate. Otherwise, some
coordinates of Yn,OB can be asymptotically represented as a linear combination of other components and
the problem can be reduced to another case with smaller K.
Theorem 4 Suppose that Assumption 2 holds. When the batch estimates are given by Yn,OB, an asymp-
totically uniformly most accurate unbiased CI is given by

CIOB :=
1T

KV−1Yn,OB

λ
±

tK−1;1−α/2√
K −1

√
1
λ

(
Yn,OB −

1⊤KV−1Yn,OB

λ
1K

)⊤

V−1

(
Yn,OB −

1⊤KV−1Yn,OB

λ
1K

)
where λ = 1⊤KV−11K .

Sketch of Proof. The proof follows a similar structure as the proof of Theorem 2 with more general
algebra. With Assumption 2, the problem can be reduced to the construction of CI for µ using data
Z ∼ N(µ1K ,σ

2V ) where µ and σ2 are unknown. We study the hypothesis test for H0 : µ = µ0 against
H1 : µ ̸= µ0 given these data and consider the case where µ0 = 0 first. The density function of Z can be
written as

p(z,µ,σ) =C(σ)exp
{
− 1

2σ2 (z−µ1K)
⊤V−1 (z−µ1K)

}
=C(σ)exp

{
−z⊤V−1z

2σ2

}
exp
{

µ1⊤KV−1z
2σ2

}
exp
{
− 1

2σ2

}
Therefore, similar to the proof of Theorem 2, letting θ := µ/σ2 and regarding ϑ :=− 1

2σ2 as the nuisance
parameter, we have that U(Z) = 1⊤KV−1Z and T (Z) = ZTV−1Z. Let

V :=
1⊤KV−1Z/λ√

1/λ

√(
Z − 1⊤KV−1Z

λ
1K

)⊤
V−1

(
Z − 1⊤KV−1Z

λ
1K

) =
U(Z)/λ√

1/λ
√

T (Z)−U(Z)2/λ

Again, it follows from Corollary 5.1.1 of Lehmann et al. (2005) that V and T are independent. As a result,
Theorem 7 in Appendix A.2 gives that the UMP unbiased test rejects the null hypothesis when |V | is larger
than its 1−α quantile under µ = 0 (denoted by v1−α,OB). For general µ0 ̸= 0, subtracting Z by µ01K gives
the rejection regionZ :

∣∣1⊤KV−1Z/λ −µ0
∣∣√

1/λ

√(
Z − 1⊤KV−1Z

λ
1K

)⊤
V−1

(
Z − 1⊤KV−1Z

λ
1K

) > v1−α,OB


which is the dual of CIOB after replacing YOB with Z. Next, we show that v1−α;OB = tK−1,1−α/2 by showing
that

√
K −1V has distribution tK−1 when µ = 0. Suppose in what follows µ = 0. The numerator of
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V has distribution N(0,σ2/λ ). Therefore, it suffices to show that
√

λ times the denominator of V has

distribution
√

χ2
K−1. Denote Z̃ = V−1/2Z/σ which has standard K-dimensional normal distribution. We

have the sum-of-squares decomposition

Z̃⊤Z̃ =

(
Z̃ − V−1/21K1⊤KV−1/2Z̃

λ

)⊤(
Z̃ − V−1/21K1⊤KV−1/2Z̃

λ

)
+
(

1⊤KV−1/2Z̃
)2

/λ (2)

Therefore, by Cochran’s theorem and Lemma 1, we have that the first term on the RHS in (2) has distribution

χ2
K−1. This is equivalent to the claim that

√
λ times the denominator of V has distribution

√
χ2

K−1. Hence,
the proof is concluded.

Similar to Theorem 3, from the proof of Theorem 4, we have the asymptotic comparison of the lengths
of CIOB and CIB.
Theorem 5 Under the same condtions as in Theorem 4, we have that

lim
n→∞

expected length of CIOB

expected length of CIB
=

√
1
λ

≥ 1.

The inequality holds as an equality if and only if there exists a vector u such that 1⊤u = 1 and u⊤Vu = 1.

Sketch of Proof. From Assumption 2, we have the asymptotic for the length:

√
n

1√
K −1

√
1
λ

(
Yn,OB −

1⊤KV−1Yn,OB

λ
1K

)⊤

V−1

(
Yn,OB −

1⊤KV−1Yn,OB

λ
1K

)

⇒
√

1/λ

√
1

K −1

(
Z − 1⊤KV−1Z

λ
1K

)⊤

V−1

(
Z − 1⊤KV−1Z

λ
1K

)
(3)

The proof sketch of Theorem 4 implies that the limit (3) has distribution

√
χ2

K−1
λ (K−1) . Therefore, comparing

with Theorem 3, we get the equality part of the claim.
To see the inequality, note that 1/λ is the optimal value of the optimization problem

minw⊤V w s.t. 1⊤K w = 1.

In other words, σ2/λ is the smallest possible variance among all possible affine combinations of Z. On
the other hand, by the construction of this problem, we know that for any affine combination of Yn,OB,
its asymptotic variance should be larger than or equal to the asymptotic variance of ψ(P̂n) (which is σ2).
Therefore, λ ≤ 1, which gives the inequality of the claim. The claimed condition for the inequality to be
held as equality is also clear from the above analysis.

Note that a sufficient condition for the inequality to be held as equality in Theorem 5 is that Yn,OB
contains ψ(P̂n) as one of its coordinate (in which case u in Theorem 5 can be set as ei where the i-th entry
of ei is 1, all other entries of ei are 0, and i is the coordinate of ψ(P̂n) in Yn,OB). The condition also holds
if ψ(P̂n) can be asymptotically written as an affine combination of the entries of Yn,OB (in which case u
can be chosen as the vector of the coefficients in this affine combination). Theorefore, Theorem 5 indicates
that the asymptotically uniformly most accurate unbiased CI has the same asymptotic length in the more
general setting with overlapping batches, provided that the aforementioned condition holds. We discuss a
few examples and make a comparision with the literature.
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Example 1 (batched jackknife) For batched jackknife, we have ψ1,SJ, . . . ,ψK,SJ where ψ j,SJ is given by the
estimate using leave-one-batch-out data {X1, . . . ,Xn}\{X( j−1)n/K+1, . . . ,X jn/K}. In this case, we have that

γ j = (K−1)/K and βi j = (K−2)/K. Therefore, V =
I+(K−2)1K1⊤K

K , V−1 = K
(

I − K−2
(K−1)2 1K1⊤K

)
, λ = K2

(K−1)2 .

Based on these, it can be checked that CIOB has point estimator 1T
KV−1Yn,OB

λ
=

1T
KYn,OB

K and variance estimator

1
λ

(
Yn,OB −

1⊤KV−1Yn,OB

λ
1K

)⊤

V−1
(

Yn,OB −
1⊤KV−1Yn,OB

λ
1K

)
=

1
K

((
1K1T

K − (K −1)I − 1
K

1K1⊤K

)
Yn,OB

)⊤(
1K1T

K − (K −1)I − 1
K

1K1⊤K

)
Yn,OB (4)

A proof of (4) is provided in Appendix B. Note that 1
K 1K1⊤K Yn,OB is the average of the batch estimates

and the i-th coordinate of
(
1K1⊤K − (K −1)I

)
YOB is given by ∑

K
j=1 ψ j,SJ − (K − 1)ψi,SJ . Therefore, the

asymptotically most accurate unbiased CI CIOB derived in our paper is equivalent to the construction in
Section III.5b of Asmussen and Glynn (2007).
Example 2 We consider the overlapping batching studied in Su et al. (2023). It considers a class of
overlapping schemes where each batch has equal sizes denoted by γn and adjacent batches have equal
distances, or more concretely, batch j starts from ( j−1)n−γn

K−1 +1 and ends at ( j−1)n−γn
K−1 + γn. As can be

checked, a batch could overlap with other batches when γ > 1/K. Let ψ j denote the batch estimate using
the empirical distribution of batch j and let ψK+1 := ψ̂ denote ψ(P̂n), which is the estimate using the entire
empirical distribution. Therefore, we have that γi = γ and βi j =

(
γ −|i− j| 1−γ

K−1

)
+

for 1 ≤ i, j ≤ K. Also

we have that γK+1 = 1 and βi,K+1 = γ . Therefore, an asymptotically uniformly most accurate unbiased
CI can be constructed using Theorem 4 (we do not provide the explicit expression for the CI here for
simplicity). However, we note that this will be different from the CI proposed in Su et al. (2023). Indeed,
the CI constructed in Theorem 4 is calibrated based on a pivotal statistic with an asymptotic tK distribution,
while the CI in Su et al. (2023) is calibrated based on a more general distribution (which they denote by
OB-I). This suggests that we can potentially obtain a better CI (in the notion of our Definition 1) using the
construction in Theorem 4. A further understanding of the improvement, e.g., comparisons in terms of the
length of the CI, is left for future work.

Finally, note that there are other variants of batching such as sectioning, which works similarly as
standard batching, but its point estimate is based on the entire empirical distribution (i.e., ψ(P̂n)) as the
point estimator). In the notion of this section, we have that Yn,OB =

(
ψ(P̂n),ψ(P̂(1)

n/K), . . . ,ψ(P̂(K)
n/K)

)
where

P̂( j)
n/K is the j-th batch estimate defined as in Section 2. However, the asymptotic distribution of Yn,OB would

be degenerate since
√

n
(

ψ(P̂n)− (ψ(P̂(1)
n/K)+ · · ·+ψ(P̂(K)

n/K))/K
)
→ 0, a.s.

under regularity conditions. In other words, replacing ψ(P̂n) with the average of the batch estimates (which
gives the standard batching) would lead to the same CI asymptotically as n → ∞. Therefore, the difference
between sectioning and standard batching lies only in the finite-sample case, or in the higher-order terms
of the asymptotic.

5 EXTENSIONS TO DEPENDENT DATA

While we have assumed i.i.d. samples in our setup described at the beginning of Section 2, our theoretical
developments discussed in Sections 2–4 can be generalized to the dependent data case by properly replacing
(if needed) and verifying the required CLT assumptions in the latter case. To explain, first we can check
that Theorem 4 holds as long as the joint CLT in the form specified in Assumption 2 holds for the batch
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estimates. To generalize Theorems 1–3, we can relax Assumption 1 to a multivariate CLT assumption where
asymptotic independence holds among different batch estimates. More precisely, from the proof sketches,
we see that Theorem 1 holds when

√
n/K(Yn,B −ψ(P)1K)⇒ N(0,σ2I) for some σ2, and that Theorems

2–3 hold when
√

n(Y(γ)
n,B −ψ(P)1K) ⇒ N(0,σ2Diag{1/γ1, . . . ,1/γK}), and these CLTs can serve as the

assumptions for these theorems. Second, we can establish the validity of these CLTs in the dependent case
by leveraging existing results in the literature. For example, it is shown in Glynn and Iglehart (1990) that
when {X1,X2, . . .} is stationary satisfying standard mixing conditions, we have that

√
n/K(Yn,B−ψ(P)1K)

converges to a K-dimensional normal distribution whose components are i.i.d.. More generally, when ψ(·)
is a functional of dependent data, a CLT for the joint distribution of the batch estimates is also available,
which essentially requires that a normalized and interpolated version of Zt := ψ(X1, . . . ,Xt) converges in
distribution to a Brownian motion (Su et al. 2023).

6 EXTENSIONS TO GENERAL t-DISTRIBUTION-BASED CONFIDENCE INTERVALS

The analysis in our paper can be generalized to settings even beyond batching, although in this case the
extension to dependent data might become less straightforward. An example is the cheap bootstrap recently
proposed in Lam (2022b) and further developed in Lam and Liu (2023) and Lam (2022a). The CI is
constructed as CICB := ψ(P̂n)± tK,1−α/2S where P̂n is the empirical distribution and

S2 =
1
K

K

∑
b=1

(ψ(P∗b
n )−ψ(P̂n))

2.

Here P∗b
n ,b = 1,2, . . . ,K is the empirical distribution of {X∗b

1 , . . . ,X∗b
n } that are sampled independently and

uniformly with replacement from {X1, . . . ,Xn}.
Under regularity conditions, it is shown in Proposition 1 of Lam (2022b) that the following joint CLT

holds: (√
n(ψ(P̂n)−ψ(P)),

√
n(ψ(P∗1

n )−ψ(P̂n)), . . . ,
√

n(ψ(P∗K
n )−ψ(P̂n))

)⊤ ⇒ N(0,σ2I).

This implies that(√
n(ψ(P̂n)−ψ(P)),

√
n(ψ(P∗1

n )−ψ(P)), . . . ,
√

n(ψ(P∗K
n )−ψ(P))

)⊤ ⇒ N(0,σ2V ).

where V00 = 1,V0i = 1,Vii = 2,Vi j = 1 for 1 ≤ i ̸= j ≤ K and it can be calculated that

V−1 =


K +1 −1 −1 . . . −1
−1 1 0 . . . 0
−1 0 1 . . . 0
. . . . . . . . . . . . . . .
−1 0 0 . . . 1


From this, it can be calculated that the CIOB estimator derived in Theorem 4 corresponding to this V and

Yn,OB = (ψ(P̂n),ψ(P∗1
n ), . . . ,ψ(P∗K

n ))

has point estimator 1T
KV−1Yn,OB

λ
= ψ(P̂n) and variance estimator

1
λ

(
Yn,OB −

1⊤K+1V−1Yn,OB

λ
11

)⊤

V−1

(
Yn,OB −

1⊤K+1V−1Yn,OB

λ
1K+1

)

=
K

∑
j=1

(ψ(P∗ j
n )−ψ(P))2
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which is the same as CICB. Therefore, with the same proof as Theorem 4 (note that it applies as long as
there is a joint CLT for Yn,OB), we have that CICB is asymptotically uniformly most accurate unbiased
given data ψ(P̂n),ψ(P∗1

n ), . . .(P∗b
n ).

7 CONCLUSION AND DISCUSSION

In this paper, we studied optimal batching methods given fixed computation budgets using our notion of an
asymptotically uniformly most accurate unbiased CI that connects to the powers of dual hypothesis tests.
We showed that the standard batching is optimal among the class of equal-sized batches. We also derived
the corresponding optimal CIs among general-sized and overlapping batching schemes. In particular, we
showed how our derived optimal overlapping batching CIs coincide but also differ from some existing
suggestions. Moreover, we showed that these optimal CIs have asymptotically equivalent expected lengths.
We discussed how our results apply to general dependent data situations. Finally, we discussed extensions
of our study to show the optimality of the cheap bootstrap.

In addition, we provide numerical experiments on the CIs studied in this paper in He and Lam (2023).
We tested the empirical coverage and half length for standard batching, batching with general batch
sizes, overlapping batching, cheap bootstrap, and OB-I as proposed in Su et al. (2023), under the same
computational budget on a quantile estimation problem. The experimental results show that the empirical
half lengths of batching, batching with general batch sizes, and cheap bootstrap are quite close, which
appear consistent with Theorem 3 as well as our deduction in the end of Section 6. They also reveal
that the construction in Theorem 4 gives shorter CI compared to OB-I. Nonetheless, further and more
complete analyses and numerical experiments are needed to justify our claims more generally and in the
dependent data case. We view our study as the starting point in building a general analyzable framework
to systematically understand the performance comparisons and optimality of inference schemes under
computation budget constraints.

A REVIEW OF SOME USEFUL RESULTS

We review some results in statistics used in our paper.

A.1 Duality Between Uniformly Most Accurate Unbiased CI and UMP Unbiased Hypothesis Test

We consider two-sided CI C (X) = (L(X),U(X)) for some quantity θ given data X (whose distribution
depends on θ and nuisance parameters ϑ but otherwise general). Its dual is hypothesis testing for H0 : θ = θ0
against the alternative H1 : θ ̸= θ0 with the rejection region given by {x : θ0 /∈ C (x)}.

C (X) is called unbiased at confidence level 1−γ if Pθ0,ϑ (θ0 ∈ C (X))≥ 1−γ and Pθ0,ϑ (θ
′ ∈ C (X))≤

1−γ for any θ ′ ̸= θ0 and all ϑ . C (X) is called uniformly most accurate unbiased at confidence level 1−γ

if it minimizes Pθ0,ϑ (θ
′ ∈ C ′(X)) for all θ ′ ̸= θ0 and all ϑ ,θ0 among unbiased CIs at level 1− γ .

A hypothesis test with rejection region R is called unbiased with size γ if Pθ0(X ∈ R) ≤ γ and
Pθ (X ∈ R)≥ γ for any θ ̸= θ0. It is UMP unbiased if it maximizes Pθ (X ∈ R) for any θ ̸= θ0.

The relation between a uniformly most accurate unbiased CI and a UMP unbiased hypothesis test is
described by the following theorem.
Theorem 6 If Rθ0 is a family of UMP unbiased tests with size γ for testing H0 : θ = θ0 against H1 : θ ̸= θ0,
then C (X) := {θ : X ∈ Rθ} is a uniformly most accurate unbiased CI at level 1− γ .

A.2 Constructing UMP Unbiased Tests for Exponential Families

The following theorem is adapted from Theorem 5.1.1 of Lehmann et al. (2005).
Theorem 7 Consider testing H0 : θ = θ0 against H1 : θ ̸= θ0 using data X. Suppose that the distribution
of X is parameterized by θ and nuisance parameter ϑ with density given by

p(x,θ ,ϑ) =C(θ ,ϑ)exp{θU(x)+∑ϑiTi(x)}
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Suppose that there exists a continuous random variable V (X) = h(U(X),T (X)) that is independent of T (X)
when θ = θ0. Moreover, suppose that when θ = θ0, the distribution of V (X) is symmetric about 0 and
Pθ0(|V (X)| ≥ vγ) = 1− γ . Then, the test with rejection region {x : |V (x)|> vγ} is UMP unbiased provided
that h(u, t) = a(t)u+b(t) with a(t)> 0.

A.3 Cochran’s Theorem

Cochran’s theorem provides a way to conclude that a quadratic form of multivariate standard normal follows
a chi-squared distribution using a sum-of-squares decomposition.
Theorem 8 (Cochran’s theorem) Suppose that U1, . . . ,UK are i.i.d. standard normals and denote U =
(U1, . . . ,UK). Suppose that we have the sum-of-squares decomposition

U⊤U =
m

∑
i=1

U⊤BiU

where Bi is a square matrix with rank ri. Then U⊤BiU follows a chi-square distribution with ri degrees of
freedom.

B MATH DETAILS

B.1 A Lemma on Linear Algebra

Lemma 1 Let V and λ be defined as in Theorem 4. The rank of matrix I − V−1/21K1⊤KV−1/2

λ
is K −1.

Proof. From the property that rank(A)+rank(B)≥ rank(A+B), we have that rank
(

I − V−1/21K1⊤KV−1/2

λ

)
≥

rank(I)− rank(V−1/21K1⊤KV−1/2

λ
) = K −1.

On the other hand, since
(

I − V−1/21K1⊤KV−1/2

λ

)
1K = 0, we have that rank

(
I − V−1/21K1⊤KV−1/2

λ

)
≥ rank(I)≤

K −1. Combining this with the lower bound, we get the desired result.

B.2 Derivation of (4)

1
λ

(
Yn,OB −

1⊤KV−1Yn,OB

λ
1K

)⊤

V−1
(

Yn,OB −
1⊤KV−1Yn,OB

λ
1K

)
=
(K −1)2

K

(
Yn,OB −

1K1⊤K Yn,OB

K

)⊤(
I − K −2

K −1
1K1⊤K

)(
Yn,OB −

1K1⊤K Yn,OB

K

)
=
(K −1)2

K
Y⊤

n,OB

(
I − 1

K
1K1⊤K

)(
I − K −2

K −1
1K1⊤K

)(
I − 1

K
1K1⊤K

)
Yn,OB

=
(K −1)2

K

((
I − 1

K
1K1⊤K

)
Yn,OB

)⊤(
I − 1

K
1K1⊤K

)
Yn,OB

=
1
K

((
1K1T

K − (K −1)I − 1
K

1K1⊤K

)
Yn,OB

)⊤(
1K1T

K − (K −1)I − 1
K

1K1⊤K

)
Yn,OB

Here, in the second equality, we used the fact that
(
I − 1

K 1K1⊤K
)

1K = 0.
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