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ABSTRACT

This paper studies the efficient estimation of expectations defined on convex rare-event sets using importance
sampling. Classical importance sampling methods often neglect the geometry of the target set, resulting in
a significant number of samples falling outside the target set. This can lead to an increase in the relative
error of the estimator as the target event becomes rarer. To address this issue, we develop a conditional
importance sampling scheme that achieves bounded relative error by changing the sampling distribution
to ensure that a majority of samples lie inside the target set. The proposed method is easy to implement
and significantly outperforms the existing approaches in various numerical experiments.

1 INTRODUCTION

In this paper, we consider the problem of estimating expectations over rare-event sets. This problem arises
in, for example, finance (Glasserman et al. 2000; Glasserman and Li 2005; Chen and Glasserman 2008;
Bassamboo et al. 2008), insurance (Asmussen and Albrecher 2010; Bauer et al. 2012), queueing system
(Dupuis et al. 2007; Blanchet and Lam 2014; Ma and Whitt 2018), communication network (Haraszti and
Townsend 1999; Lokshina and Bartolacci 2012), and machine learning (O’Kelly et al. 2018; Bai et al.
2022). In these contexts, several studies improve the tractability and efficiency of simulation algorithms by
focusing on particular geometric forms of a target event set; for example, a union of halfspaces (Ahn and
Kim 2018; Owen et al. 2019), a hypercube (Botev et al. 2017; Botev 2017), and a union of polyhedra (Bai
et al. 2022; Ahn, D., and L. Zheng. 2023). Nevertheless, few studies consider general convex rare-event
sets constructed by nonlinear constraints, which we will explore in this paper.

The primary motivation for this problem stems from distributionally robust rare-event simulation.
According to Blanchet and Murthy (2019), the distributionally robust bound of the probability of a convex
rare event can be represented as the probability of another convex rare event. In this case, given an
uncertainty set of distributions, rare-event simulation of expectations over convex sets turns out to be useful
not only to identify the new target set but also to estimate the distributionally robust bound; see Section
5 for more details. Furthermore, our problem has potential applications in pricing deep-out-of-the-money
options and evaluating the reliability of transportation networks. It may also be relevant in cases where
the structural information of the rare-event set is not available, but the decision maker believes that it is
convex (Huang et al. 2018).

When estimating expectations evaluated on rare events, the crude Monte Carlo method produces
significantly large simulation errors since it seldom generates samples belonging to the target set. To tackle
this issue, we often resort to a well-known variance reduction technique, called importance sampling, which
changes the sampling distribution to increase the likelihood of hitting the target set and assigns weights to
the generated samples via a likelihood ratio to retain unbiasedness. Finding suitable sampling distributions
is a challenging task that has been typically addressed by using the theory of large deviations (Siegmund
1976; Glynn and Iglehart 1989; Heidelberger 1995; Juneja and Shahabuddin 2006). However, despite being
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provably effective in many settings, this traditional approach usually neglects salient geometric structures
of the target set. As a result, the relative errors of the corresponding estimators could grow indefinitely as
the target set becomes rarer.

In this paper, we propose to identify prominent geometric information of the target set and integrate
them into the sampling distribution. Ahn and Zheng. (2023) use this idea to estimate expectations defined on
“polyhedral” rare-event sets and develop a conditional importance sampling method with bounded relative
error based on sharp asymptotics. However, it is unclear how and under what conditions this method can
be adapted to the setting with “general convex” rare-event sets in a way that the associated relative error
remains bounded. In this regard, the main contribution of this paper lies in providing an easy-to-implement
adaptation and proving that the bounded relative error property is preserved under mild conditions on the
structure of the target set.

Our approach is related to Dupuis and Wang (2004), Glasserman and Li (2005), and Bucklew (2005)
in terms of combining importance sampling and conditional Monte Carlo. However, those methods are
designed only for specific problem setups such as the evaluation of portfolio credit risk and the computation
of tail probabilities associated with random walks. Further, they do not guarantee bounded relative error.
In contrast, our method is developed for fairly general objectives and achieves bounded relative error.

The remainder of the paper is organized as follows. Section 2 describes the main problem. In Section 3,
we formally review the conditional importance sampling method designed for polyhedral target sets. The
modified algorithm for general convex target sets and its theoretical performance guarantee are discussed
in Section 4. Section 5 addresses the issue of distributional uncertainty in estimating the probability over
convex rare-event sets. In Section 6, we numerically validate the effectiveness of the algorithm. Section 7
concludes the paper.

2 PROBLEM FORMULATION

For each i=1,...,m, let f; : R” — R be a convex differentiable function that is assumed to be known.
Define & = {x € R"|fi(x) <0,i=1,...,m}. We assume that & is full-dimensional and that a random
vector X = (X1,...,X,)" follows the n-dimensional standard normal distribution. We focus on the case

where 0 ¢ & so that the event {X € &} is typically rare. Our main objective is to efficiently estimate the
quantity
E[n(X)1s(X)], (D

where /1 : R" — R is a positive measurable function and for any v € R? and &/ C R?, 1 (v) yields 1
if ve o/ and 0 otherwise. When h = 1, this problem reduces to estimating the probability P(X € &).
Although the standard normality assumption is seemingly restrictive, it can be easily relaxed to a general
normal distribution with a nonzero mean vector and a positive definite covariance matrix since the convexity
of & is preserved under affine transformations. Furthermore, the analysis in this paper can be extended to
normal mixture models, which greatly broadens the applicability of the current setting.

Consider the optimization problem minycs ||x||?, and denote by x* and 1); its optimal solution and the
Karush—-Kuhn-Tucker (KKT) multipliers associated with the constraints f;(x) <0, i=1,...,m (Rockafellar
1970, Section 28), respectively. We impose the following conditions throughout the paper.

(A1) Foreachi=1,...,m, f; has continuous second order derivatives on a neighborhood of x*.

(A2)  There exists k € {1,...,m} such that 1; > 0 if and only if i <k.

(A3)  (x*,Vfi(x*),...,Vfi(x¥)) is an upper triangular matrix with all zero rows at the bottom.
Condition (A1) ensures the constraint functions fi, ..., f;, are sufficiently smooth near the point x*. Condition

(A2) can be satisfied by rearranging the constraints. The last condition can be satisfied through a suitable
rotation of the coordinates and a rearrangement of the variables, which does not affect (1) because the
standard normal distribution is invariant under such transformations.
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To analyze the setting with rare events, let &1 = {x| f;(x) <0,i=1,...,m} be an arbitrary convex set
satisfying conditions (A1) to (A3) with x* = e, where €| is the unit vector in the direction of the x;-axis,
and define & = {x € R"|f;(r"'x) <0,i=1,...,m} for all r > 0. Note that &, also satisfies conditions
(A1) to (A3) with x* = re;. Moreover, E[A(X)1 (X)] — 0 as r — oo as long as E[i(X)] < c. In evaluating
the efficiency of an estimator for E[2(X)1 (X)], we use the following notion in the rare event simulation
literature (Bucklew 2004).

Definition 1 Let Z(&,;h) be an unbiased estimator for E[a(X)1 (X)]. We say that Z(&);h) has bounded
relative error as r — oo if limsup,_,.. Var(Z(&,;h))'/? JE[h(X) 1 (X)] < oo.

An estimator with bounded relative error is said to be strongly efficient in the sense that regardless of

the rarity of the target event, only a fixed number of samples is required to maintain a specified accuracy

level. However, it is widely known that in many problems, finding a strongly efficient estimator is extremely
difficult (Asmussen and Glynn 2007).

3 CONDITIONAL IMPORTANCE SAMPLING FOR POLYHEDRAL TARGET SETS

This section briefly reviews the conditional importance sampling (CIS) method in Ahn and Zheng. (2023)
that is designed for the case when & is a polyhedron, i.e., & = {x|a/x > b;,i=1,...,m} for a; € R"
and b; e R, i =1,...,m. In the next section, we will extend this method to the case with general convex
rare-event sets.

Basically, the CIS method in Ahn and Zheng. (2023) increases the likelihood of hitting the rare-event set
& ={x]| al-Tx > rb;} by combining conditional Monte Carlo and importance sampling. To be more specific,
firstly, the method generates a sample x; of X; by sampling a standard exponential random sample y and
transforming it into x; = r+y/r. This is based on the fact that {X € &,} C {X; > r} and the observation
that r(X; —r) conditioned on {X; > r} converges in distribution to a standard exponential random variable
when r — co.

Next, to obtain a near-optimal sampling distribution of (X, ...,X,) conditioned on Xj, the authors show
that the set &,(X1) == {(x2,...,x,) |X € &, x1 = X1}, i.e., the cross section of &, at x; = X, gets closer to

{2, x0) | (%25 x5) € AXL — 1), (Xgq1,- .- ,Xn) € D} as r — oo, where s = rank(ay, ..., ay),

s
a,-71y+ Z ai jXj > 0, Vi: a,-TX* = bi, Aisyl = " =djp= 0} s (2)
=2

Aly) = {(xz, CeeyXyg)

and Z is some convex polyhedron in R"~* independent of X;. They further verify that A(y) is a convex bounded
polyhedron with nonempty interior for y > 0 and satisfies A(0) = {0}, which implies that x3 +--- +x2 2~ 0
whenever (xz,...,x;) € A(X; —r) as r — co. Based on this result, in their method, the random vector
(X2,...,X;) is sampled from the uniform distribution over A(X; —x}) conditioned on Xj, which is easy
to simulate in many cases, while the random vector (Xy;1,...,X,) is sampled from the standard normal
distribution.

Accordingly, the unbiased estimator for E[2(X)14(X)] based on the above method is written as

Z(&:h) == (X)L (X)L(X), 3)
where X is generated as described above and the associated likelihood ratio function L(x) is given by

L(x)= M@"T(M*xf)f(xﬁ»..ﬂg)/z
(2n)?/2x‘f

Note that vol(A(y)) means the Lebesgue measure of A(y). Below we restate Theorem 4 of Ahn and Zheng.
(2023), which establishes the strong efficiency of Z(&’;h) under a mild condition on A.
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Algorithm 1 Conditional Importance Sampling

1: Find x* = argminy, » ||x||%, its KKT multipliers {n;}"",, and an integer k satisfying condition (A2)
2: Seta; = —Vfi(x*), b; = fi(x*) — Vfi(x*) 'x*, and s = rank(ay, ..., a;)

3: Sample Y =y from the standard exponential distribution and set x| = x] +y/x}

4: Set Ly = (2m) /2 (x}) e /2 it —x) and L, = 1

5. if s > 2 then

6: Sample (Xa,...,X;) = (x2,...,x,) from the uniform distribution over A(x; —x}) defined in (2)
7: Set L = (27) =6~ 1D/2vol (A(x; — xt)) exp(— (23 + - +x2)/2)

8: end if

9: if s < n then
10: Sample (Xg41,...,Xn) = (X541, . .,X,) from the standard normal distribution
11: end if

12: return h(x)1 g (X)L L,.

Theorem 1 Suppose that f;(x) = b; — al-Tx for some a; € R” and b; € R satisfying conditions (A1) to (A3)
for each i, and that there exist C > 0 and k > 0 satisfying i(x)/h(y) < Cexp(x|/x —y||) for all x,y € R".
Let s = rank(ay,...,a;). Then, there exist two constants Cj,C; € (0,0) such that

timinfh(re) ™' r'e”2E[A(X) 1, (X)] = C) and limsuph(re) "¢ E[Z(£:h)%] < Ca.

r—so0
Consequently, Z(&,; h) has bounded relative error as r — oo.

It is worth noting that the condition on / in Theorem 1 is satisfied by all polynomial functions and many
log-concave functions including /(x) = exp(8 'x) for some 6 € R”, which appear in various applications.

4 CONDITIONAL IMPORTANCE SAMPLING FOR CONVEX EVENT SETS

We now turn to the general setting with & = {x| f;(x) <0,i=1,...,m} where f; is a possibly nonlinear
function for each i. Somewhat surprisingly, a simple adaptation of the CIS discussed in the last section is
sufficient to maintain its strong efficiency for general convex rare-event sets, which significantly improves
the applicability of the method.

Specifically, using the first-order approximation of f;(-) at x*, we construct the polyhedral set & :=
{x|a/x>b;,i=1,...,m} with a; = —Vf;(x*) and b; = f;(x*) — Vfi(x*) "x*. Due to the convexity of &,
& C & and & is a close approximation of & particularly near x* where most masses are concentrated.
Thanks to these properties, most samples belonging to & would be included in &. Based on this intuition,
we propose to sample X using the CIS method in Section 3, considering & as the target set. Note that &
satisfies conditions (A1) to (A3). Finally, our estimator becomes

Z(&;h) = Z(2;h)1e(X),

where Z(-;h) is defined in (3). This is clearly an unbiased estimator since & C &?. The full simulation
procedure is summarized in Algorithm 1.

Our estimator Z(&;;h) for E[h(X)1 4 (X)] induces asymptotically negligible efficiency loss as r — oo,
which is formalized in Theorem 2.

Theorem 2 Suppose that fi,..., f,; are convex functions satisfying conditions (A1) to (A3) and that h
satisfies the condition in Theorem 1. Then, Z(&,;h) achieves bounded relative error as r — oo.

Proof of Theorem 2. Define &, := {rx|x € Z}. We have &, C &, due to the convexity of &,. Therefore,
using Theorem 1, there exists a positive constant C, such that the second moment of the estimator Z(&,;h)

satisfies
limsuph(re;) 2" E[Z(&:h)?] < limsuph(re;) 2r¢” E[Z(P,;h)?] < Ca. o))

r—so0 r—yo0
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Since the function  satisfies h(y) > C~'h(x) exp(—k]||x —y||) for all points x,y € R", we have

E[n(X)1g (X)] > h(re;)C'E[e  IXrell 4 (X)]. (5)
For each r > 0, we use a change of variables: y; = r(x; —r), yi =x;/(x; —r) fori=2,...,s,and y; = x; for
j > s, and observe that
E[e Xl (X)] = (27) /%™ / Yl 0 OF /Pt (Ly3 e by?) P4 g e boa) V2
’ (©)

x e 103D/ 2= 0+ 2y

where 2, = {y| fi(1 +y1/r%,y1y2/7%, . ;319575 Ys01/F - - yn/7) < 0,i=1,...,m}. From condition (A1)
and the Taylor expansion of f; at X* = ey, the constraints of &, can be recast as

+0(r2)<0,Yi. (1)

oy Sy dfilx Ifi(xX) iy I fi(x*) vy
i)+ X dxj r = ox r2 Z axj 12 py dxjox; r?

Jj=s+1 r Jj'>s

Define I = {i| fi(x*) =0}, I, = {i € I|d fi(x*)/dx; =0,V j > s}, and I, =1\ I;. Denote by Z the set of
points y € R” satisfying the following inequalities:

afi(x*) dfi(x 9 fi(x* .
) <
ax1 +Z ox; ﬂr”f;sa X507y yjy, <0, Vieh, ®)
) ofilx’ )ngo,Vielz. 9)
j=s+1 dx;

If i/ ¢ I, fy(x*) <0, and hence, for each y € R", (7) is satisfied for all sufficiently large r. For all i € I},
since the first two terms of (7) are zeros, we have (8) by multiplying both sides of (7) by 7> and letting
r — oo, Similarly, for all i € I, we obtain (9) by multiplying both sides of (7) by r and letting  — co. These
observations indicate that limsup,_,., . C & (Rockafellar and Wets 2009, part (a) of Theorem 4.10). On
the other hand, for any interior point of Z, it lies in the interior of Z, for sufficiently large r according
to (7), which implies that liminf,_,. 2, O Z (Rockafellar and Wets 2009, part (b) of Theorem 4.10). In
conclusion, lim, . Z, = 2. By the dominated convergence theorem, the integral in (6) converges to C3 :=
S texp(—yi — 02 4+ +32) /2 — k(32 + -+ +y2)/?)dy as r — co. Thus, from (5) and (6), we find
the asymptotic lower bound of the first moment as follows:

lirginfh(rel)_1r"e’2/2E[h(X)]lgr(X)] > (2m)"2C71Cs. (10)

It remains to show that C; is positive and finite. With some abuse of notation, define

afi(x Zaf,

Aly) = {(xz,...,xs Bxl

'SO,Viell}, arn

and let Z be the set of points (yy+1,...,y,) satisfying (9) . By the Karush—-Kuhn—Tucker theorem (Bertsekas
1999), the two optimization problems minyc ¢ ||x||> and minye »» || x||? share the same optimal solution x* = e;
and the same Lagrangian multipliers. Hence, as noted in Section 3, A(y) is a bounded set with nonempty
interior for all y > 0. Further, it can be shown that & has an interior point using Farkas’ lemma (Rockafellar
1970, Theorem 22.2) and the facts that s = rank(V f1 (x*),..., Vfi(x*)) and & is the number of positive KKT
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multipliers of minyes, [|X[|%. Let (x5,...,x;) be an interior point of A(1) and (x,,,,...,x,) be an interior
point of 2. For all i € I, the convexity of f; implies that Zj7j1>s(82ﬁ(x*)/8xj8xj )x x , > 0. If we choose

dfi(x d fi(x*) 92 fi(x*
Z ox; XI] Z axﬁx] ’

x} =1+ max

i€l aX] ]]>S

then X’ is an interior point of 2. This implies that & has nonempty interior and, by definition, C3 > 0. Note
that 2 C {y|y; > 0} since &, C {y|y; > 0} for each r and lim, .. Z, = Z. Accordingly, from (8) and (11),
we observe that (y2,...,ys) € A(1) for any y € & satisfying y; > 0. Consequently, we have C3 < o due to
the boundedness of A(1). Combining (4) and (10), the proof is complete. ]

We conclude this section by pointing out that Algorithm 1 can be extended to handle the case where
the target set & is a union of convex sets &!,...,&P with a finite p. The idea is to sample X from the
mixture Y7, wigi(x), where g;(-) is the CIS density associated with the set &, and the weights satisfy
w; >0 and Y'¥  w; = 1. It can be easily shown that the resulting estimator is unbiased and has bounded
relative error. Moreover, additional variance reduction is possible by judiciously selecting w;. The reader
is referred to the appendix of Ahn and Zheng. (2023) for a more detailed discussion.

5 PROBABILITY OF RARE EVENTS UNDER DISTRIBUTIONAL UNCERTAINTY

In this section, we consider the problem of estimating the probability P(X € &) when the distribution of
X is subject to some degree of uncertainty and the event {X € &} is rare. This problem often arises in
risk analysis contexts where the distributional assumption cannot be fully justified due to the lack of data.
To capture the additional hazard inflicted by distributional uncertainty, a useful approach is to quantify the
effect of changes in probability laws (Glasserman and Xu 2014; Ghosh and Lam 2019). Among various
quantification tools, we particularly focus on the optimal transport framework of Blanchet and Murthy
(2019) to highlight the significance of our algorithm in this setting.

Distributionally robust rare-event probability. With some abuse of notation, let P(-) and Q(-) be the
baseline distribution and an alternative distribution of X, respectively, and denote by E the expectation under
the distribution P. Define the collection of plausible distributions of X as 7 (&) := {Q(+) : infzcy(q,p) Ex[||X —
Y||] < e}, where IT(Q, P) is the collection of couplings between Q(+) and P(-), and E; means the expectation
over the pair of random vectors (X,Y) following the joint distribution 7. The parameter € > 0 specifies
the maximum degree of uncertainty in the distribution of X. For fixed &, the goal is to estimate

sup QX e &), (12)
Q()e ()

which provides a sharp upper bound of our rare-event probability P(X € &) that is robust to distributional
uncertainty. Note that the optimal choice of € is problem-dependent and thus beyond the scope of this
paper. It is shown in Blanchet and Murthy (2019) that (12) is equal to the following probability under the
baseline distribution:

a(8) = P(X € N5(&)),

where 6 = inf{u > 0|A(u) > €},

A(u) = E |1y, (&) (X) -min|| X —y||
ye&

and N, (&) = {x|infycs ||x —y|| < u} for all u > 0. Since & is a rare event set, so is N,(&) for all
sufficiently small u by definition. Thus, if & is convex, both quantities A (#) and o/(8) are expectations over
convex rare-event sets that can be efficiently computed by our CIS method. This observation can be further
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generalized to the case with a union of convex sets since for & =J!_, & i with convex sets &',..., &7, we
have Ns(&) = J!_ N5(&') and each Ng(&) is convex.

Estimation of o/(5). As alluded to earlier, we can use our CIS method to estimate &¢(8) in two steps.
In Step 1, we estimate & by numerically calculating 5= inf{uﬂ(u) > g} with the CIS estimate I(u) of
A(u) for each u > 0. In Step 2, given 5, we obtain the CIS estimate a(S) of Oc(g) and consider it as

~

an estimate for a(0). Due to this two-step estimation procedure, the variance of § in the first step has a

significant impact on the variance of the final estimate @(8) in the second step.

To quantify the overall error of the proposed procedure, we follow the standard analysis of simulation
output with input uncertainty, see e.g., Glynn and Lam (2018). Denote the normal distribution with
mean u and variance 62 by .4 (1,62). Suppose that we use N; samples to estimate 5 and N, samples

for estimating @(8). The central limit theorem for M-estimates (Serfling 1980, Theorem 7.2.2A) yields
~d
5~ N (8,N;'62(8)A'(8)72) as N; — oo under some mild conditions, e.g., the differentiability of A(-)

d
at 8 (Uryas’ev 1994, Theorem 2.1), where ~ represents approximation in distribution and &?(-) is the

~

variance of /)i() Moreover, by the central limit theorem, we have 65(3 ) Ly ((X(g ),N; 's2(8)) as Ny — oo
given 5, where s%(-) is the variance of @(-). Finally, note that a(g) L N (a(8),N ' (8)?A'(8)7262(8))
by the delta method (Serfling 1980, Theorem 3.1A), where the existence of &/(J) is also guaranteed by

Theorem 2.1 of Uryas’ev (1994). Then, under the assumption that there exists a real number f§ € (0,1)
such that Ny /(N1 +Nz) — B as min{N;, N, } — oo, combining all these results gives

N 182 52 )
min{ﬁf%}%‘/ﬁ“ TN (E(8)— a(8) =N (o, Z‘/E;;z o[ga) n 1%) ’ (13)

~

which provides a basis of forming a confidence interval for &(8). From (13), one can clearly see that
our method can contribute to reducing both 6%(8) and s?(8), thereby improving the simulation efficiency
for estimating ¢¢(6). In Section 6, we will numerically validate the effectiveness of our approach in this
problem.

6 NUMERICAL EXPERIMENTS

To illustrate the numerical performance of the CIS method compared with the existing methods, we report
two performance indicators for each experiment conducted below: variance ratio (VR) and efficiency ratio
(ER). In particular, for a Monte Carlo estimator Z¥C with simulation time 7€ and another estimator Z
with simulation time 7, we define VR := Var(ZM%) /Var(Z) and ER := VR x ™ /7. We also report the
relative error of an estimator Z at the 95% confidence level defined as 1.96./Var(Z)(E[Z])~!. Although
VR is commonly used for comparing simulation efficiencies, we emphasize that ER is a better efficiency
indicator in terms of taking both the variance reduction and simulation time into account.

6.1 Asian Option Pricing

We consider the pricing of Asian put options in this section. Note that the same methodology can be
applied to the pricing of basket options. For simplicity, consider a discretely monitored Asian put option
whose payoff at maturity T is given by max{0,K —n~'Y" ,S(iT /n)}, where S(t) is the time-t price
of the underlying asset and K > 0 is the strike price. We assume the Black-Scholes model under the
risk-neutral measure, i.e., the price dynamics can be written as S(t) = S(0) exp((r — 62/2)t + 6B(t)), where
{B(t) |t > 0} is a standard Brownian motion, r is the risk-free rate, and o is the volatility of the asset price.
By the risk-neutral pricing theory (Shreve 2004), the price of the Asian put option at time O is given by

c [e_rr (K—iii‘iexp (<r—(;2> ‘:+o\/z(xl+...+xi)>> 15(X)
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Table 1: Estimates of Asian put option prices based on four different simulation methods.

Method K  Estimate (95% rel. err.) Time (sec) VR ER
70 8.15x 107 (5.20%) 67.12 - -
65 1.67x107° (10.58%) 67.26 - -

MC 60  2.66 x 107° (24.38%) 66.96 - -
55  2.54x 1077 (73.69%) 67.32 - -
70  8.39x 107 (3.93%) 86.54 1.7 1.3
oV 65  1.53 %1073 (9.65%) 84.80 1.4 1.1
60  2.46 x 107° (22.53%) 85.14 1.4 1.1
55  2.45x1077 (80.17%) 85.17 0.9 0.7
70 8.16 x 1077 (0.01%) 11876  1.3x10° 7.5x10%
Gus 05 158x 1073 (0.03%) 119.50 1.5%x10° 8.4x10*
60  2.28 x 107° (0.04%) 12198  59x10° 3.2x10°
55 2.26x 1077 (0.05%) 12074  3.1x10° 1.7x10°
70 8.16 x 107 (0.02%) 335.08 7.8x10* 1.6x10%
cs 05 158x 1073 (0.02%) 33774 33x10° 6.7x10*
60  2.28 x 107° (0.02%) 329.67  2.0x10° 4.0x10°
55 2.26x1077 (0.02%) 329.18  1.5x107 3.2x10°
where X = (X1,...,X,) follows the standard normal distribution and

log [.nlSoexp (<r— ";) % —i-O'\/zizj;xi)] < log(nK)} .

&= {X
j

The event {X € &'} represents the case where the option yields a positive payoff, and we focus on
deep-out-of-the money options for which K is extremely small so that {X € &} becomes a rare event.
Furthermore, & is a convex set because the log-sum-exp function f(xi,...,x,) =log(e* +---+¢€%) is
convex. Therefore, (14) corresponds to a special case of (1) which can be efficiently estimated with
Algorithm 1.

In the numerical experiments, we compare four different simulation algorithms: the crude Monte Carlo
(MCQ), the control variate method in Kemna and Vorst (1990) (CV), the method in Glasserman et al. (1999)
(GHS), and Algorithm 1 (CIS). CV uses the payoff of the discretely monitored geometric average Asian
option as a control variate, which is feasible because its price admits the Black-Scholes formula. By
combining the optimal exponential twisting with stratification along an optimal direction, GHS has been
shown to have huge variance reduction in pricing path-dependent options. We use 108 samples for all
methods and set T =1, So =200, 6 = 50%, r = 6%, and n = 250. The results are reported in Table 1.

Based on the VR and ER columns of Table 1, CV is almost as inefficient as MC for pricing deep-out-of-
the-money options. While CIS underperforms GHS for relatively large K, the former completely dominates
the latter under rare events, i.e., when K is small. In particular, CIS has higer values of ER than GHS for
K <60, indicating its superior efficiency despite the longer simulation time. This result is remarkable since
GHS is designed for pricing path-dependent options, while CIS is a general-purpose algorithm. Further,
the variance of the GHS estimator can grow at a subexponential rate as the event {X € &} becomes rarer,
whereas CIS attains bounded relative error in the same setting. Although the prices in Table 1 are perhaps
too small to be of much practical interest, the significant variance reductions illustrate the potential of the
CIS method.

6.2 Stochastic Network

We consider a stochastic network where the edge weights are random. The goal is to estimate the probability
that the total weight along the shortest path between two nodes is within a critical threshold (Frank 1969;
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Source Sink

Figure 1: A bridge network.

Table 2: Estimates of probabilities of arriving on time in a bridge network based on three different simulation
methods.

Method y  Estimate (95% rel. err.) Time (sec) VR ER
03 1.01x1073 (0.62%) 6.36 - -
MC 0.2 1.18 x 107* (1.81%) 6.47 - -
0.1 1.39x107°(16.62%) 6.43 - -
0.3 1.02 x 1073 (0.05%) 41.86 177.3 26.96
ET 0.2 1.19 x 10 (0.05%) 40.93 1250.1 197.48
0.1 1.48 x 107% (0.06%) 40.00 701359  11269.57
0.3 1.02 x 1073 (0.02%) 66.38 1210.7 116.07

CIS 0.2  1.19x107*(0.02%) 69.86 8320.1 770.12
0.1 1.48 x 107 (0.02%) 69.29 582470.1 54028.63

Kulkarni 1986; Asghari et al. 2015). According to Fan et al. (2005) and Jaillet et al. (2016), this problem
has been applied to transportation planning under uncertainty where punctuality of arrival is important;
e.g., scheduling freights to deliver perishable goods. Another example of the problem is routing in certain
computer systems where timely delivery of data is crucial (Acer et al. 2012).

For illustrative purposes, we focus on a bridge network with n edges and p paths from the source to
the sink. Figure 1 describes an example of the network with 5 edges, j =1,...,5, and 4 paths, denoted as
S1={1,5}, S2 ={2,4}, S5 ={1,3,4}, and S4 = {2,3,5}, respectively. Suppose a traveler starting from
the source wants to reach the sink before a deadline ¥ > 0 by choosing the shortest path. Let W; be the
random travel time along edge j. Following Acer et al. (2012), we assume that W; follows a lognormal
distribution with parameter u; and o; for j=1,...,n and that Wi, ..., W, are mutually independent. Our
objective is to estimate the probability of arriving on time, which is given by

P < min ) W; < }/) =P ( U {log <Z e”-"+"-fX"> < log}/}> , (15)
i=l,..p i, i=1,....p JES:

where (X,...,X,) is an n-dimensional standard normal random vector. When 7 is small, the traveler has
a tight schedule, and estimating (15) belongs to the realm of rare event simulation. Since the log-sum-exp
function f(x) =log(e* +---+¢€*) is convex, the target set of (15) is a union of convex sets, rendering
Algorithm 1 feasible for estimation.

Numerical experiments under the basic setup. We use the example in Figure 1 to compare Algorithm 1
(CIS) with the crude Monte Carlo method (MC) and the traditional exponential twisting method (ET) in
Section 5.2.2 of Bucklew (2004). We set uj =i/10 and 6; =1 for j=1,...,5 and run 108 iterations for
each method. The results are reported in Table 2. As can be seen from the VR column of Table 2, CIS
significantly outperforms all the other methods in terms of variance reduction. The variance reduction of
ET is also notable but is much smaller than that of CIS for all y. Based on the ER column, we conclude
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Table 3: Estimates of é and the robust bounds for the probability of arriving on time in a bridge network
based on three different simulation methods.

Method % 6 (95%rel.err.)  a(8) (95% rel. err.)  Time (sec) VR ER
0.1 148(274%) 950x10 % (35.09%)  554.0 - -
MC-MC 0.01 4.37 (1.14%) 3.90 x 10~* (52.16%) 642.5 - -
0.001  7.49(0.89%) 2.10x 104 (78.11%)  720.2 -

0.1 1.46 3.77%)  9.01 x 10 % (15.25%) _ 539.9 5.9 6.0
MC-CIS 001  433(1.53%) 2.56x107*(13.23%)  625.9 36.2 37.2
0.001  7.42(2.81%) 1.46x107*(28.21%)  706.3 15.8 16.1

0.1 1.44 (0.10%) 8.43 x 10~% (0.83%) 540.5 2288.3 23453
CIS-CIS  0.01 4.32 (0.03%) 2.46 x 107 (0.56%) 627.3 218424 22371.2
0.001 7.41 (0.03%) 1.39 x 107 (0.56%) 718.1 44615.2 447494

that despite the relatively longer simulation time, CIS is still significantly more efficient than the other two
methods.

Numerical experiments under distributional uncertainty. We next consider the estimation of the
robust bound for the probability of arriving on time in the same setting as above except that the distributions
of travel times are now subject to uncertainty (Zhang et al. 2018). Following Section 5, we set € = 0.001
and denote the robust bound by a(9).

To investigate the effectiveness of Algorithm 1, we compare three different cases: (1) replacing the CIS
estimates in Steps 1 and 2, i.e., A(-) and é&(-), with the associated crude Monte Carlo estimates (MC-MC),
(2) replacing the CIS estimate ﬁ,() in Step 1 with the associated crude Monte Carlo estimate and using
the CIS estimate &(-) for Step 2 (MC-CIS), and (3) using the CIS estimates for both steps (CIS-CIS). For

each case, we use 10° samples to construct each of the estimates A(-) and @(-). In the implementation,
we estimate the derivatives A'(8) and o/(6) via the finite difference method (Fu 2006). To enhance the
efficiency in estimating &, we first use a pilot run to obtain a crude estimate of 0 so as to update the target

set N5(&'), and then use all remaining samples to construct § and its associated confidence interval. Note
that this procedure shares the same vein with stochastic root-finding algorithms in the literature, e.g., cross
entropy (Rubinstein and Kroese 2004) and adaptive importance sampling (He et al. 2023).

The corresponding results are reported in Table 3. From the VR column of Table 3, we observe that
the overall variance reduction with the method of MC-CIS is relatively marginal, while the method of
CIS-CIS attains significant variance reduction. This shows that reducing the estimation error in J can
have a critical impact on the overall error, and Algorithm 1 is effective in this regard. Comparing the
computational times in Tables 2 and 3 reveals that all methods require much longer time in estimating a(J)
than in estimating P(X € &) and that there is no significant difference in the time between the methods.
This is mainly because evaluating whether the event {X € N,(&")} occurs requires solving the quadratic
program minyes || X — y||? for each sample of X.

7 CONCLUSION

We have proposed, analyzed, and tested a highly efficient conditional importance sampling method for
estimating expectations defined on convex rare-event sets. It is theoretically proven that the algorithm has
bounded relative error. This algorithm is widely applicable as convex target sets appear in various ways
in the analysis of stochastic systems. Our numerical studies show that the proposed method significantly
outperforms all methods in efficiency when the target event is extremely rare. Nonetheless, this paper is not
without limitations and opens up several directions for further investigation. Firstly, relaxing the normality
assumption would be an interesting direction for the development of rare-event simulation algorithms
that are more generally applicable. Secondly, the performance of the proposed algorithm in gradient
estimation is not investigated, which could be useful in stochastic optimization and in estimating option
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price sensitivities. Lastly, our method relies on the first-order approximation of the constraint functions.
One may consider higher-order approximations and develop more sophisticated sampling methods for
polynomially constrained target sets.
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