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ABSTRACT

Importance sampling (IS) is a classical variance reduction technique. Under mild conditions, an IS estimator
is unbiased, so one often seeks the variance-minimizing optimal sampling distribution. IS has remarkable
success in many applications, such as engineering, operations research, and finance. In some applications,
such as enterprise risk management and input uncertainty quantification, complex simulation designs, such
as nested simulation, arise naturally. The outer-level simulation generates a set of risk factors, i.e., the
scenarios, which are used as inputs for inner-level simulations. Nested simulation leads to wasteful use
of computations, as inner simulation outputs in each scenario are isolated from other scenarios. In this
study, we propose, analyze, and test a generalized importance sampling technique for nested simulation.
Our generalized IS approach reuses one set of inner simulation outputs across different outer scenarios.
Numerical experiments show that our proposal is orders of magnitude more efficient than the standard
procedure.

1 INTRODUCTION

In this paper, we develop a generalization of the classical variance reduction technique, importance
sampling (IS). As an application of this generalization, we propose an efficient nested simulation procedure
for estimating risk measures of the form:

ρ = ρ (µ(θ)) , µ(θ) = E [g(X)|θ ] , (1)

where θ is a random variable that characterizes the conditional distribution of X |θ . We refer to θ and X |θ
as the outer scenarios and inner random variables given scenario θ , respectively. Additionally, g(x) is a
given function representing a simulation logic that transforms a sample x to a simulation output. Finally,
ρ is a functional that maps the random variable µ(θ) to a real value. Note that µ(θ) is a random variable
because θ is random. Problems with the above structure are known as nested estimation (Hong et al. 2017),
which is common in financial and operations research applications such as enterprise risk management (Lee
1998; Gordy and Juneja 2010) and input uncertainty quantification (Cheng and Holland 1997; Barton 2012;
Zhu et al. 2020).

Designing computationally efficient nested simulation procedures has attracted much research attention
in the last two decades. Lee (1998), Lee and Glynn (2003), Gordy and Juneja (2010) analyzed how
to minimize the mean square error (MSE) of the nested risk estimator by strategic budget allocation
in standard nested simulation; the resulting MSE vanishes at an optimal rate of O(Γ−2/3), where Γ is
the total simulation budget in a standard nested simulation procedure. Broadie et al. (2011) proposed a
sequential nested simulation algorithm whose MSE converges at the rate O(Γ−4/5+ε) for any ε > 0. Broadie
et al. (2015) proposed a regression-based approach with MSE converges at O(Γ−1+δ ) for any δ > 0 to
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a non-zero bias level. Hong et al. (2017) proposed a kernel smoothing approach with MSE converges at
O(Γ−min{1,4/(d+2)}). Recently, Zhang et al. (2022) proposed a sample recycling nested simulation procedure
where all scenarios reuse the same set of inner replications. Specifically, the proposal therein is that the
user should simulate one set of sample paths from a common sampling distribution, then reuse the same
sample paths via the likelihood ratio method when estimating the conditional expectations of all scenarios.
The likelihood ratio method is well-known in the literature, see Beckman and McKay (1987), L’Ecuyer
(1990), and Rubinstein and Shapiro (1993), for example. Recently it is used for repeated simulation
experiments and termed green simulation by Feng and Staum (2015) and Feng and Staum (2017). Under
some assumptions, they show that the resulting nested risk measure’s MSE converges at O(Γ−1), which is
an impressively fast convergence rate matching that of a non-nested Monte Carlo simulation. While Zhang
et al. (2022) showed that sample recycling via the likelihood ratio method is a promising approach for
designing efficient nested simulation procedures, they did not specifically address how to select a good
sampling distribution. We propose one solution to fill this gap in this paper.

Importance sampling (IS) is a classical variance reduction method, see Chapter 9 in Owen (2013)
and Chapter 4.6 in Glasserman (2013), for example. In a Monte Carlo simulation experiment where one
ought to generate random samples from a target distribution (also known as the nominal distribution), IS
attempts to reduce variance by identifying an alternate sampling distribution (also known as the proposal
distribution) from which random samples are generated. Under mild conditions, such as absolute continuity
of the target distribution with respect to the sampling distribution, the IS estimator is unbiased. An optimal
sampling distribution is identified by minimizing the variance of the IS estimator.

In this paper, we generalize the classical IS to identify an optimal sampling distribution, whose random
samples are reused in different scenarios in a nested simulation procedure. In contrast to classical IS, which
has one target distribution, a nested estimation problem has many target distributions, e.g., one for each
outer scenario. We propose to identify a common sampling distribution for all the scenarios by minimizing
the average variance of m given scenarios (or the integrated MSE for given outer scenario distribution).
The optimal sampling distribution is derived in closed-form, but it has limited practical use. We further
propose a weighted mixture approximation method based on non-negative least squares (NNLS) regression.
Our numerical experiments show that the proposed procedure is more efficient and more accurate than the
standard nested simulation procedure.

The rest of this paper is organized as follows. Section 2 reviews the nested simulation problem and
classical importance sampling. In Section 3 we derive the generalized importance sampling and its application
in a sample-recycling nested simulation procedure. Section 4 shows two practical implementations to generate
random samples from the optimal sampling distribution or from its approximation. We perform numerical
experiments and summarize the results and findings in Section 5. Section 6 concludes.

2 PROBLEM SETTINGS

2.1 Standard Nested Simulation

In this section we elaborate on the nested estimation problem (1) and the standard nested simulation
procedure. For notational convenience, we define π(θ) as the outer scenario’s distribution with support Θ.
For any scenario θ ∈ Θ, we denote the conditional distribution of X |θ by p(x|θ) with corresponding support
Xθ . We are interested in estimating

ρπ = ρ (µ(θ)) = ρ (E [g(X)|θ ]) , (2)

where θ ∼ π(θ). Given a scenario θ , we define the conditional expectation µ(θ) = E [g(X)|θ ] =∫
X g(x)p(x|θ)dx for that scenario. The support X is defined in Assumption 1, which we assume holds

in this study for ease of exposure.
Assumption 1 The supports Θ and Xθ and the conditional distribution p(x|θ) satisfy the following.
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(i) For any θ ∈ Θ, p(x|θ) is a well-defined probability density function (pdf).
(ii) For all θ ∈ Θ, p(x|θ) has a common support X , i.e., Xθ = X ,∀θ ∈ Θ.

(iii) For any θ ∈ Θ, the user can calculate p(x|θ) for all x ∈ X and can generate samples from p(x|θ).

All three assumptions are necessary for the likelihood ratio method to be applicable in our problem
setting. Admittedly, Assumption (iii), particularly its first half, is arguably strong thus limits the applicability
of the proposed method. Nonetheless, in some applications, such as dynamic asset models in finance and
queueing models in manufacturing, the input distributions of the simulation models are known to users.
We focus of such applications in this paper and will explore possible relaxations in future research.

As a motivating example, consider a portfolio of complex financial derivatives whose values are affected
by underlying risk factors such as stock prices, bond prices, interest rates, exchange rates, etc. Let T
represent the portfolio’s maturity, which is the longest maturity among its constituent assets. A portfolio
manager may want to measure the risk associated with changes in the portfolio’s value due to market
fluctuations, i.e., the portfolio’s profit and loss, between time 0 (now) and a future time τ > 0 called the
risk horizon (e.g., 3 months from now). Such a risk measurement problem is naturally formulated as a
nested estimation problem. At the outer level, m independent and identically distributed (i.i.d.) scenarios
θ1, . . . ,θm are simulated to represent the plausible evolution of the underlying risk factors from now to the risk
horizon τ . These scenarios are simulated under the real-world probability measure, and their uncertainties
propagate to the corresponding portfolio values. Under some assumptions, such as a complete market, the
portfolio values in each scenario can be calculated as the (conditional) expected discounted payoff under
the risk-neutral probability measure, i.e., E [g(X)|θi] , i = 1, . . . ,m. In this setting, θ represents the evolution
of the underlying risk factor from the risk horizon τ to the portfolio maturity T , and g(X) is the portfolio’s
discounted payoff given the risk factors. When the portfolio payoff is complex, this conditional expectation
cannot be calculated analytically, so an inner-level simulation is required to estimate it. Specifically, for
each scenario θi, n i.i.d. inner replications Xi1, . . . ,Xin ∼ p(x|θi) are simulated to estimate E [g(X)|θ = θi]
by some estimator µ̂i, i = 1, . . . ,m. Finally, the risk measure ρ , such as variance, Value-at-Risk (VaR), and
Conditional VaR (CVaR), etc., can be estimated based on the empirical distribution of µ̂1, µ̂2, . . . , µ̂m.

Standard nested simulation is a natural approach for solving the nested estimation problem. Specifically,
one first simulates m i.i.d. outer scenarios θ1, . . . ,θm ∼ π(θ). For each scenario θi, i = 1, . . . ,m, µi = µ(θi)
is estimated by the standard MC estimator based on n i.i.d. inner replications. That is,

µ̂i = µ̂(θi) =
1
n

n

∑
j=1

g(Xi j), Xi j
i.i.d.∼ p(x|θi), ∀ j = 1, . . . ,n.

The risk measure ρ in (2) can then be estimated based on the empirical distribution of µ̂1, . . . , µ̂m. For
example, the unconditional expectation E[µ(θ)] and variance Var[µ(θ)] can be estimated by the sample
average and sample variance, respectively. Also, one can sort the i.i.d. sample to obtained the order statistics
µ̂(1) ≤ µ̂(2) ≤ ·· · ≤ µ̂(m). For a give confidence level 0 < α < 100%, say α = 95%, and suppose αm is an
integer for simplicity. Then the α-VaR of µ(θ) can be estimated by the sample quantile ρ̂ = µ̂(αm) and
the α-CVaR can be estimated by the tail average ρ̂ = 1

(1−α)m ∑
m
i=αm+1 µ̂(i).

A major criticism of the standard nested simulation procedure is the high computational cost. Clearly,
a standard nested simulation experiment requires a simulation budget of Γ = n×m inner replications. That
is, there are a total of Γ inner replications, n times in each of the m outer scenarios, and the inner simulation
model g(x) is evaluated Γ times. To estimate ρ accurately, both m and n need to be sufficiently large: A large
m captures the outer scenarios’ stochasticity, which is crucial for representing the variability in µ(θ). Also,
a large n is needed for every outer scenario for an accurate estimate µ̂i of µi. Practical applications may
require complex stochastic models for outer scenarios θ and inner replications X |θ as well as complicated
inner simulation model g(x). In risk management applications, for instance, compromising accuracy to
reduce the computational burden is not an acceptable solution due to the severe financial consequences.
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As a result, the standard nested simulation procedure can be unbearably slow. In Section 3, we propose a
more efficient nested simulation procedure that recycles and reuses simulation outputs.

2.2 Classical Importance Sampling

In this section we review the classical importance sampling. Specifically, we provide a constructive review
to show how the optimal sampling distribution is derived using calculus of variation.

Consider a stochastic simulation experiment that aims to estimate µ = Ep [g(X)] =
∫
X g(x)p(x)dx for

some simulation model g(x) and target pdf p(x). The standard MC estimator for µ is µ̂ = 1
n ∑

n
j=1 g(X j)

where X j ∼ p(x), ∀ j = 1, . . . ,n. Let q(x) be any other pdf that satisfies q(x)> 0 whenever g(x)p(x) ̸= 0.
Note that this condition is trivially satisfied if p(x) and q(x) have the same support. Then, it is clear that

µ =
∫

X
g(x)p(x)dx =

∫
X

g(x)
p(x)
q(x)

q(x)dx = Eq

[
g(X)

p(X)

q(X)

]
. (3)

Equation (3) suggests that one can estimate µ via the importance sampling (IS) estimator

µ̃ =
1
n

n

∑
j=1

g(X̃ j) ·
p(X̃ j)

q(X̃ j)
, X̃ j

i.i.d.∼ q(x), ∀ j = 1, . . . ,n. (4)

As one draws random samples from q(x) to estimate an expectation with respect to p(x), we call p(x) and
q(x) the target distribution and the sampling distribution, respectively. It is well-known that µ̃ is unbiased
and its variance is Varq[µ̃] =

1
n σ̃2

q where

σ̃
2
q = Varq

[
g(X)

p(X)

q(X)

]
= Eq

[(
g(X)

p(X)

q(X)

)2
]
−µ

2. (5)

The classical IS identifies the variance-minimizing sampling distribution, i.e., q∗(x), such that the resulting
IS estimator variance, i.e., σ̃2

q∗ in (5), is minimized. Note that, because the IS estimator is unbiased, a
variance-minimizing sampling density is also MSE-minimizing.

One way to identify q∗(x) is by calculus of variation for optimizing functionals. A complete and
formal development of calculus of variation and functional derivatives is beyond the scope of this study,
interested readers are referred to Gelfand and Fomin (2000). Relevant definitions and optimality conditions
are summarized in Lemma 1.
Lemma 1 Let q(x) be a real-valued function and let L(y,z) be a differentiable function. Consider the
following optimization problem

min
q(x)

J[q] =
∫

X
L(x,q(x))dx (6a)

subject to
∫

X
q(x)dx = 1. (6b)

A necessary condition for q∗(x) to be a minimizer for (6) is that there exists λ ∈ R such that

∂L(y,z)
∂ z

∣∣∣∣
(y,z)=(x,q∗(x))

+λ = 0. (7)

A sufficient condition for q∗(x) to be a minimizer for (6) is that ∂ 2L(y,z)
∂ z2

∣∣∣
(y,z)=(x,q∗(x))

≥ 0, ∀x ∈ X .

We note that (7) is the well-known Euler-Lagrange equation for constrained functional optimization
problems. One can use Lemma 1 to construct an optimal sampling distribution q∗(x) that minimizes the
IS estimator variance σ̃2

q in (5), as summarized in Lemma 2.
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Lemma 2 An optimal sampling distribution q∗(x) that minimizes the variance and the MSE of the
IS estimator (4) is q∗(x) = λ ∗|g(x)|p(x), where λ ∗ = (

∫
X |g(x)|p(x)dx)−1. The minimized variance is

σ̃2
q∗ = (Ep[|g(X)|])2 − µ2. Moreover, the variance reduction of q∗(x) compared to any other sampling

distribution q(x) is σ̃2
q − σ̃2

q∗ = Varq

[
|g(X)| p(X)

q(X)

]
≥ 0.

Notably, when g(x) ≥ 0 or g(x) ≤ 0 for all x ∈ X , the optimal IS estimator has zero variance. But
this is difficult to achieve because calculating the normalizing constant λ ∗ is as difficult as calculating µ .
Despite this difficulty, importance sampling remains a popular and useful variance reduction technique.

The optimal sampling distribution q∗(x)∝ |g(x)|p(x) is a well-known conclusion in importance sampling.
We nonetheless present Lemmas 1 and 2 for the constructive mathematical derivation of q∗(x). In Section 3,
we generalize the classical IS to cases with many target distributions and derive analogous results to Lemma 2.

3 GENERALIZED IMPORTANCE SAMPLING FOR NESTED SIMULATION

In this section we generalize classical IS multiple target distributions then use it to develop an efficient
nested simulation procedure.

Before proceeding to further discussions, we distinguish our research focus from those of Feng and
Staum (2015) and Zhang et al. (2022) despite methodological similarities, i.e., sample reuse via the
likelihood ratio method. Green simulation (Feng and Staum 2015) aims to recycle and reuse simulation
outputs in repeated simulations. The reused simulation outputs were generated in the past so the user does
not choose the sampling distribution. Zhang et al. (2022) analyzed sample recycling in nested simulation
and showed that, under some assumptions, the resulting risk estimator’s MSE has fast convergence rate.
They stated that “in practical applications usually there is a natural choice of sampling distribution” but
did not consider how to find a good sampling distribution in general. In contrast, this study specifically
considers the construction of provably optimal sampling distribution in the context of nested simulation.

For ease of exposure, we consider a setting where m outer scenarios, θ1, . . . ,θm had been simulated
and we need to estimate the corresponding conditional expectations µi = µ(θi) = E[g(X)|θi], i = 1, . . . ,m.
Recall that standard nested simulation only uses a small fraction, e.g., 1

m , of the total simulation budget to
estimate each conditional expectation µ(θi) as it ignores simulation outputs from other scenarios θ j ̸= θi.
We believe one can significantly improve the estimation efficiency and accuracy by recycling and reusing
all the inner simulation outputs to estimate every conditional expectation µ(θi).

Specifically, we propose to generate one set of random samples from a common sampling distribution, say
X̃ j ∼ q(x), ∀ j = 1, . . . ,Γ then estimate every scenario’s conditional expectation µ(θi) by the corresponding
IS estimator

µ̃i =
1
Γ

Γ

∑
j=1

g(X̃ j) ·
p(X̃ j|θi)

q(X̃ j)
, ∀i = 1, . . . ,m. (8)

To reiterate, the innovation in (8) is that, for different outer scenarios θi, i = 1, . . . ,m, we propose to use
reuse one set of random samples generated form a common sampling distribution q(x) to estimate µi by
the corresponding IS estimator µ̃i. We refer to the above sample recycling nested simulation procedure as
the generalized importance sampling (GIS) and refer to µ̃i’s as the GIS estimators.

The remaining question is then: How to identify a good sampling distribution q(x)? In classical IS,
one assesses the goodness of a sampling distribution by the variance or the mean squared error (MSE)
of the IS estimator. Inspired by classical IS, with m target distributions, we aim to minimize the average
MSE (AMES) (or equivalently the average variances) of the m GIS estimators µ̃1, . . . , µ̃m. Based on (5),

the MSE for µ̃i is given by MSE [µ̃i] =
1
n σ̃2

i,q where σ̃2
i,q = Eq

[(
g(X) p(X |θi)

q(X)

)2
]
− µ2

i . Therefore, if one

generates Γ inner replications from a sampling distribution q, the AMSE of the m GIS estimators is given

413



Chen and Feng

by

AMSEq =
1
m

m

∑
i=1

σ̃2
i,q

Γ
=

1
mΓ

m

∑
i=1

∫
X

g2(x)p2(x|θi)

q(x)
dx− 1

mΓ

m

∑
i=1

µ
2
i . (9)

We note that 1
mΓ

∑
m
i=1 µ2

i does not depend on the sampling distribution q(x). So we can minimize the

AMSE by minimizing 1
mΓ

∑
m
i=1
∫
X

g2(x)p2(x|θi)
q(x) dx = 1

mΓ

∫
X

g2(x)[∑m
i=1 p2(x|θi)]
q(x) dx. Specifically, we formalize an

optimization problem as follows:

min
q(x)

J[q] =
∫

X
L(x,q(x))dx =

∫
X

g2(x)
[
∑

m
i=1 p2(x|θi)

]
q(x)

dx (10a)

subject to
∫

X
q(x)dx = 1. (10b)

Note that, for problem (10), ∂L(y,z)
∂ z

∣∣∣
(y,z)=(x,q∗(x))

=−g2(x)∑
m
i=1 p2(x|θi)

(q∗(x))2 . So, by Lemma 1, the optimal sampling

distribution q∗(x) for (10) must satisfy −g2(x)∑
m
i=1 p2(x|θi)

(q∗(x))2 +λ = 0 ⇒ q∗(x) ∝ |g(x)|
√

∑
m
i=1 p2(x|θi) for some

λ = λ ∗. Respecting the constraint
∫
X q(x)dx = 1, we find that the normalizing constant is given by

λ ∗ =
(∫

X |g(x)|
√

∑
m
i=1 p2(x|θi)dx

)−1
. Checking the sufficient optimality condition, i.e., the second partial

∂ 2L(x,q∗(x))
∂ z2 =

2g2(x)∑
m
i=1 p2(x|θi)

(q∗(x))3 ≥ 0 for all x ∈X so q∗(x) is indeed an optimal sampling distribution for (10).
Proposition 1 summarizes the optimal sampling distribution q∗(x), the minimized AMSE, and the

reduction in AMSE compared to other GIS estimators. Note that, in addition to Assumption 1, some
technical assumptions are needed so that the normalizing constant λ ∗ is well-defined. For ease of reference,
we refer to the GIS estimators that use the optimal sampling distribution q∗(x) the OIS estimators.
Proposition 1 Consider given scenarios θ1, . . . ,θm. Suppose Assumption 1 holds, 0 < E[|g(X)||θk] for
some k = 1, . . . ,m, and E[|g(X)||θi]< ∞ for all i = 1, . . . ,m. Then the optimal sampling distribution q∗(x)
that minimizes the AMSE in (9) is

q∗(x) = λ
∗ · |g(x)|

√
m

∑
i=1

p2(x|θi), (11)

where λ ∗ =
(∫

X |g(x)|
√

∑
m
i=1 p2(x|θi)dx

)−1
. The minimized AMSE is

AMSEOIS =
1

mΓ

(∫
X

|g(x)|

√
m

∑
i=1

p2(x|θi)dx

)2

−
m

∑
i=1

µ
2
i

 .
Compared to any other sampling distribution q(x), the optimal q∗(x) reduces the AMSE by

AMSEOIS = AMSEq −
1
Γ
Varq

 |g(x)|
√

1
m ∑

m
i=1 p2(x|θi)

q(x)

 . (12)

We first observe that Proposition 1 is indeed a generalization of Lemma 2, as the former coincides with
the latter when m = 1. Secondly, the variance reduction (12) compares all possible sampling distributions
applied in a sample recycling nested simulation procedure to the OIS estimators. This includes the so-called
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mixture likelihood ratio (MLR) estimators (Feng and Staum 2017), which is also known as the balance
heuristic (Veach 1997). In this article’s terminology, the MLR estimators are GIS estimators whose proposal
distribution is the mixture distribution p̄(x) given by

p̄(x) =
1
m

m

∑
i=1

p(x|θi). (13)

The MLR estimators have been numerically demonstrated to good performances in different applications
such as financial risk management and Monte Carlo rendering. Proposition 1, specifically (12), shows that
the OIS estimator’s AMSE is no greater than that of the MLR estimator’s. We note that both OIS and
MLR use a simulation budget of Γ replications from the respective sampling distributions.

Next, we compare the OIS estimators to the MC estimators used in standard nested simulation. One
can show that the AMSE for the standard nested simulation estimators is

AMSEST D =
1
m

m

∑
i=1

E[g2(X)|θi]−µ2
i

n
=

1
n

∫
X

g2(x)p̄(x)dx− 1
mn

m

∑
i=1

µ
2
i .

Proposition 2 Consider any given scenarios θ1, . . . ,θm ∈ θ . If the conditions in Proposition 1 hold then

AMSEOIS ≤ AMSEST D +
1
n

(
(m−1)(E p̄[|g(x)|])2 −Varp̄ [|g(x)|]

)
. (14)

In this comparison, the simulation budgets for AMSEOIS and AMSEST D are ΓOIS = n and ΓST D = mn,
respectively. Despite significant difference in simulation budgets, the difference between the two AMSEs
are small. Specifically, in (14), the terms inside the brackets can be negative thus it is not a guaranteed
variance reduction. Nonetheless, for any fixed m (however large m is), the difference between AMSEOIS
and AMSEST D converges to 0 as n → ∞ even though the former’s simulation budget is only 1/m of the
latter’s. This showcases the high simulation efficiency of OIS estimators.

4 PRACTICAL IMPLEMENTATION: NON-NEGATIVE LEAST SQUARE (NNLS) HEURISTIC

Like classical IS, GIS is not practical because it is difficult to generate samples from q∗(x). For instance, if one
wishes to use the inverse-cdf method to generate random samples, one needs to integrate q∗(x), which can be

difficult due to its dependence on the simulation model g(x). Though we know q∗(x)∝ |g(x)|
√

1
m ∑

m
i=1 p(x|θi)

from (11), calculating the normalizing constant λ ∗ = (
∫
X |g(x)|

√
1
m ∑

m
i=1 p(x|θi)dx)−1 is more difficult than

calculating µi =
∫
X g(x) 1

m ∑
m
i=1 p(x|θi)dx directly.

In this section, we propose a practical implementation to generate random samples from a weighted
mixture distribution that is similar to q∗(x); similarity will be defined later.

Consider a mixture distribution of the form

qβββ (x) =
m

∑
i=1

βi p(x|θi), where βi ≥ 0 and
m

∑
i=1

βi = 1. (15)

We propose to use qβββ (x), for some mixture weights βββ , to approximate the shape of q∗(x), i.e., to approximate

a function that is proportional to q∗(x). For ease of reference, we define q∗γ(x) = γ|g(x)|
√

1
m ∑

m
i=1 p2(x|θi)

where proportionality constant γ > 0 is a free variable that we will optimize over. Approximating only the
shape of q∗(x) allows some degrees of variance reduction while circumventing the unknown normalizing
constant λ ∗. We choose the mixture weights βββ that minimizes the average expected squared distance
between qβββ (x) and q∗γ(x), which is given by

1
m

m

∑
i=1

E[∥qβββ (X)−q∗γ(X)∥2
2|θi] =

1
m

m

∑
i=1

∫
X
(qβββ (x)−q∗γ(x))

2 p(x|θi)dx = E p̄[∥qβββ (X)−q∗γ(X)∥2
2], (16)
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where p̄(x) is as defined in (13). We can then choose the mixture weights βββ by solving a sample
estimate of (16), i.e., (βββ ∗,γ∗) = argminβββ

∗≥0,γ∗

{
∑

Γ1
j=1

(
qβββ (X j)−q∗γ(X j)

)2
∣∣∣∑m

i=1 βi = 1
}

where X j ∼ p̄(x)
for j = 1, . . . ,Γ1. Recognizing that γ ∈ R, we can reformulate the problem as a NNLS regression:

min
β̃ββ≥0

 Γ1

∑
j=1

(
m

∑
i=1

β̃i p(X j|θi)−|g(X j)|

√
1
m

m

∑
i=1

p2(X j|θi)

)2
 . (17)

For any optimal weight β̃ββ
∗

for (17) that satisfies ∑
m
i=1 β̃ ∗

i > 0, one can show that
(

βββ
∗ = β̃ ∗

∑
m
i=1 β̃ ∗

i
,γ∗ = 1

∑
m
i=1 β̃ ∗

i

)
is optimal for the original problem. Summarizing the above discussions, Algorithm 1 presents a two-stage
GIS nested simulation procedure. Note that the split of the simulation budget, i.e., Γ1 and Γ2, is the user’s
choice. In our numerical experiments, we find that increasing Γ1 in Stage 1 can significantly increase the
fitting time but has little improvement in Stage 2’s estimation quality. So, we recommend allocating only
a small fraction of the budget, e.g., 1% to Stage 1 and majority of the budget to Stage 2.

Algorithm 1: GIS nested simulation procedure using NNLS heuristic
Input: Given scenarios θ1, . . . ,θm. Total simulation budget Γ. Stage 1 simulation budget Γ1.

Stage 2 simulation budget Γ2 = Γ−Γ1.
Output: GIS estimators µ̃1, . . . , µ̃m for µ1, . . . ,µm.

1 Stage I: Fit a mixture distribution via NNLS.
2 Simulate X j ∼ p̄(x), j = 1, . . . ,Γ1;

3 Solve (17) via NNLS for β̃ββ then normalize the weight βββ
∗ = β̃ββ

∗

∑
m
i=1 β̃ ∗

i
.

4 Stage II: Construct GIS estimators with Γ2 samples from qβββ
∗(x).

5 Simulate X̃ j
i.i.d.∼ qβββ

∗(x) then calculate and store simulation outputs g(X̃ j) for j = 1, . . . ,Γ2;

6 Calculate and store conditional pdfs p
(

X̃ j|θi

)
for all j = 1, . . . ,Γ2 and i = 1, . . . ,m;

7 Retrieve the stored values to estimate the conditional expectation µi by

µ̃i =
1

Γ2

Γ2

∑
j=1

g(X̃ j)
p
(

X̃ j|θi

)
qβββ

∗(X̃ j)
, for i = 1, . . . .m.

Lastly, when sampling from p̄(x) and qβββ
∗(x), we propose using stratified sampling to further reduce

variance. That is, we generate Γ1/m replications from each component distribution in Stage I and βiΓ2
replications from the ith component distribution, i = 1, . . . ,m, in Stage II, provided that these values are
integers. As demonstrated by Hesterberg (1988), Feng and Staum (2017), using stratified sampling when
sampling from mixture distributions improves estimation accuracy and numerical stability.

5 NUMERICAL EXPERIMENTS

To illustrate the effectiveness of the proposed GIS procedure, we consider a reverse iron butterfly option
portfolio and estimate its expected profits and losses (P&Ls) in 6-month using nested simulation. We
compare and contrast three nested simulation procedures:the standard nested simulation procedure (STD),
GIS procedure with mixture sampling distribution (MLR), and GIS procedure with NNLS implementation
of the optimally weighted mixture distribution (OIS).

We consider a reverse iron butterfly option portfolio that consists of 4 vanilla European options written
on the same underlying stock and have the same expiry: 1 short call with strike $125, 1 long call with
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strike $145, 1 long put with strike $145, and 1 short put with strike $165. We assume that these options
mature in T = 1 year and we are interested in estimating risk measures of this option portfolio’s P&L in
6 months, i.e., τ = 0.5. Denote the time-T stock price by ST , the option portfolio’s time-T payoff is

P(ST ) =−(ST −125)++(ST −145)++(145−ST )
+− (165−ST )

+.

We model the underlying stock’s price by the Geometric Brownian Motion. We assume that the asset
has an initial price S0 = $100. Also, for any two times t2 > t1 ≥ 0, St2 |St1 is log-normally distributed, i.e.,

St2 = St1 exp
((

µ − σ2

2

)
(t2 − t1)+σ

√
t2 − t1Z

)
, Z ∼ N (0,1),

where the annualized volatility σ = 30% and the annualized expected return µ = 10% under the real-world
measure P and equals to the risk-free rate r = 5% under the risk-neutral measure Q. For these modeling
parameters, the initial price of the reverse iron butterfly portfolio is P0 = EQ[e−rT P(ST )|S0] = $17.32.
For a given time-τ stock price Sτ , the portfolio P&L at time-τ is µ(Sτ) = e−r(T−τ)EQ[P(ST )|Sτ ]−P0 =

EQ[g(ST )|Sτ ], where g(ST ) = e−r(T−τ)P(ST )−P0. At time 0, µ(Sτ) is a random variable because Sτ is
random. Under our settings, for any scenario Sτ we can calculate µ(Sτ) analytically using Black-Scholes
option pricing formulas. Nonetheless, we run inner simulations to estimate µ(Sτ) in order to examine the
performances of the different nested simulation procedures.

Figure 1 depicts the problem setting for this example: Figure 1a plots the simulation model g(ST ) as
a function of the terminal stock price ST . By design, the small value of g(ST ) is at ST = 145. The top
solid line in Figure 1b shows the conditional expectation µ(Sτ) as a function of the scenario Sτ , which
has a similar shape as g(ST ) but smoother. The bottom bell-shaped shaded area shows the outer scenario’s
distribution π(Sτ). We see that the dip of µ(Sτ) and the hump of π(Sτ) are off phase. This design helps
us compare the MLR estimators and OIS estimators, as discussed later.
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(a) Simulation logic g(ST ) for option portfolio example.
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Figure 1: Problem settings for reverse iron butterfly option portfolio example.

To estimate a risk measure ρ(µ(Sτ)) via nested simulation, one first simulates m outer scenarios,

Sτ,1, . . . ,Sτ,m
i.i.d.∼ π(sτ), where π(sτ) is the pdf of Sτ |S0 under the P-measure. The next step is to estimate

the conditional expectations µ(Sτ,i) for i = 1, . . . ,m. Specifically, for each scenario Sτ,i:

1. The standard nested simulation (STD) simulates n inner samples, ST,1, . . . ,ST,n
i.i.d.∼ p(sT |Sτ,i), where

p(sT |Sτ,i) is the conditional density of ST |Sτ,i under the Q-measure then estimates µ(Sτ,i) by the
standard MC estimators µ̂i = µ̂(Sτ,i) =

1
n ∑

n
j=1 g(ST, j). The total simulation budget is Γ = mn.
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2. The GIS procedure simulates Γ inner samples, S̃T,1, . . . , S̃T,Γ
i.i.d.∼ q(sT ) then estimates µ(Sτ,i) by the

GIS estimators µ̃i = µ̃(Sτ,i) =
1
Γ

∑
Γ
j=1 g(S̃T, j)

p(S̃T, j|Sτ,i)

q(S̃T, j)
. For MLR estimators, q(sT ) is the mixture

pdf p̄(sT ) as defined in (13). For OIS estimators, q(sT ) is the weighted mixture distribution qβββ
∗(sT )

as defined in (15). The simulation budget Γ is chosen by the user.

To compare the different nested simulation procedures and for ease of visualization, we consider
m = 1,000 outer scenarios, which are the

( k
m+1

)
-th quantile of the outer distribution, k = 1, . . . ,m. For

each scenario Sτ,i, we estimate µ(Sτ,i) with different estimators 200 times, i.e., 200 macro replications.
We use the 2.5%- and 97.5%-tiles of the 200 estimates of µ(Sτ,i) as its 95% confidence interval (CI).
Connecting the 95% CIs of 1,000 outer scenarios, we plot the 95% confidence bands for the µ(Sτ). Two
95% confidence bands for the STD estimators are shown in Figure 1b around the solid line. Two different
colors are used to denote experiments with different simulation budgets. As expected, the confidence band
is narrower as the simulation budget increases. We also see that the inner simulation variance is large for
scenarios near the dip (e.g., around Sτ = 145) of the true value function µ(Sτ).
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(a) 95% confidence bands for OIS and STD estimators.
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(b) 95% confidence bands for OIS and MLR estimators.

Figure 2: 95% confidence bands for different estimators. Please note the different simulation budgets.

Figure 2 compares the 95% confidence bands of the OIS estimator to those of the STD and the MLR
estimators. We first note that the simulation budget for the OIS and the MLR estimators is 103 while
STD estimator’s simulation budget is 106. To ensure fair comparison, i.e., the OIS estimator indeed uses
the simulation budget as stated, when implementing Algorithm 1, 100 inner samples were used in Stage I
and 900 inner samples were used in Stage II. We see in Figure 2a that, even when the simulation budget
is 1,000 times smaller, the OIS estimator’s confidence band is comparable to the STD estimator’s. This
finding is consistent with Proposition 2. Figure 2b shows that, with the same simulation budget, the OIS
estimator’s confidence band is narrower than the MLR estimator’s, particularly in the region where the
inner simulation has high variance (e.g., around ST = 145). This finding is consistent with Proposition 1.
Comparing Figure 2a and Figure 2b, we see that both OIS and MLR estimators’ confidence bands have
similar widths with that of the STD estimator’s, even though the latter’s simulation budget is 1,000 times
larger. The key message in Figure 2 is two-fold: (1) Reusing simulation outputs, such the OIS and MLR
estimators, is a promising nested simulation design principle. (2) A well-chosen sampling distribution, like
qβββ

∗(·), can further improve the performance of a GIS procedure.
Table 1 summarizes the same experiments in Figures 1 and 2 and provides a quantitative comparison,

i.e., comparing the average MSEs (AMSEs) among the OIS, MLR, and STD estimators. Recall that we
ran 200 macro-replications to estimate µ(Sτ,i) for the same scenarios Sτ,i, i = 1, . . . ,m = 1,000. Thus we
could estimate the MSEs and AMSEs of the corresponding estimators of µ(Sτ,i). We see from the boxed
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Table 1: Comparison of Average MSEs (AMSEs) of different nested estimators for µ(Sτ,i), i = 1, . . . ,m.

Estimators for µ(Sτ,i) OIS MLR STD different simulation budgets

Simulation budget Γ = 103
Γ = 103

Γ = 103
Γ = 104 Γ = 105 Γ = 106

AMSE reduction 1 2.03 1,114 110 11.06 1.10
AMSE 0.0167 0.0339 18.59 1.84 0.18 0.018

numbers in Table 1 that, when using the same simulation budget, the OIS estimator’s AMSE is about half
of the MLR estimator’s and over 1,000 times smaller than the STD estimator’s. This orders of magnitudes
improvement is the result of (1) recycling and reusing simulation outputs, (2) using a sampling distribution
that approximates the optimal one, and (3) stratified sampling.

Lastly, we examine different sampling densities in Figure 3 to better understand the OIS estimators. We
first see that the true optimal sampling distribution q∗(ST ) has a peak around ST = 145, which corresponds
to the dip in the simulation logic g(ST ) and is a region where the inner simulation variance is high. In
the language of importance sampling, this is an important region. The NNLS weighted mixture qβ ∗(ST )
approximates the shape of q∗(ST ) and has a mode in that region. In contrast, the equal mixture p̄(ST )
as defined in (13) does not depend on the simulation logic g(ST ) and its mode is located near the model
of π(Sτ). Therefore, its inner simulation variance is high in the “important region”. Combining this
observation with the AMSE reduction in Table 1, we see that it is an advantageous feature for the optimal
sampling distribution q∗(ST ) to be dependent on g(ST ).
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Equal mixture p(ST)
NNLS weighted mixture qβ ∗ (ST)

Figure 3: Plots of different sampling density functions for a GIS procedure.

6 CONCLUDING REMARKS

In this study, we generalize the classical importance sampling technique to identify an optimal sampling
distribution for many different target distributions in a nested simulation procedure. Also, the random
samples generated from this optimal sampling distribution are reused in different scenarios to improve
efficiency. The optimal sampling distribution is derived in closed-form, but it has limited practical use.
We further propose approximating the optimal sampling distribution via a weighted mixture distribution
based on non-negative least squares regression (NNLS). Our numerical experiments show that the proposed
method achieves a smaller average MSE than that of the standard nested simulation by using only 0.1%
of the latter’s simulation budget. The proposed method also achieves smaller average MSE compared to
one of the best known likelihood-ratio-based sample reusing techniques in the literature.

As shown by our numerical experiments, the proposed GIS procedure is highly efficient compared
to the standard nested simulation procedure. But there are drawbacks. For example, though we use the
simulation budgets to represent computations of different simulation procedures, implementing NNLS and
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calculating the likelihood ratios involved add computations to the GIS procedure too. Therefore the GIS
procedure has limited applicability for problems with simple simulation logic. Also, further developments
are needed to identify an optimal sampling distribution for stochastic scenarios rather than given scenarios.
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