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ABSTRACT

When estimating a function of means, where some but not necessarily all of them correspond to rare events,
we provide conditions under which having efficient estimators of each individual mean leads to an efficient
estimator of the function of the means. We illustrate this setting through several examples, and numerical
results complement the theory.

1 INTRODUCTION

Many rare-event simulation problems consider an estimand expressed in terms of several quantities, where
the behaviors of some but not necessarily all of their estimators are critically influenced by the rarity of the
event of interest. For example, for a stable GI/GI/1 queue, the expected time for the queue-length process
to first hit a large threshold can be written as a ratio. The denominator is the probability (i.e., expectation
of an indicator) of hitting the large threshold within a busy period, which is a small rare-event probability
that is difficult to estimate. But the numerator, which is the expectation of the minimum of the busy cycle
length and the time to hit the large threshold, turns out to be an easily estimated non-rare mean. Thus,
the numerator may be efficiently estimated via naive Monte Carlo, but the denominator requires applying
a variance-reduction technique (Asmussen and Glynn 2007, Chapters V and VI) to efficiently estimate.

This paper considers estimating a function of means, some (but not necessarily all) pertaining to rare
events. We provide conditions that ensure when a good estimator for each mean leads to an efficient
estimator of the function of means.

The rest of the paper unfolds as follows. Section 2 reviews the concept of relative error and different
notions of efficiency for simulation estimators for problems involving rare events. Section 3 describes the
setting of the estimand as a function of means, and presents our main theorem. Throughout these sections,
we provide examples to motivate the ideas and notation. Section 4 gives numerical results complementing
the theory, and concluding remarks appear in Section 5.

2 RELATIVE ERROR

Let α be a performance measure or estimand for a stochastic model. We consider an estimator α̂n of
α based on a sample of size n when using some Monte Carlo (MC) method, such as naive MC (simple
random sampling) or a variance-reduction technique. Suppose that α̂n obeys a central limit theorem (CLT)

√
n [α̂n −α]⇒ N (0,τ2) as n → ∞, (1)

where ⇒ denotes convergence in distribution (Billingsley 1995, Section 25), N (a,b2) represents a normal
random variable with mean a and variance b2, and τ2 is the asymptotic variance of the CLT (1). If we have
a consistent estimator τ̂2

n of τ2 in the sense that τ̂2
n ⇒ τ2 as n → ∞, then for fixed large n, we can construct

an approximate 95% confidence interval (CI) for α based on (1) as [α̂n ± 1.96τ̂n/
√

n], whose relative
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half-width is roughly 1.96τ/[α
√

n]. This motivates assessing the quality of the estimator α̂n through its
relative error (RE; e.g., L’Ecuyer et al. 2010), defined for a fixed n and α ̸= 0 as

RE[α̂n] =
τ

|α|
. (2)

Thus, obtaining a 95% CI with relative half-width w (e.g., w = 0.1 for 10% relative half-width) requires a
sample size n ≈ (1.96τ)2/(wα)2, which is (1.96/w)2 times the squared RE.
Example 1 (Estimating an expectation via a sample mean) When α = E[Z] is a mean of a random
variable Z that can be simulated, we can draw n independent and identically distributed (i.i.d.) observations
Z1,Z2, . . . ,Zn of Z, and compute the sample average α̂n = (1/n)∑

n
k=1 Zk as an estimator of α . Then the CLT

(1) holds for τ2 = Var[Z] ∈ (0,∞) (Billingsley 1995, Theorem 27.1), where Var[Z] denotes the variance
of Z. This set-up also allows for applying importance sampling (IS; Section V.1 of Asmussen and Glynn
2007), as follows. Suppose that α = E0[Q] for some random variable Q, where E0[·] is the expectation
operator under the original distribution F0 of Q. Now let F1 be another distribution such that the probability
measure corresponding to F0 is absolutely continuous with respect to the measure for F1. Then for E1[·]
as the expectation operator under F1, we may write α =

∫
QdF0 =

∫
Q dF0

dF1
dF1 =E1[QL] with L = dF0/dF1

as the likelihood ratio, so Z = QL and E[·] corresponds to E1[·].
When α relates to a rare event, the relative error of an estimator can become quite large as the event

of interest becomes rarer. For example, suppose we want to estimate the probability that a real-valued
random variable W⟨r⟩ lies in some set A⟨r⟩ ⊂ ℜ, where the distribution of W⟨r⟩ and the set A⟨r⟩ may depend
on some “rarity parameter” r. In the context of Example 1, we take Z ≡ Z⟨r⟩ = I(W⟨r⟩ ∈ A⟨r⟩), where
I(·) denotes the indicator function. Thus, we consider a sequence of models indexed by r, and examine
what happens as r → ∞, where we assume the event {W⟨r⟩ ∈ A⟨r⟩} becomes “rarer” as r grows in the
sense that α⟨r⟩ ≡E[Z⟨r⟩] =P(W⟨r⟩ ∈ A⟨r⟩)→ 0 as r → ∞. For example, in a stable GI/GI/1 queue, r might
represent a large buffer threshold, and W⟨r⟩ is the maximum queue length before first emptying out; letting
A⟨r⟩ = {r,r + 1, . . .}, we have α⟨r⟩ = P(W⟨r⟩ ∈ A⟨r⟩) is the probability that the queue length hits level r
during a busy cycle, where α⟨r⟩ → 0 as r → ∞ (Sadowsky 1991, Theorem 1). For each fixed r, the CLT
(1) holds for Example 1 with Z⟨r⟩ = I(W⟨r⟩ ∈ A⟨r⟩) and asymptotic variance τ2 ≡ τ2

⟨r⟩ = α⟨r⟩(1−α⟨r⟩). Let
α̂n ≡ α̂⟨r⟩,n be the average of a fixed number n of i.i.d. copies of Z⟨r⟩, whose relative error in (2) behaves as

RE[α̂⟨r⟩,n] =
τ⟨r⟩

α⟨r⟩
=

√
α⟨r⟩(1−α⟨r⟩)

α⟨r⟩
=

√
1−α⟨r⟩
√

α⟨r⟩
→ ∞ as r → ∞.

Thus, the relative error of α̂⟨r⟩,n blows up as the event of interest becomes rarer, and the required sample
size to obtain a fixed relative-width CI grows as roughly 1/α⟨r⟩ as r → ∞. This illustrates the primary
difficulty with rare-event simulation.

Previous works (e.g., Rubino and Tuffin 2009 and Chapter VI of Asmussen and Glynn 2007) for
specific stochastic models devise variance-reduction techniques that produce estimators of such rare-event
probabilities α⟨r⟩ for which the relative error grows very slowly, remains bounded or vanishes as r → ∞.
Specifically, in Example 1, suppose that for each fixed r, we have an estimator α̂⟨r⟩,n of α⟨r⟩ satisfying the
CLT (1) with asymptotic variance τ2

⟨r⟩. Further suppose that τ2
⟨r⟩ = O(α2

⟨r⟩) as r → ∞, where the notation
b1(r) = O(b2(r)) as r → ∞ for functions b1 and b2 means that there exists constants c0 > 0 and r0 > 0 such
that |b1(r)| ≤ c0|b2(r)| for all r > r0. Then the relative error of the estimator α̂⟨r⟩,n satisfies

RE[α̂⟨r⟩,n] =

√
O(α2

⟨r⟩)

α⟨r⟩
=

O(α⟨r⟩)

α⟨r⟩
= O(1) as r → ∞, (3)
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so the estimator has bounded relative error (BRE). Hence, the necessary sample size to obtain a CI of
relative half-width w remains bounded as r → ∞. If instead τ2

⟨r⟩ = o(α2
⟨r⟩) as r → ∞, where the notation

b1(r) = o(b2(r)) means that limr→∞ b1(r)/b2(r) = 0, then we have

RE[α̂⟨r⟩,n] =

√
o(α2

⟨r⟩)

α⟨r⟩
=

o(α⟨r⟩)

α⟨r⟩
= o(1) as r → ∞, (4)

so the estimator then has vanishing relative error (VRE).
We next describe an efficiency property that is slightly weaker than BRE. To do this, define

REζ [α̂⟨r⟩,n] =
τ⟨r⟩

|α⟨r⟩|ζ
(5)

for each constant ζ > 0, so (5) with ζ = 1 reduces to just RE in (2). Then when α⟨r⟩ → 0 as r → ∞, we
say that the estimator α̂⟨r⟩,n of α⟨r⟩ is logarithmically efficient (LE) if

limsup
r→∞

RE1−δ [α̂⟨r⟩,n] = 0 (6)

for all δ ∈ (0,1). Often a desirable goal when designing an estimator of a small probability based on
large-deviations theory, the property (6) is equivalent to liminfr→∞

| lnτ⟨r⟩|
| ln(α⟨r⟩)|

≥ 1, which shows where LE gets
its name. While the literature on rare-event simulation has primarily focused on LE estimators for small
probabilities, some estimands of interest have α⟨r⟩ → ∞ as r → ∞, e.g., a stochastic process’s expected
hitting time to a rarely visited set of states. When instead considering an estimand for which α⟨r⟩ →±∞

as r → ∞, we redefine LE to mean that for all δ > 0,

limsup
r→∞

RE1+δ [α̂⟨r⟩,n] = 0, (7)

which is equivalent to limsupr→∞

| lnτ⟨r⟩|
| ln(α⟨r⟩)|

≤ 1. We do not define LE for the case when limr→∞ α⟨r⟩ = χ0 ∈
(−∞,∞) with χ0 ̸= 0. Indeed, the idea of LE originates from studies of rare-event probabilities through
large-deviations theory, where a goal in simulation is to construct an estimator whose standard deviation
and mean both converge to 0 at the same exponential rate as r → ∞. While (7) extends this conceptual
framework to handle α⟨r⟩ →±∞, an appropriate definition for LE is not obvious when α⟨r⟩ converges to a
finite χ0 ̸= 0, so we do not consider this case. We could also take into account the CPU time to compute
α̂⟨r⟩,n via the work-normalized RE (WNRE), as in L’Ecuyer et al. (2010), but we focus here on only RE.

In what follows, we will sometimes omit the subscript ⟨r⟩ on variables to simplify the notation.

3 FUNCTIONS OF MEANS

We will consider estimands α having a specific form:

α = g(θθθ) (8)

for some known function g : ℜd → ℜ and θθθ = (θ1,θ2, . . . ,θd) ∈ ℜd is a vector of unknown parameters,
for some fixed d ≥ 1. Both g and d do not depend on the rarity parameter r, but the components θi of θθθ

may. We assume that there is a d-dimensional random vector X = (X1,X2, . . . ,Xd) such that its mean

E[X] = θθθ (9)

and that we can generate i.i.d. copies of X.
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The random vector X has some joint distribution. The d components of X may be dependent, as is
often the case when they are generated from the same simulation, or they may be independent, generated
from different simulations applying different MC methods. For example, X1 could be generated using
naive MC, and X2 = QL could be generated (independently of X1) using IS, as in Example 1. In this case,
the expectation operator E[·] in (9) applies E0[·] (resp., E1[·]) to the first (resp., second) coordinate of X.
Goyal et al. (1992) call this approach measure-specific IS (MSIS).

Many estimands of interest have the form in (8).
Example 2 (Expected hitting time) Consider a nondelayed regenerative process Y = (Y (t) : t ≥ 0) evolving
on a state space S ⊂ ℜv for some v ≥ 1 (Kalashnikov 1994), so the process “probabilistically restarts”
at an infinite sequence of regeneration times 0 = T−1 < T0 < T1 < · · · . We can split the sample path of
Y into i.i.d. regenerative cycles demarcated by successive pairs of regeneration times. For example, if Y
represents the queue-length process (including any customer undergoing service) in a stable GI/GI/1 queue,
then regenerations occur when a customer arrives to an empty system, where the initial customer arrives at
time t = 0 to an empty system. If Y is an irreducible and positive-recurrent continuous-time Markov chain
(CTMC), returns to any fixed state s0 ∈ S constitute regenerations. Also consider a set A ⊂ S (with s0 ̸∈ A in
the case of a CTMC), and let TA = inf{t ≥ 0 : Y (t) ∈ A} be the hitting time to A. For example, in a GI/GI/1
queue, letting A ≡ A⟨r⟩ = {r,r+1, . . .} for some (large) r > 0 results in TA denoting the first time the queue
length hits r. Instead, if Y represents a Markovian reliability system, which will be covered in Example 5,
A could be the set of “system failed” states, making TA the first time to system failure. We are interested
in estimating α =E[TA]. As shown in, e.g., Goyal et al. (1992) and Glynn et al. (2017), we can express α

as a ratio α = η/γ , with η =E[min(TA,T0)] and γ =E[I(TA < T0)] =P(TA < T0), where both min(TA,T0)
and I(TA < T0) are measurable with respect to the sigma-field of the process Y up to time T0. Then for the
random vector X = (X1,X2) in (9) with dimension d = 2, where X1 = min(TA,T0) and X2 = I(TA < T0), (8)
has θθθ = (η ,γ), and g(x1,x2) = x1/x2. When Y is a CTMC, we can obtain reduced-variance estimators of
η , γ , and α via conditional MC (CMC; e.g., Section V.4 of Asmussen and Glynn 2007) by conditioning on
the CTMC’s embedded discrete-time Markov chain (DTMC). A simulation applying CMC then generates
only the embedded DTMC, with the exponential holding times in visited states replaced by their conditional
means. (Later examples involving CTMCs can also apply CMC in this manner.)
Example 3 (Derivative of expected hitting time) Suppose for the CTMC Y in Example 2, its infinitesimal
generator matrix is parameterized by λ , which may denote the transition rate of a specific group of
transitions. For example, λ may represent the failure rate of a component in a reliability setting, or the
arrival rate of customers to a queue. In this case, we write β ≡ E[TA] as β (λ ) = η(λ )/γ(λ ) as these
values now depend on λ . We are interested in computing the derivative β ′(λ )≡ d

dλ
β (λ ), which satisfies

β ′(λ )= [η ′(λ )γ(λ )−η(λ )γ ′(λ )]/γ2(λ ), where η ′(λ )= d
dλ

η(λ ) and γ ′(λ )= d
dλ

γ(λ ). Using the likelihood
ratio derivative method (Glynn 1990), we can express η ′(λ )=E[min(TA,T0)L′] and η ′(λ )=E[I(TA < T0)L′],
where L′ is the derivative with respect to λ of the likelihood ratio L up to min(TA,T0); see Nakayama
(1998) for details when further applying CMC. Thus, for random vector X = (X1,X2,X3,X4) in (9) with
dimension d = 4, and X1 = min(TA,T0) X2 = I(TA < T0), X3 = min(TA,T0)L′, and X4 = I(TA < T0)L′, we
can write β ′(λ ) as α in (8) using θθθ = (η(λ ),γ(λ ),η ′(λ ),γ ′(λ )), and g(x1,x2,x3,x4) = [x3x2 − x4x1]/x2

2.
Example 4 (Conditional expectation) Let (Z1,Z2) be a random vector, and let A ⊂ ℜ be a set. Then the
conditional expectation α = E[Z1 | Z2 ∈ A] = E[Z1I(Z2 ∈ A)]/E[I(Z2 ∈ A)] may be expressed in the form
in (8) by considering the random vector X = (X1,X2) in (9) with dimension d = 2, X1 = Z1I(Z2 ∈ A),
X2 = I(Z2 ∈ A), θθθ = (E[X1],E[X2]), and g(x1,x2) = x1/x2.

As in Section 2, we consider a sequence of problems indexed by rarity parameter r, and take the limit
as r → ∞. In (8), we assume that the value of the unknown parameter θθθ ≡ θθθ ⟨r⟩ = (θ⟨r⟩,1,θ⟨r⟩,2, . . . ,θ⟨r⟩,d)
may depend on r, but the function g does not. Then the estimand α ≡ αr in (8) also depends on r, and we
want to study when α⟨r⟩ can be estimated with BRE as in (3), with VRE as in (4), or with LE as in (6) or
(7). As noted before in Section 2, we will sometimes omit the subscript ⟨r⟩ to simplify notation.
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To estimate α⟨r⟩ = g(θθθ ⟨r⟩) in (8), we generate n ≥ 1 i.i.d. observations X⟨r⟩,k k = 1,2, . . . ,n, of X ≡
X⟨r⟩ = (X⟨r⟩,1,X⟨r⟩,2, . . . ,X⟨r⟩,d), whose joint distribution may depend on r. By (9), we then obtain an
unbiased estimator θ̂θθ ⟨r⟩,n = (θ̂⟨r⟩,n,1, θ̂⟨r⟩,n,2, . . . , θ̂⟨r⟩,n,d) = (1/n)∑

n
k=1 X⟨r⟩,k of θθθ = θθθ ⟨r⟩ =E[X⟨r⟩], yielding

α̂⟨r⟩,n = g(θ̂θθ ⟨r⟩,n) (10)

as a plug-in estimator of α⟨r⟩. As noted before, this setup allows for applying MSIS. For instance, Example 2
can take X⟨r⟩,1 =min(TA,T0)generated via naive MC so θ⟨r⟩,1 =E0[min(TA,T0)], and X⟨r⟩,2 =Q⟨r⟩L⟨r⟩ sampled
using IS with Q⟨r⟩ = I(TA⟨r⟩ < T0,⟨r⟩) and L⟨r⟩ the likelihood ratio, so θ⟨r⟩,2 = E0[Q⟨r⟩] = E1[Q⟨r⟩L⟨r⟩].

For the estimator α̂⟨r⟩,n in (10), we will study its relative error as in (2). We want to determine
conditions under which the RE properties of an estimator θ̂θθ ⟨r⟩,n of θθθ ⟨r⟩ will carry over to the plug-in
estimator α̂⟨r⟩,n = g(θ̂θθ ⟨r⟩,n) of α⟨r⟩. Let Σ⟨r⟩ = (Σ⟨r⟩,i, j : i, j = 1,2, . . . ,d) be the covariance matrix of
the random vector X⟨r⟩, where Σ⟨r⟩,i, j = Cov[X⟨r⟩,i,X⟨r⟩, j] = E[(X⟨r⟩,i −E[X⟨r⟩,i])(X⟨r⟩, j −E[X⟨r⟩, j])]. Also,
let ∇g(θθθ) = (g1(θθθ),g2(θθθ), . . . ,gd(θθθ)) be the gradient (when it exists) of g(θθθ), where gi(θθθ) =

∂

∂θi
g(θθθ),

i = 1,2, . . . ,d. For each ψ,ζ > 0, define

hi,ψ,ζ (θθθ ⟨r⟩) =

∣∣∣∣∣θ
ψ

⟨r⟩,igi(θθθ ⟨r⟩)

gζ (θθθ ⟨r⟩)

∣∣∣∣∣ . (11)

For analyzing LE in (6) and (7) (but unneeded for handling BRE or VRE), we further impose the following.
Assumption A1 As r → ∞, α⟨r⟩ → χ0 ∈ {0,∞,−∞} and θ⟨r⟩,i → χi ∈ [−∞,∞] for each i = 1,2, . . . ,d.

Assumption A1 disallows the estimand α⟨r⟩ to converge to a nonzero finite constant when establishing
LE. This is to retain the spirit of the framework that LE was originally defined to consider, as discussed
after (7). But for i = 1,2, . . . ,d, we permit some of the θ⟨r⟩,i to converge to nonzero finite constants χi.
This allows us to handle a situation that occurs in Example 2 when estimating the expected time for the
queue-length process of a stable GI/GI/1 queue to first hit a high level r; this will be explained later in
Example 8. For each δ ∈ (0,1) and i = 0,1, . . . ,d, define δi based on Assumption A1 as follows:

δi =


−δ if χi = 0,

0 if χi ∈ (−∞,∞) with χi ̸= 0,
δ if |χi|= ∞.

(12)

Also, define 0 = (0,0, . . . ,0) ∈ ℜd , the vector of all 0s.
Theorem 1 Assume that for each r, the function g in (8) is differentiable at θθθ ⟨r⟩ with ∇g(θθθ ⟨r⟩) ̸= 0 and
Σ⟨r⟩ is finite and positive definite. Then the following hold as r → ∞:

(i) If hi,1,1(θθθ ⟨r⟩)RE[θ̂⟨r⟩,n,i] = O(1) as r → ∞ for all i = 1,2, . . . ,d, then α̂⟨r⟩,n has BRE.
(ii) If hi,1,1(θθθ ⟨r⟩)RE[θ̂⟨r⟩,n,i] = o(1) as r → ∞ for all i = 1,2, . . . ,d, then α̂⟨r⟩,n has VRE.
(iii) If Assumption A1 holds, and for each i = 1,2, . . . ,d, if

limsup
r→∞

hi,1+δi,1+δ0(θθθ ⟨r⟩)RE1+δi [θ̂⟨r⟩,n,i] = 0 (13)

for all δ ∈ (0,1) with δi in (12), then α̂⟨r⟩,n is LE.

In Theorem 1(i) and (ii), if hi,1,1(α⟨r⟩) is bounded as r →∞ for all i= 1,2, . . . ,d, then the overall estimator
α̂⟨r⟩,n has BRE or VRE when each θ̂⟨r⟩,n,i has that same property. To understand Theorem 1(iii) for LE, consider
the special case when hi,1+δi,1+δ0(α⟨r⟩) is bounded as r →∞ for all i= 1,2, . . . ,d. Note that if χi ∈{0,−∞,∞},
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then limsupr→∞ RE1+δi [θ̂⟨r⟩,n,i] = 0 means that θ̂⟨r⟩,n,i is LE, as in (6) or (7); if instead χi ∈ (−∞,∞)with χi ̸= 0,
then because (12) implies δi = 0 in (13), limsupr→∞ RE1+δi [θ̂⟨r⟩,n,i] = limsupr→∞ RE[θ̂⟨r⟩,n,i] = 0 means that
θ̂⟨r⟩,n,i has VRE. Thus, if hi,1+δi,1+δ0(α⟨r⟩) is bounded as r → ∞ for all i = 1,2, . . . ,d, and Assumption A1
holds, then the overall estimator α̂⟨r⟩,n is LE when each θ̂⟨r⟩,n,i is LE. But when χi ∈ (−∞,∞) with χi ̸= 0,
Theorem 1 also allows for θ̂⟨r⟩,n,i to be just BRE and not VRE if hi,1+δi,1+δ0(α⟨r⟩)→ 0 as r → ∞, which
we will later see occurs in Example 8.

Proof of Theorem 1. For each fixed r, the condition that the covariance matrix Σ⟨r⟩ is finite and positive
definite ensures that θ̂θθ ⟨r⟩,n obeys a multivariate CLT (Billingsley 1995, Theorem 29.5)

√
n
[
θ̂θθ ⟨r⟩,n −θθθ ⟨r⟩

]
⇒ Nd(0,Σ⟨r⟩) as n → ∞, (14)

where Nd(0,Σ⟨r⟩) is a d-dimensional normal random vector with mean vector 0 and covariance matrix Σ⟨r⟩.
Under our assumption that ∇g(θθθ ⟨r⟩) ̸= 0, the delta method (Serfling 1980, p. 124) then yields the CLT

√
n
[
α̂⟨r⟩,n −α⟨r⟩

]
⇒ N (0,τ2

⟨r⟩) as n → ∞, (15)

with τ
2
⟨r⟩ =

d

∑
i=1

d

∑
j=1

gi(θθθ ⟨r⟩)g j(θθθ ⟨r⟩)Σ⟨r⟩,i, j (16)

as the asymptotic variance. The Cauchy-Schwarz inequality implies that |Σ⟨r⟩,i, j| ≤
√

Var[X⟨r⟩,i]Var[X⟨r⟩, j],

and also we have that RE[θ̂⟨r⟩,n,i] =
√

Var[X⟨r⟩,i]/|θ⟨r⟩,i|, as in (2). Thus, the RE of α̂⟨r⟩,n then satisfies

RE[α̂⟨r⟩,n] =

(
d

∑
i=1

d

∑
j=1

gi(θθθ ⟨r⟩)g j(θθθ ⟨r⟩)

g2(θθθ ⟨r⟩)
Σ⟨r⟩,i, j

)1/2

≤

(
d

∑
i=1

d

∑
j=1

∣∣∣∣gi(θθθ ⟨r⟩)g j(θθθ ⟨r⟩)

g2(θθθ ⟨r⟩)
Σ⟨r⟩,i, j

∣∣∣∣
)1/2

≤

(
d

∑
i=1

d

∑
j=1

∣∣∣∣gi(θθθ ⟨r⟩)g j(θθθ ⟨r⟩)

g2(θθθ ⟨r⟩)

∣∣∣∣√Var[X⟨r⟩,i]Var[X⟨r⟩, j]

)1/2

(17)

=

(
d

∑
i=1

d

∑
j=1

∣∣∣∣θ⟨r⟩,igi(θθθ ⟨r⟩)θ⟨r⟩, jg j(θθθ ⟨r⟩)

g2(θθθ ⟨r⟩)

∣∣∣∣RE[θ̂⟨r⟩,n,i]RE[θ̂⟨r⟩,n, j]

)1/2

=

(
d

∑
i=1

d

∑
j=1

hi,1,1(θθθ ⟨r⟩)RE[θ̂⟨r⟩,n,i]h j,1,1(θθθ ⟨r⟩)RE[θ̂⟨r⟩,n, j]

)1/2

by (11), so parts (i) and (ii) hold by our assumptions about each hi,1,1(θθθ ⟨r⟩)RE[θ̂⟨r⟩,n,i] being O(1) or o(1).
For part (iii) under Assumption A1, we simplify the discussion by considering the square of (5) for

ζ = 1+δ0. As in (17), we get

(
RE1+δ0 [α̂⟨r⟩,n]

)2
=

τ2
⟨r⟩

|α⟨r⟩|2+2δ0
≤

d

∑
i=1

d

∑
j=1

∣∣∣∣∣gi(θθθ ⟨r⟩)g j(θθθ ⟨r⟩)

g2+2δ0(θθθ ⟨r⟩)

∣∣∣∣∣√Var[X⟨r⟩,i]Var[X⟨r⟩, j]

=
d

∑
i=1

d

∑
j=1

∣∣∣∣∣∣
θ

1+δi
⟨r⟩,i gi(θθθ ⟨r⟩)θ

1+δ j
⟨r⟩, j g j(θθθ ⟨r⟩)

g1+δ0(θθθ ⟨r⟩)g1+δ0(θθθ ⟨r⟩)

∣∣∣∣∣∣RE1+δi [θ̂⟨r⟩,n,i]RE1+δ j [θ̂⟨r⟩,n, j]

=
d

∑
i=1

d

∑
j=1

hi,1+δi,1+δ0(θθθ ⟨r⟩)RE1+δi [θ̂⟨r⟩,n,i]h j,1+δ j,1+δ0(θθθ ⟨r⟩)RE1+δ j [θ̂⟨r⟩,n, j]
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by (11), so part (iii) holds by (6) and (7) under our condition (13).

Even though θ̂θθ ⟨r⟩,n is an unbiased estimator of θθθ ⟨r⟩, we may have that α̂⟨r⟩,n = g(θ̂θθ ⟨r⟩,n) is a biased
estimator of α⟨r⟩ = g(θθθ ⟨r⟩) when g is nonlinear, as in Examples 2–4, as well as the ones below. However,
for fixed r, we still obtain the CLT in (15) as n → ∞ with the true estimand α⟨r⟩ as the centering constant.
For fixed r, the bias contributes negligibly to the mean-square error (MSE) of α̂⟨r⟩,n as n → ∞, where the
MSE can be decomposed as the sum of the variance and squared bias. Indeed, under appropriate technical
conditions (e.g., Section 2.4.1 of Shao and Tu 1995) on g in (8) and the moments of X in (9), as n → ∞,

E[α̂⟨r⟩,n] = E[g(θ̂θθ ⟨r⟩,n)] = g(θθθ ⟨r⟩)+
1
n

d

∑
i=1

d

∑
j=1

gi(θθθ ⟨r⟩)g j(θθθ ⟨r⟩)Σ⟨r⟩,i, j +o
(

1
n

)
,

so the squared bias shrinks as O(1/n2), faster than the estimator’s variance, which typically decreases as
τ2
⟨r⟩/n+o(1/n).

3.1 Examples

We next provide examples (some expanding on our previous ones) that fit into the framework of Theorem 1.
Example 5 (Mean time to failure (MTTF)) We now specialize Example 2 for a highly reliable Markovian
system (HRMS), as in Goyal et al. (1992) and Shahabuddin (1994). An HRMS comprises a fixed collection
of dependable components subject to random failures and repairs, with component failure and repair times
exponentially distributed. The stochastic process Y models the evolution of the HRMS over time, and let
S be its state space, where each state s ∈ S keeps track of the components that are currently up and down,
along with any other information (e.g., queueing of failed components at the repair stations) necessary to
ensure that Y is a CTMC. The system begins at time 0 in s0 ∈ S, the state with all components operational.
The system fails when certain combinations of components are failed, and let A ⊂ S denote the set of failed
states, where we assume that s0 ̸∈ A, and the time to failure is TA. To incorporate the rarity parameter r,
we model the component failure rates as positive powers of ε = 1/r, and repair rates are constants, and
we analyze the HRMS as r → ∞. Hence, as r increases, individual components become more reliable,
but the set A of failed states does not change. The MTTF α⟨r⟩ = E0[TA]≡ E0[TA,⟨r⟩] can be expressed as
a ratio η⟨r⟩/γ⟨r⟩ with η⟨r⟩ = E0[min(TA,⟨r⟩,T0,⟨r⟩)] and γ⟨r⟩ = E0[I(TA,⟨r⟩ < T0,⟨r⟩)] = E1[I(TA,⟨r⟩ < T0,⟨r⟩)L],
where E0 is the expectation operator under the original system dynamics, and E1[·] denotes expectation
under IS, with L as the resulting likelihood ratio. We apply MSIS to estimate the ratio, with naive MC for
estimating the numerator and IS for the denominator. Therefore, in (9), the random vector X has dimension
d = 2, and X = (X1,X2) = (min(TA,⟨r⟩,T0,⟨r⟩), I(TA,⟨r⟩ < T0,⟨r⟩)L), where the expectation operator E[·] uses
E0[·] (resp., E1[·]) on the first (resp., second) coordinate of X. Also, (8)–(10) have θθθ ⟨r⟩ = (η⟨r⟩,γ⟨r⟩), and
g(x1,x1) = x1/x2. Since (11) has h1,1,1(θθθ ⟨r⟩) = h2,1,1(θθθ ⟨r⟩) = 1, BRE (resp., VRE) for the MTTF ratio
estimator follows if the estimators for η⟨r⟩ and γ⟨r⟩ both have BRE (resp., VRE) by Theorem 1(i) and (ii).
When applying balanced failure biasing (described further in Example 10) for the IS for estimating the
denominator γ⟨r⟩, Shahabuddin (1994) establishes the BRE of the MTTF MSIS ratio estimator when further
applying CMC by conditioning on the embedded DTMC; Nakayama (1996), Rubino and Tuffin (2009)
and L’Ecuyer and Tuffin (2012) provide related results for other forms of IS to estimate γ⟨r⟩.
Example 6 (Alternative MTTF estimator) Instead of using the ratio estimator of the MTTF in Example 5,
Nakayama and Tuffin (2019) propose a different approach, which can be more efficient in certain situations
and also applies more generally, as for Example 2. Specifically, they express the MTTF as

α⟨r⟩ =
E0[min(TA,⟨r⟩,T0,⟨r⟩)I(TA,⟨r⟩ > T0,⟨r⟩)]+E0[min(TA,⟨r⟩,T0,⟨r⟩)I(TA,⟨r⟩ < T0,⟨r⟩)]

E0[I(TA,⟨r⟩ < T0,⟨r⟩)]

=
E0[T0,⟨r⟩I(TA,⟨r⟩ > T0,⟨r⟩)]+E1[TA,⟨r⟩I(TA,⟨r⟩ < T0,⟨r⟩)L]

E1[I(TA,⟨r⟩ < T0,⟨r⟩)L]
.
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To put this in the framework of (8)–(10), we apply MSIS with the random vector X⟨r⟩ = (X⟨r⟩,1,X⟨r⟩,2,X⟨r⟩,3) of
dimension d = 3 and X⟨r⟩,1 = T0,⟨r⟩I(TA,⟨r⟩ > T0,⟨r⟩), X⟨r⟩,2 = TA,⟨r⟩I(TA,⟨r⟩ < T0,⟨r⟩)L, and X⟨r⟩,3 = I(TA,⟨r⟩ <
T0,⟨r⟩)L, where X⟨r⟩,1 is generated with naive MC, and (X⟨r⟩,2,X⟨r⟩,3) is generated with IS. Hence, the
expectation operatorE[·] in (9) appliesE0[·] (resp.,E1[·]) for the first (resp., second and third) coordinate(s), so
θθθ = (θ1,θ2,θ3) with θ1 =E0[T0,⟨r⟩I(TA,⟨r⟩ > T0,⟨r⟩)], θ2 =E1[TA,⟨r⟩I(TA,⟨r⟩ < T0,⟨r⟩)L], and θ3 =E1[I(TA,⟨r⟩ <

T0,⟨r⟩)L], and g(x1,x2,x3) = (x1 + x2)/x3 in (8). Since (11) has h1,1,1(θθθ ⟨r⟩) =
θ⟨r⟩,1

θ⟨r⟩,1+θ⟨r⟩,2
≤ 1, h2,1,1(θθθ ⟨r⟩) =

θ⟨r⟩,2
θ⟨r⟩,1+θ⟨r⟩,2

≤ 1 and h3,1,1(θθθ ⟨r⟩) = 1, they are all bounded, so by Theorem 1(i), the estimator of α⟨r⟩ has BRE
if the estimators of each of the three components have the same property. We can also establish if the
estimator of α⟨r⟩ is LE (which is more appropriate in, e.g., the GI/GI/1 setting) through an analysis that
will be used in Example 8.
Example 7 For Example 3 specialized to an HRMS, Nakayama (1998) establishes the BRE of the derivative
estimator of the MTTF with respect to a component failure rate when using MSIS with balanced failure
biasing under certain assumptions when further applying CMC by conditioning on the embedded DTMC.
Example 8 (Expected time for GI/GI/1 queue length to reach a large threshold) For the queue-length process
of a stable GI/GI/1 queue, as briefly discussed in Example 2, letE0 (resp.,P0) denote the expectation operator
(resp., probability measure) under the original system dynamics. We consider the estimand α⟨r⟩ =E0[TA⟨r⟩ ],
which is the expected hitting time to the set A⟨r⟩ = {r,r+1,r+2, . . .}. Let U (resp., V ) denote a generic
interarrival (resp., service) time, with U,V ≥ 0 independent and assumed to have light-tailed distributions
(i.e., their moment-generating functions exist in a neighborhood of the origin, so all moments of U and V are
finite) not depending on r. Further assume that 0 <E0[V ]<E0[U ] and also that P0(V >U)> 0. Then we
have α⟨r⟩ = η⟨r⟩/γ⟨r⟩ ∈ (0,∞), with η⟨r⟩ =E0[min(TA⟨r⟩ ,T0)] and γ⟨r⟩ =E0[I(TA⟨r⟩ < T0)] =E1[I(TA⟨r⟩ < T0)L],
where E1[·] denotes expectation under IS with L as the resulting likelihood ratio. Under P0, the distribution
of TA⟨r⟩ depends on r, but the distribution of T0 does not. In (9), we apply MSIS using a random vector X
of dimension d = 2, with X = (min(TA⟨r⟩ ,T0), I(TA⟨r⟩ < T0)L), and the expectation E[·] applies E0[·] (resp.,
E1) to the first (resp., second) coordinate. Thus, θθθ ⟨r⟩ = (θ⟨r⟩,1,θ⟨r⟩,2) = (η⟨r⟩,γ⟨r⟩) and g(x1,x1) = x1/x2.
For the first component of X, 0 ≤ min(TA⟨r⟩ ,T0)≤ T0 for all r implies that E0[min(TA⟨r⟩ ,T0)]≤E0[T0], with
E0[T0] < ∞ by, e.g., Corollary 1(c) of Thorisson (1985). Moreover, because P0(limr→∞ TA⟨r⟩ = ∞) = 1
and P0(T0 < ∞) = 1 guarantee P0(limr→∞ min(TA⟨r⟩ ,T0) = T0) = 1, the dominated convergence theorem
then ensures that η⟨r⟩ = E0[min(TA⟨r⟩ ,T0)] → E0[T0] as r → ∞. In addition, χ1 ≡ E0[T0] ∈ (0,∞) since
0 < E0[U ]≤E0[T0]< ∞, so δ1 = 0 in (12). Also, Theorem 1 of Sadowsky (1991) shows that γ⟨r⟩ → 0 as
r → ∞, so δ2 =−δ in (12) for each δ > 0. Hence, the estimand satisfies α⟨r⟩ = η⟨r⟩/γ⟨r⟩ → ∞ as r → ∞,
so δ0 = δ in (12). We now want to verify (13) for i = 1,2. Note that g1(θθθ ⟨r⟩) = 1/θ⟨r⟩,2 = 1/γ⟨r⟩ and
g2(θθθ ⟨r⟩) =−θ⟨r⟩,1/θ 2

⟨r⟩,2 =−η⟨r⟩/γ2
⟨r⟩. For i = 1, because δ1 = 0 and δ0 = δ , (11) becomes

h1,1+δ1,1+δ0(θθθ ⟨r⟩) =

∣∣∣∣∣∣
θ

1+δ1
⟨r⟩,1 g1(θθθ ⟨r⟩)

g1+δ0(θθθ ⟨r⟩)

∣∣∣∣∣∣=
∣∣∣∣∣ η⟨r⟩/γ⟨r⟩

(η⟨r⟩/γ⟨r⟩)1+δ

∣∣∣∣∣= 1
αδ

⟨r⟩
→ 0 as r → ∞ (18)

for each δ > 0. Also, E0[(min(TA⟨r⟩ ,T0))
2] ≤ E0[T 2

0 ] for all r, where E0[T 2
0 ] does not depend on r and

E0[T 2
0 ]< ∞ by Corollary 1(c) of Thorisson (1985) since E0[U2]< ∞ and E0[V 2]< ∞. In this case, under

P0, the variance of min(TA⟨r⟩ ,T0) is bounded in r, and we can then estimate θ⟨r⟩,1 = η⟨r⟩ with BRE using

naive MC. Therefore, RE1+δ1 [θ̂⟨r⟩,n,1] = RE[θ̂⟨r⟩,n,1] = O(1) as r → ∞, which combined with (18) verifies
(13) for i = 1. For i = 2, because δ2 =−δ and δ0 = δ in (12), (11) becomes

h2,1+δ2,1+δ0(θθθ ⟨r⟩) =

∣∣∣∣∣∣
θ

1+δ2
⟨r⟩,2 g2(θθθ ⟨r⟩)

g1+δ0(θθθ ⟨r⟩)

∣∣∣∣∣∣=
∣∣∣∣∣γ

1−δ

⟨r⟩ (−η⟨r⟩/γ2
⟨r⟩)

(η⟨r⟩/γ⟨r⟩)1+δ

∣∣∣∣∣= 1
ηδ

⟨r⟩
, (19)
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which, for each δ > 0, is bounded since η⟨r⟩ ≥ E0[U ] > 0. Sadowsky (1991) provides conditions un-
der which an IS estimator (via exponential twisting) for θ⟨r⟩,2 = γ⟨r⟩ is LE, so this estimator satisfies
limsupr→∞ RE1+δ2 [θ̂⟨r⟩,n,2] = limsupr→∞ RE1−δ [θ̂⟨r⟩,n,2] = 0 as in (6), which combined with (19) confirms
(13) for i = 2. Hence, the MSIS estimator of α⟨r⟩ is LE by Theorem 1(iii).

3.2 Special Case When d = 1

We now examine Theorem 1 in more detail for the special case when the dimension d = 1, so in (8),
the unknown parameter is θθθ ⟨r⟩ = θ⟨r⟩,1 ≡ θ⟨r⟩, the estimand is α⟨r⟩ = g(θ⟨r⟩), and the random vector
X⟨r⟩ = X⟨r⟩,1 ≡ X⟨r⟩ has mean θ⟨r⟩. Theorem 1 then requires that the derivative g′ of g is nonzero at θ⟨r⟩,
and the asymptotic variance in (16) becomes τ2

⟨r⟩ = [g′(θ⟨r⟩)]
2Var[X⟨r⟩].

We first focus on BRE/VRE properties, which correspond to parts (i) and (ii) of Theorem 1. For θ̂⟨r⟩,n

as the estimator of θ⟨r⟩, the relative error of the estimator g(θ̂⟨r⟩,n) of g(θ⟨r⟩) is

RE[g(θ̂⟨r⟩,n)] =
|g′(θ⟨r⟩)|

√
Var[X⟨r⟩]

|g(θ⟨r⟩)|
=

∣∣∣∣θ⟨r⟩g′(θ⟨r⟩)

g(θ⟨r⟩)

∣∣∣∣
√

Var[X⟨r⟩]

|θ⟨r⟩|
= h(θ⟨r⟩)RE[θ̂⟨r⟩,n], (20)

where h(θ⟨r⟩) = |θ⟨r⟩g′(θ⟨r⟩)/g(θ⟨r⟩)| and RE[θ̂⟨r⟩,n] =
√

Var[X⟨r⟩]/|θ⟨r⟩|. Thus, g(θ̂⟨r⟩,n) has BRE (resp.,

VRE) if and only if h(θ⟨r⟩)RE[θ̂⟨r⟩,n] remains bounded (resp., vanishes) as ε → 0. As discussed just before
the proof of Theorem 1, a sufficient condition for g(θ̂⟨r⟩,n) to have BRE (resp., VRE) is that θ̂⟨r⟩,n has BRE
(resp., VRE) and h(θ⟨r⟩) remains bounded as ε → 0. But g(θ̂⟨r⟩,n) can still have BRE or VRE even when
θ̂⟨r⟩,n does not if h(θ⟨r⟩)→ 0 fast enough as r → ∞. We next consider some specific examples.

First suppose that g(θ⟨r⟩) = c[θ⟨r⟩]
v for constants c ̸= 0 and v ̸= 0. In this case, we get h(θ⟨r⟩) =

|θ⟨r⟩cv[θ⟨r⟩]
v−1/(c[θ⟨r⟩]

v)|= |v|, so h(θ⟨r⟩) is a constant and is trivially bounded, no matter how θ⟨r⟩ depends
on r. Thus, it then follows that g(θ̂⟨r⟩,n) has BRE or VRE if and only if θ̂⟨r⟩,n does.

Now instead suppose g(θ⟨r⟩) = ceθ⟨r⟩ for some constant c ̸= 0, so h(θ⟨r⟩) = |θ⟨r⟩ceθ⟨r⟩/(ceθ⟨r⟩)|= |θ⟨r⟩|.
If θ⟨r⟩ = c1rℓ for constants c1 ̸= 0 and ℓ > 0, then h(θ⟨r⟩) = |c1rℓ| → ∞ as r → ∞. Thus, it is possible to
have unbounded h(θ⟨r⟩). Moreover, suppose that Var[X⟨r⟩] = c2

2θ 2
⟨r⟩+o(θ 2

⟨r⟩) as r → ∞ for some constant

c2 > 0, so that RE[θ̂⟨r⟩,n] = c2 +o(1), i.e., θ⟨r⟩ has BRE (but not VRE); then (20) implies RE[g(θ̂⟨r⟩,n)] =

h(θ⟨r⟩)RE[θ̂⟨r⟩,n]→ ∞, showing that g(θ̂⟨r⟩,n) can have unbounded RE, even though θ̂⟨r⟩,n has BRE. On the
other hand, if θ⟨r⟩ = c1r−ℓ for ℓ > 0, then h(θ⟨r⟩) = |c1r−ℓ| → 0 as r → ∞. In this case, if RE[θ̂⟨r⟩,n] = O(rℓ)
(resp., o(rℓ)), then g(θ̂⟨r⟩,n) has BRE (resp., VRE), even though θ̂⟨r⟩,n may have unbounded RE.

For LE, focus now on part (iii) of Theorem 1. As in (20), with δ0 and δ1 defined in (12), we get

RE1+δ0 [g(θ̂⟨r⟩,n)] =
|g′(θ⟨r⟩)|

√
Var[X⟨r⟩]

|g(θ⟨r⟩)|1+δ0
=

∣∣∣∣∣∣
θ

1+δ1
⟨r⟩ g′(θ⟨r⟩)

(g(θ⟨r⟩))1+δ0

∣∣∣∣∣∣
√

Var[X⟨r⟩]

|θ⟨r⟩|1+δ1
= h1+δ1,1+δ0(θ⟨r⟩)RE1+δ1 [θ̂⟨r⟩,n],

(21)

where h1+δ1,1+δ0(θ⟨r⟩) =
∣∣∣θ 1+δ1

⟨r⟩ g′(θ⟨r⟩)/(g(θ⟨r⟩))
1+δ0

∣∣∣ . Here too, a sufficient condition for g(θ̂⟨r⟩,n) to be

LE is that θ̂⟨r⟩,n is LE and h1+δ1,1+δ0(θ⟨r⟩) remains bounded. Also if h1+δ1,1+δ0(θ⟨r⟩) → 0 sufficiently
fast, it may be possible for g(θ̂⟨r⟩,n) to have BRE or VRE when θ̂⟨r⟩,n is only LE. For example, again
considering g(θ⟨r⟩) = ceθ⟨r⟩ for some constant c ̸= 0 and assuming θ⟨r⟩ → 0 as r → ∞ (so that δ1 = −δ ),
we get h1+δ1,1+δ0(θ⟨r⟩) = |θ⟨r⟩|1−δ/|g(θ⟨r⟩)|δ0 . Recall that (5) with ζ = 1 reduces to (2), so using δ0 = 0 in
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(21) yields RE[g(θ̂⟨r⟩,n)] = |θ⟨r⟩|1−δ RE1−δ [θ̂⟨r⟩,n]→ 0 as r → ∞ by (6) since we assumed that θ̂⟨r⟩,n is LE;
thus, g(θ̂⟨r⟩,n) has VRE even though θ̂⟨r⟩,n is only LE.

4 NUMERICAL RESULTS

Example 9 Nakayama and Tuffin (2022) describe a reliability system with two components, which we
now consider. The first component fails after an exponential amount of time, and then with probability
1− p, it automatically resets, and the process repeats again independently of the past. If the first component
does not reset, which occurs with probability p, the second component takes over, and has a uniformly
distributed lifetime. After the second component fails, the system fails, and then the entire system resets
after an exponential amount of time. We model the system as a 3-state semi-Markov process (SMP) with
state space S = {0,1,2}, whose embedded DTMC has transition probabilities as in Figure 1. The figure
also shows the holding-time distribution for each successive visit to a state s ∈ S, where E (λ ) denotes an
exponential distribution with rate λ > 0, so its mean is 1/λ , and U (a,b) is a uniform distribution on the
interval (a,b). We define a rarity parameter ε = 1/r, and let w0, w1, and λ2 be positive constants, whose
values we will vary to study different behaviors of the model as r → ∞.

We aim at computing the mean hitting time of state 2, which α⟨r⟩ now represents. Typically, as explained
in Nakayama and Tuffin (2022), if w0+1 > w1, the time spent in state 1 will make a negligible contribution
to the hitting time compared to the total time spent in state 0 before moving to state 1, and both the estimator
based on a ratio as in Example 5 or the alternative estimator of Example 6 will be efficient. In contrast, if
w0 +1 ≤ w1, the estimator in Example 5 encounters issues, motivating the approach in Example 6.

0

E (εw0)

1

U (0,ε−w1)

2

E (λ2)

1− p

p = ε 1

1

Figure 1: The edge labels are the transition probabilities of the embedded DTMC of an SMP, with the
holding-time distribution to each visit to a state below that state, where w0, w1, and λ2 are constants.

With the notation in Example 6, the rare set is A = {2}, T0,⟨r⟩ is the time to first return to state 0,
and TA,⟨r⟩ is the system failure time. Our experiments used w0 = 1 and w1 = 3, and we considered several
values of ε = 1/r, simulating with MSIS a total number n = 106 of cycles, where a (regenerative) cycle is a
sample path between two successive entrances to state 0. While CMC may also be applied by conditioning
on the SMP’s embedded DTMC, we did not do this.) For MSIS, we generate a number n1 = ⌊κn⌋ (with
0 < κ < 1) of cycles to estimate θ⟨r⟩,1 = E0[min(T2,⟨r⟩,T0,⟨r⟩)I(T2,⟨r⟩ > T0,⟨r⟩)] by naive MC, while the
remaining n2 = n−⌊κn⌋ cycles are used to estimate θ⟨r⟩,2 = E1[min(T2,⟨r⟩,T0,⟨r⟩)I(T2,⟨r⟩ < T0,⟨r⟩)L] and
θ⟨r⟩,3 = E1[I(T2,⟨r⟩ < T0,⟨r⟩)L] by IS, which replaces the transition probability p = ε = 1/r from state 0
to state 1 by a probability 0.8. The proportion κ is computed from a presimulation to minimize the
work-normalized variance of the resulting estimator (its expression is denoted γ∗ in Equation (23) of
Nakayama and Tuffin 2019), but keeping at least 10% of the cycles to both naive and IS simulations. This
potentially unequal sampling allocation using κ differs from the setting in (10), which assumes that each
θi is estimated with the same sample size (but possibly different simulation methods), but this does not
affect the asymptotic behavior (ignoring leading constants) since we constrain κ ∈ (0.1,0.9).

Table 1 displays the output for the estimation of θ̂⟨r⟩,ni,i of θ⟨r⟩,i (i ∈ {1,2,3}, with n3 = n2), an estimate

R̂E
(i)

of RE[θ̂⟨r⟩,ni,i], and the resulting estimation α̂⟨r⟩,n of the expected failure time with the corresponding
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Table 1: Results for the MTTF in the SMP example of Figure 1, from n = 106 independent cycles.

ε = 1/r θ̂⟨r⟩,n1,1 R̂E
(1)

θ̂⟨r⟩,n2,2 R̂E
(2)

θ̂⟨r⟩,n2,3 R̂E
(3)

α̂⟨r⟩,n R̂E
(0)

95% CI
1.0e-01 9.0e+00 1.1e+00 5.1e+01 8.1e-01 1.0e-01 5.0e-01 6.0e+02 7.1e-01 (6.0e+02, 6.0e+02)
1.0e-02 9.9e+01 1.0e+00 5.0e+03 8.2e-01 1.0e-02 5.0e-01 5.1e+05 6.7e-01 (5.1e+05, 5.1e+05)
1.0e-03 1.0e+03 1.0e+00 5.0e+05 8.2e-01 1.0e-03 5.0e-01 5.0e+08 6.8e-01 (5.0e+08, 5.0e+08)
1.0e-04 1.0e+04 1.0e+00 5.0e+07 8.2e-01 1.0e-04 5.0e-01 5.0e+11 6.8e-01 (5.0e+11, 5.0e+11)

estimate R̂E
(0)

of RE[α̂⟨r⟩,n] and CI. The results appear to show that the RE of the estimator of each θi
does not grow as ε shrinks, and the same is true when estimating α⟨r⟩ =E[TA,⟨r⟩]. This behavior indicates
BRE, which agrees with the theory in Theorem 1 and Example 6.
Example 10 We consider an HRMS (as in Example 5) with c = 3 types of component and a redundancy 5
for each type. Each component has an exponentially distributed time to failure with rate ε = 1/r. Any failed
component has an exponentially distributed repair time with rate 1, where there are 15 repairpersons, so no
failed component ever has to queue before receiving service. Component failure and repair times are all
independent. The system is down whenever fewer than two components of any one type are operational. We
want to compute here the steady-state unavailability, so α⟨r⟩ now represents the long run fraction of time that
the resulting CTMC is down. As in Goyal et al. (1992), we can express α⟨r⟩ = g(θ⟨r⟩,1,θ⟨r⟩,2) = θ⟨r⟩,1/θ⟨r⟩,2,
where the numerator is the expected down time in a cycle, and the denominator is the expected cycle length,
where a cycle is a sample path between two successive entrances to the fully operational state s0. Applying
CMC by conditioning on the embedded DTMC, we can write θ⟨r⟩,1 (resp., θ⟨r⟩,2) as the mean of the sum
of the expected sojourn times of each failed state (resp., all states) visited within a cycle. We consider
MSIS to estimate θ⟨r⟩,1 and θ⟨r⟩,2 from a total number n = 106 of independent cycles of the embedded
DTMC, with n1 = ⌊κn⌋ (resp. n2 = n−n1) cycles used to estimate θ⟨r⟩,1 (resp. θ⟨r⟩,2), with κ obtained (as
in Example 9) from a presimulation to minimize the work-normalized variance of the resulting estimator.
We estimate θ⟨r⟩,1 through an approach known as dynamic IS (Goyal et al. 1992), which within a cycle
applies IS only up to the first time the failed set is reached, at which point the rest of the cycle reverts
to naive MC. The IS employs balanced failure biasing (Shahabuddin 1994), which, in a state from which
both failures and repairs are possible, assigns a cumulative probability ρ = 0.8 to all failure transitions,
equally allocating ρ across the individual failure transitions; repair transitions get a total probability of
1−ρ , distributed to individual repair transitions in proportion to their original probabilities. Shahabuddin
(1994) establishes that this dynamic IS procedure yields an estimator of θ⟨r⟩,1 with BRE. We utilize naive
simulation to estimate θ⟨r⟩,2. Table 2 illustrates again that BRE is satisfied for all estimators.

Table 2: Results for unavailability for the HRMS of Example 10, from n = 106 independent cycles.

ε θ̂⟨r⟩,n1,1 R̂E
(1)

θ̂⟨r⟩,n2,2 R̂E
(2)

α̂⟨r⟩,n R̂E[α̂⟨r⟩,n] 95% CI
1.00e-01 2.90e-03 8.85e+01 2.78e+00 8.85e-01 1.04e-03 9.33e+01 (8.516e-04, 1.233e-03)
1.00e-02 1.11e-06 5.62e+00 7.74e+00 7.29e-02 1.43e-07 5.93e+00 (1.414e-07, 1.447e-07)
1.00e-03 1.01e-09 6.98e+00 6.77e+01 2.55e-03 1.49e-11 7.35e+00 (1.467e-11, 1.510e-11)
1.00e-04 1.00e-12 7.17e+00 6.68e+02 8.45e-05 1.50e-15 7.56e+00 (1.476e-15, 1.521e-15)
1.00e-05 9.98e-16 7.20e+00 6.67e+03 3.46e-06 1.50e-19 7.59e+00 (1.475e-19, 1.519e-19)
1.00e-06 9.98e-19 7.20e+00 6.67e+04 1.16e-06 1.50e-23 7.59e+00 (1.475e-23, 1.519e-23)

The literature provides many other numerical examples displaying empirical behavior consistent with
the theory in Theorem 1. For the MTTF ratio estimator in Example 5, Goyal et al. (1992) show the BRE
property through numerical results on a model of a computing system. When estimating the mean time
for the queue-length process to hit a large buffer size r in a stable M/M/1 queue, Nakayama and Tuffin
(2019) present simulation results using the ratio estimator in Examples 2 and 8 and the alternative estimator
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described in Example 6, with the latter approach outperforming the former for heavier congestion levels.
The M/M/1 estimators have LE but not BRE.

5 CONCLUDING REMARKS

We considered estimating a function of a vector of means in a rare-event context. This covers a wide range
of estimands that arise in practice, as we illustrated through numerous examples. Theorem 1 provides
conditions that show when the overall estimator can be estimated efficiently in terms of the efficiency
behaviors of the estimators of each individual mean.
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