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ABSTRACT

In this paper, we develop a new staffing algorithm for achieving stable service-level targets in queues with
time-varying arrivals. Specifically, we aim to stabilize the tail probability of delay, which is the probability
that the waiting time exceeds a designated target T > 0. We integrate reinforcement learning into the decision
making in queueing models; our new method recursively evolves the staffing decision by alternating between
two phases: (i) we generate simulated queueing data by operating the system under the present staffing function
(exploitation), and (ii) we utilize the newly generated data to devise improved staffing decision (exploration).
We demonstrate the effectiveness of our new method using various numerical examples.

1 INTRODUCTION

In service systems, an important service-level (SL) goal is to keep the fraction of customers who are served
within a delay target T above a probability target 1 — o, or equivalently, contain the probability that the waiting
time exceeds T below . With T =20 seconds and 1 — a = 0.8, this goal reduces to the famous 80/20 rule,
a long-standing industrial standard in call center management. Let W; be the waiting time at time ¢; such an
SL constraint can be formally described using the fail probability of delay (TPoD). Namely,

PW,>1)<a, for 7>0, oe€(0,1). (1)

TPoD-related metrics have many applications in practical service systems. One notable example is today’s
multimedia contact centers, wherein customers are served across different channels including phone calls, email,
live chat, and social media channels. According to Preece et al. (2018), a collection of insights from call-center
practitioners suggest that, besides the 80/20 rule for call contacts, 80% of live chats be answered within 40
seconds, 95% of emails within four hours, and 80% of social media posts within 20 minutes. The TPoD is also
widely used in health care. For instance, inpatient wards of Singapore hospitals strive to manage the probability
that delay stays below six hours (Shi et al. 2016)). Another relevant example is the Canadian triage and acuity
scale (CTAS) guideline that classifies patients in the emergency department into five acuity levels. According
to Murray (2003), “CTAS level i patients need to be seen by a physician within w; minutes 100¢;% of the
time,” with (w1, wy, w3, wa,ws) = (0,15,30,60,120) and (o4, 0z, 03, 04, 05) = (0.98,0.95,0.9,0.85,0.8). The
SL requirements in these examples can all be described by (1) with specific parameters 7 and .

Of course, controlling the TPoD is not the only goal and there do exist other SL metrics in service systems,
such as the probability of delay, mean waiting time and probability of abandonment. However, the TPoD is
a more general function and it can transform into most of these other metrics. For example, setting T =0
reduces to the probability of delay, and integrating the TPoD over 7 gives the mean waiting time.

Despite its practical significance, the TPoD is not widely studied in the queueing theory literature, especially
in the setting of more realistic queueing models having time-varying arrival rates, multiple servers, and customer
abandonment. The reason is two-fold: First, a TPoD constraint in form of (1) involves the careful analysis of
the waiting time distribution beyond its mean, exact solutions of which are hardly amenable to analytic results
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(except for approximations arising from large-scale limits; see Liu (2018), Liu et al. (2021) for examples).
Second, nonstationary queueing models are much more complex than stationary models; the former requires
the tracking of the transient queueing trajectory while the latter can be characterized by steady-state values.
For example, according to Shi et al. (2016), the six-hour service level in Singapore hospitals is found to be
highly unstable and vary between 4% and 37% over time in the course of a day.

In this paper, we attempt to tackle this problem by integrating machine-learning methodologies into the
decision making in queueing systems. Specifically, we develop a new recursive algorithm that can be used to
determine the required staffing function that achieves time-stable performance for a time-varying queue within a
finite time. Following the main idea of reinforcement learning (Sutton and Barto 2018), our algorithm organizes
the overall learning process into successive cycles each of which consists of two phases: (i) Exploitation:
The decision maker (the “agent”) generates relevant queueing data via a decision-aware simulator under a
candidate solution (the best staffing plan by far), (ii) Exploration: Using the newly collected data, improved
decisions (i.e., staffing plan) are prescribed and to be used to configure the simulator (the “environment”) in
the next cycle. This process continues until our staffing decision evolves to optimality. Because we learn from
offline (simulated) data, we call this method the simulation-based offline learning staffing algorithm (SOLSA).
See Figure 1 for an illustration of the recursive learning structure for SOLSA.
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Figure 1: Simulation-based offline learning staffing algorithm (SOLSA).

Our contributions

*  We develop a new staffing algorithm, dubbed SOLSA, to achieve time-stable performance in a time-
varying Markovian queueing system. Our new method recursively learns the staffing solution using
offline queueing data generated by simulation.

*  We conduct extensive numerical experiments to evaluate the performance of SOLSA. We also consider
practical constraints on staffing. All experiments confirm the efficiency and effectiveness of SOLSA.

* Supplementing the engineering confirmation, we also give the theoretical proof for the convergence
of SOLSA.

In the remainder of this paper, we review the relevant literature in Section 1.1. Next, we introduce some
preliminary results in Section 2 and formally present our SOLSA algorithm in Section 2.1. In Section 3 we
provide engineering confirmations for the effectiveness of SOLSA by conducting numerical studies. In Section
4 we give theoretical proof for the convergence of SOLSA. Finally, we give concluding remarks in Section 5.

1.1 Literature Review

Queues with time-varying conponents have been studied for many years and have applications to many service
systems such as call centers, police patrols, emergency departments, etc. See Whitt (2018) for a comprehensive
review of time-varying queues. We next only review results on staffing to cope with the time-varying demand,
which is closely related to the topic of present paper. Green and Kolesar (1991) introduced the pointwise
stationary approximation (PSA) method which approximates a time-varying queue by a sequence of stationary

328



Konrad and Liu

queues indexed by time and prescribes the required staffing using the steady-state results. PSA works well
only when the service times are relatively short and the quality of service is high. To control the probability of
delay, Jennings et al. (1996) proposed a modified-offered-load (MOL) approach that determines the staffing
level based on the number of busy servers in an infinite-server queue. The MOL idea has been later extended
to stabilize the mean waiting time and probability of abandonment in queues with customer abandonment (Liu
and Whitt 2012; Liu and Whitt 2014b; Liu and Whitt 2017), and the blocking probability in loss models (Li
et al. 2016). Another direction is to revise the staffing decision to account for the non-Poisson property in the
time-varyiing arrival process; see He et al. (2016) and Sun and Liu (2021) for the staffing of nonstationary
queues with arrival processes modeled by the dispersion ratio and auto-correlations. The present paper draws
distinction from the above literature by treating the TPoD, which is much more challenging SL metric than
those studied in these papers.

We are not the first to work with the TPoD in time-varying queues. Previously, the primary tools to analyze
time-varying queues are approximation models arsing from large-scale limits. See Liu (2018), Liu et al. (2021)
for TPoD-oriented staffing formulas developed based on many-server heavy-traffic fluid and diffusion limits.
The effectiveness of these formulas depend on the scale of the system: They are shown to be asymptotically
“correct” when the scale grows large, but their performance degrades in small-scale models. Another issue
is that these fluid and diffusion limits, although much more tractable than their corresponding root queue
models, are still not easy to analyze. Defraeye and Van Nieuwenhuyse (2013) developed a simulation-based
method to treat TPoD using a searching method, which comes with several costs. First, they cannot provide
convergence guarantees. Second, it is computationally expensive in that it can take many iterations to reach
satisfactory solutions and in each iteration they need to simulate the wait time distribution which leads to
additional implementation complexity and increased computational cost.

Our paper is most closely related to Feldman et al. (2008), which developed an iterative staffing algorithm
(ISA) to control the probability of delay (PoD), i.e., the probability the waiting time W, is greater than 0.
The heart of ISA lies in the immediate transformation from the total queue-length Q, to the PoD; specifically,
P(W, > 0) =P(Q; > s;) where s; is the number of servers at . This simple relationship enables ISA to adjust
and evaluate the PoD based on the (observable) queue distribution. However, this does not work for the TPoD
in form of (1) because the TPoD is not immediately computable using the queue length at ¢; instead, it is a
performance metric drawing from the full distribution of W; (realized only at future times). In the present paper,
we draw inspiration from (Feldman et al. 2008) to use the queue length as the data to inform our decisions.
However, we develop a new way to transform the queue length (present “reward”) to the waiting time and
TPoD (future information), in order to generate improved TPoD-driven staffing policies (future “action”).

Our work is related to the large body of literature on simulation optimization (Amaran et al. 2014) and
simulation analytics (Nelson 2019). The major distinction is that we focus on solving a constraint satisfaction
problem rather than optimizing certain objective values. Our work is also somewhat related to the offline-
simulation-online-application method (Hong and Jiang 2019) because our learning process draws heavily from
the offline data simulated under previous decisions. However, our staffing policies are not decisioned in real
time. Because of this connection, there is potential for our work to leverage the power of green simulation
techniques (Feng and Staum 2017) to produce improved solution efficiency. We leave this as an important
direction for future work.

2 THE SOLSA ALGORITHM

We consider the M, /M /s, +M queueing system having Poisson arrivals with time-varying rate A (¢) (the M,),
independent and identically distributed (IID) service times following an exponential distribution with rate
U (the M), customer abandonment following exponential abandonment times with rate 6 (the +M), and a
time-varying staffing function (the s;). Our goal is to seek the right staffing function s(z) in order to achieve
a desired TPoD target for some designated 7 and « as in (1). Before we introduce the SOLSA algorithm, we
first introduce some preliminary results which will serve as useful building blocks.

Queue-based waiting time prediction. = SOLSA is an automated procedure for seeking the proper
staffing level to control the TPoD SL target. A critical step in SOLSA is to efficiently exploit the simulated
queueing data and convert them to the desired SL target. Since our SL target is based on the waiting time
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W;, it may seem reasonable to directly simulate the waiting time data. However, doing so potentially has the
following issues: first, the waiting time W; is not observable at ¢ and becomes available only at some future
times. In addition, a customer’s potential waiting time data is unavailable after all he/she opts to abandon
from the queue before his/her service begins. This gives rise to significant challenges for the data collection
in real queueing models or computer simulations. Second, in a computer simulation model, the simulated
waiting times are much more challenging to generate than other queue states such as the queue length. For
example, the queue length is an integer valued process which increases and decreases by 1 at a time; it can be
simulated using simple methods such as uniformization. While tracking the waiting times requires tracking
all customers’ timestamps; it demands more complex implementation and bigger data storage.

Following Feldman et al. (2008), our simulator generates queue length data. Then we convert the queue
length to the TPoD; we establish a one-to-one relationship between the distribution of Q; and that of (W;|Q;),
the waiting time at ¢ conditional on the queue length distribution Q;. Specifically, we write

P(W, > 1) =Y P(W, > 7|0 = q) P(Q: = q), )
q

-~

=B(lq)

where ((t|q) is the queue-based TPoD predictor. To compute B(7|g), we invoke the matrix geometric
methods in Latouche and Ramaswami (1999) and model a customer’s waiting time as the first passage time
until absorption in a pure-death Markov chain, beginning in a transition state g. Specifically, a transition
occurs from state g to state g — 1 if another customer either abandons or enters service with rate s, + g6.
We remark that the idea of conditioning on the queue length Q; = g goes beyond the TPoD case in (2) and
can work for other SL metrics. For example, if the goal is to control the mean waiting time instead of TPoD,
we can again simulate the queue length and then work with the conditional mean waiting time given Q;, that
is E[W;|0, = q].

In real-world service systems, the staffing function cannot be changed in continuous time and remains a
constant within a fixed staffing interval (e.g., 30 minutes in call centers). Our algorithm take into account this
practical constraint. Let ATp be the length of time between potential staffing changes. Then, let ¢ represent
the ¢/ staffing epoch, where £ = 0 is the initially selected level. This means that the time of the #'* potential

staffing change is #y = £ - ATp. Further, if our time horizon is T, then there are / = [ﬁw total staffing epochs.

2.1 SOLSA

We present the complete algorithm for SOLSA that also incorporates longer staffing durations in Algorithm 1.
We begin with an initial staffing function s,(o) (we assume s,(o) is sufficiently large to ensure we overly achieve
our TPoD goal). Then, we simulate the system and evaluate the queue length distribution at each time ¢. We
note that ¢ is pseudo-continuous, in the sense that it is intended to represent a continuous measurement of
time, but is in fact discretized for the purposes of numeric calculation.

Based on the queue length distribution for each time ¢, we calculate the smallest value of staffing such
that our TPoD target can be met in Line 6. This becomes our new candidate staffing function. In Theorem
1, we prove that the TPoD is a monotonically decreasing function with respect to the staffing level, so this
optimization can be solved using any root-finding method. We note that Line 8 in Algorithm 1 says that
all staffing from time O to T should be set to the selected staffing level s;, since there is no queue length
distribution before time O that we can use. In practice, this warm-up period does not affect the algorithm’s
performance. Next, in Lines 9-14, we set the true staffing level in each epoch to be the maximum of the
optimal candidate staffing levels in that epoch. This ensures that all arriving customers will see the desired
service level, regardless of when they arrive during a staffing interval. These lines can be omitted if we wish
to allow staffing to vary continuously.

If the maximum difference in the old and new staffing functions is less than a threshold &, then the
algorithm has converged and we have found our optimal staffing function. If we have not yet converged, we
repeat the process with the new staffing function. In Section 4 we prove that SOLSA converges in finite time.
We also remark that SOLSA is a self-validating algorithm: when SOLSA terminates in some iteration i*, the

latest staffing recommendation s,(i ) is automatically the staffing function to achieve the desired TPoD target.
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Algorithm 1 SOLSA
1: Inputs: 7, a, T, ATp, €
2: Initialize: i < 0, 7 < {ﬁ-‘, O < oo, s,(o) oo, Vt
3: while & > € do

4: Use simulation to evaluate the distribution of Q,(i) under st(i), V.
5: for eachr do _
6: sA,(f:;l) — argmin{s]ZqIP’(W(s,q) > T) ‘IP’(Q,(’) =q) < Ot}
7: end for '
Ai+1) Ai+1)

{tlr<t} St

9: for /=0 To 7 do

10: f+ [EATD,(£+1)ATD)

11: for eachtci do

12: st(iH) <+ max {f,(iﬂ)}
telf]

13: end for

14: end for

15: O < max st(iH) — s,(i)

16: i+—i+1

17: end while

As soon will be seen in Section 3 that SOLSA usually converges quickly. Nevertheless, there is potential to
further reduce the computational complexity by leveraging the power of green simulation methods (Feng and
Staum 2017). Specifically, the simulated queue-length data are retrieved from (i) the present operational policy
(i.e., staffing rule) and (ii) all random sources (i.e., arrival process, service times and abandonment times) that
are generated from simulation. Because all of these random elements are decision blind (independent of the
staffing rule), we can reuse them in the next iteration under a different staffing rule.

3 SIMULATION EXPERIMENTS
3.1 A Base Example with Sinusoidal Arrival Rate

In our base model, we consider a sinusoidal arrival rate in form of
A(t) =n(a+b-sin(ct)), 3)

witha =1, b=0.2, c =1, and the system scale n = 100. We also let 4 = 8 = 1, and we set the fixed-staffing
interval ATp = 0.01. We let € = 1, meaning that we stop once the maximum difference in staffing levels
between iterations is 1. We utilize the preemptive work-releasing policy when we dismiss a busy server,
meaning that if an active server departs, the customer is returned to the head of the queue. This secondary
wait is ignored for the purposes of measuring wait time. We let our waiting time target be 7 = 0.5 (half of the
mean service time). The results are shown in Figure 2 for settings where o ranges from 0.1 to 0.9, utilizing
5000 simulation replications in each iteration. We begin with an initial candidate staffing with 200 servers.
We see that our algorithm performs remarkably well at achieving the target TPoD. In addition, to generate
the correct staffing functions (as shown in the middle plot), SOLSA converges in only 2 iterations.

We have conducted several other numerical examples, all of which exhibit similar stabilized TPoD values
and confirm the good performance of SOLSA. We also observed convergence behavior which primarily
depended on the ratio r of the abandonment rate to the service rate » = 6/u, which is consistent with the
findings in Feldman et al. (2008). Specifically, if r = 1, then the algorithm converged in 2 iterations. If r > 1,
the algorithm typically converged in 3-5 iterations, and if r < 1, the it converged in 7-10 iterations.

3.2 Comparing SOLSA with Staffing Methods drawn from Many-Server Heavy-Traffic Limits
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Figure 2: Stabilizing the TPoD at targets & = 0.1,0.3,0.5,0.7,0.9.

An alternative way of setting the staffing level to cope with time-varying demand is by exploring the
analysis of the many-server heavy-traffic (MSHT) limits of the relevant queueing system; see for example
Aras et al. (2018) for recent developments. These limits are derived by allowing the system’s scale (i.e., the
arrival rate and the number of servers) to grow large. Indeed, staffing functions resulting from these MSHT
limits are shown to be asymptotically correct as the scale approaches infinity.

The most relevant result on staffing to stabilize the TPoD is the two-term Gaussian approximation (TTGA)
proposed in Liu (2018), of which the development draws heavily from the MSHT limits in the efficiency-driven
(overloaded) regime Liu and Whitt (2014a). Although TTGA is proven to be effective in general, it exhibits
significant performance degradation when the system scale is small or the system is not sufficiently overloaded
(with the delay target T much smaller than the mean service time). We next conduct performance analysis
of SOLSA with TTGA (we refer to the specific TTGA staffing formula in Corollary 3 of Liu (2018) under
the sinusoidal arrival rate (3)). To substantiate that SOLSA is a more effective and robust method, we hereby
specifically focus on the two TTGA-unfavored cases (a) a small delay target, and (b) a small system scale.

In Panel (a) of Figure 3, we continue to use our base example in Section 3.1, but we reduce the delay
target to 0.01. We observe that the TPoD results under TTGA begin to deviate from their target values because
the smaller delay target is pushing the model out of the efficiency-driven regime. On the other hand, SOLSA
continues to work effectively because it is independent of the value of the delay target. Next, we consider a
small-scale queueing model having the sinusoidal arrival function in (3) with the scale n reduced from 100 to
10. According to Panel (b) of Figure 3, we conclude that TTGA exhibits somewhat poor performance with
the TPoD constantly violating the target, while SOLSA is able to consistently keep the TPoD right below the
target. This is not surprising because TTGA requires the system’s scale to be large while SOLSA is robust
to the system’s scale.

3.3 A Practical Constraint: Fixed Staffing Intervals

In previous examples, we allows the staffing function to vary in almost continuous time (with ATp = 0) so
that the staffing changes can be sufficient flexible to achieve near constant SL targets. Next, we consider the
practical case with ATp > 0; that is, the staffing level cannot be adjusted in continuous time except at discrete
time points ¢1,1,13,... with step size Tp (i.e., with t; =i - ATp).

We again consider the sinusoidal arrival rate in form of (3), with t = 6 =1 and step size ATp = 0.5 (which
is consistent with call center models wherein the staffing is adjusted once every 30 minutes). In Figure 4, we
consider three TPoD targets o = 0.1,0.5,0.9 and delay target T = 0.1 (i.e., 10% of the expected service time).

In Figure 4, we see that SOLSA continues to exhibit good performance with TPoD values controlled right
below the targets. However, unlike the previous examples, the TPoD curves are much less smooth, showing
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Figure 3: Performance comparison between TTGA (top) and SOLSA (bottom): (a) a smaller delay target
7=0.01 and (b) a smaller system scale n = 10.

the effect of the discretization of the staffing function under the fixed interval constrains. Also, we note that
the staffing function now requires more servers than the previous case with ATp = 0 (as in Figure 2). This is
because our goal is to ensure that the maximum TPoD be controlled below the target in all intervals, that is

max

PW,>1)<a

1 <t<tit|

for all

ti=i-ATp, i=1,2,....
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Figure 4: Stabilizing the TPoD at targets & = 0.1,0.5,0.9 under fixed staffing intervals with ATp = 1/2.

3.4 Realistic Call Center Arrival

Finally, we apply SOLSA to a queueing model informed by a realistic arrival rate function estimated from
call center demand data (Green et al. 2001; Feldman et al. 2008). This arrival rate is for a medium-sized
financial services call center, where the average service time is 6 minutes, leading to a service rate of yt = 10
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per hour. We follow Feldman et al. (2008) to set the abandonment rate, 6 = 10. First, we present the arrival
rate in the top panel of Figure 5. Notice the incredibly low volume in the early and late hours of the day, as
well as the rapid increase in the arrival rate during the morning.
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Figure 5: Achieving the 80/20 goal with a call center arrival rate under (a) flexible staffing (dotted line) and
(b) inflexible staffing with ATp = 1 (dashed-and-dotted line).

Then, in an effort to meet the common “80/20" rule in call centers, where 80% of the calls need to be
answered within 20 seconds, we run SOLSA with the service level goal of P(W > 20 sec) < 0.2. The simulated
TPoD performance under the SOLSA staffing functions (obtained in 2 iterations) are presented in the bottom
panel of Figure 5. First, we show the case of near-continuous staffing, where A7p = 0.01 (flexible staffing,
the dotted line), then we show the case where staffing changes once per hour (A7p = 1, the dashed-and-dotted
line). As we can see in the flexible-staffing case, the algorithm works well by keeping the TPoD right below
the 20% mark (except for the slight overstaffing when the demand rate is close to 0).

In the inflexible-staffing scenario, the target is always achieved, but is usually overachieved due to the
practical constraints on the fixed staffing interval. Comparing to the flexible-staffing result, the inflexible
staffing with ATp = 1 requires a nearly 10.7% increase in staffing, which may be a cost prohibitive solution.
(We also considered an intermediate case with ATp = 0.5 which leads to a 5.1% increase in staffing). We see
that as the variability in the arrival rate decreases, our performance function is also less variable.

4 PROVING THE EFFECTIVENESS OF SOLSA

In this section, we prove two important aspects of SOLSA for the special case of a M;/M /s, +M system.
We will currently assume that staffing is allowed to fluctuate continuously, but we will show that the proofs
are easily extended to the case where it changes at discrete time points. First, we prove that the TPoD is
monotonic with respect to the staffing level. We will use this result to prove that the algorithm converges.

4.1 Proof of Monotonicity
Theorem 1 Wait Time TPoD Monotonicity. For a G;/M /s, +M system where s is held constant over the
analysis window, P(W (s;,Q;) > ) is a monotonic function that decreases w.r.t s; for a given distribution Q;.

Proof of Theorem 1. Using conditioning, we cansay thatP(W (s;, Q;) > 7) =Y, P(W(s;,q) > 7) - P(Q; = ¢q).
we observe that P(Q; = ¢) is a fixed quantity in our analysis. Therefore, if P(W (s;,¢q) > T) is monotone w.r.t. s
for all values of ¢, then we know that P(W (s;,Q,) > 7), which is a convex combination of monotone functions,
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is also a monotone function. Thus, it is sufficient to prove that P(W(s;,q) > 7) is monotone decreasing
w.r.t. s; for all values of g. In order to prove that P(W(s+1,q) > 7) <P(W(s,q) > 1), we will utilize the
definition of stochastic ordering. Namely, a random variable A is stochastically less than a random variable
B if P(A > x) <P(B > x). We will denote this relation as A <y B.

We first observe that for two exponential random variables X and Y, with rates Ay and Ay respectively,
X <y Y if and only if Ay > Ay. This can be easily seen by verifying the definition of the exponential distribution.

We note that the potential waiting time consists of Kk = g — s+ 1 independent exponential random variables,
and present a visual of the situation in Figure 6 for a system with s servers and g customers. N; is the service
time of the i"” stage, where i more service completions or abandonments must be completed before the customer
enters service. The rate at which a stage finishes is A; = sy + (i — 1)0 when there are s servers.

+(,C_1)g +(K—2)9 su+6
S servers
q customers
SuU+p Sptp
+(K_1)9 + (k—2)0 su+u+6 Sp+p
S+1 servers o —
q+1 customers
su+u
+(k—2)6 su+u+6 su+u

S+1 servers P eee > >
q customers
Figure 6: The waiting time of three similar systems.

Suppose we examine a system with s+ 1 servers and g+ 1 total customers, and let N! be the service time
of the " stage in this new system. Clearly, k = K/, but as we can see in Figure 6, A/ = 4, + .

Now, we can clearly see that the random variable representing the service time in stage i is stochastically
less in the larger system. Namely, N! <y N; for i € [1, k]. We next take advantage of the following property of
stochastic ordering. Namely, if A; and B; are independent and A; <y B;, then Y.} | A; <y Y'i' | B;. Therefore,
we can say that Y5 | N/ <; Y'X | N;. Furthermore, Figure 6 shows a third system that corresponds to a situation
with s+ 1 servers, but only g customers. This system has one less stage to complete, but for each stage,
A" = A!. We can now order these systems as follows.

K—1 K K
Y N/ <q YN/ <a Y N; and W(s+1,q) <gW(s+1,q+1) <y W(s,q)
i=1 i=1 i=1

sothat P(W(s+1,9) > 1) <P(W(s,q) > 1)

We have thus shown that P(W (s;,q) > 7) decreases w.r.t. s;, which therefore means that P(W (s,,Q,) >
7) =Y, P(W(s:,q) > 7)-P(Q; = q) is a monotonic function that decreases w.r.t s;.

4.2 Proving the Convergence of SOLSA

We begin by stating two existing theorems that we will use in our proof of convergence. Our analysis builds
on the stochastic comparison between two random variables X and Y; we say X >y Y if X stochastically
dominates Y with P(X >¢) > P(Y >1t) for all ¢.

Theorem 2 (Belzunce et al. (2016) Theorem 2.2.8) Let {X;(0)|6 € S C R} and {X»(0)|6 € S C R} be
two families of random variables, and ®; and ®; be two random variables with common support S. If
X1(0) <4 X2(0),VO €8, 01 <y 0, and E[¢(X;(0))] or E[¢p(X2(0))] or both are increasing in 6, for all real
valued increasing function ¢, then X;(0;) <, X»(®;).

We next restate Theorem 7.1 in Feldman et al. (2008)using Q; as the distribution of number of customers
in the system at time ¢ instead of N;.
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Theorem 3 (Feldman et al. (2008) Theorem 7.1) Consider the M;/M/s; + M model on the time interval
[0,T], starting empty at time 0. Let r = g. If r>1 and s,(A) < st(B) forallz € [0,T], orif r <1 and sz) > st(B)

for all £ € [0,T], then {0 :0<r < T} <, {0® :0<t <T).

Our proof of convergence follows similar logic to that of Feldman et al. (2008), with the important
modification of relating staffing choices to that of waiting time, rather than just queue length.

Theorem 4 (Convergence of SOLSA) Consider the M, /M /s, + M model on the time interval [0, 7], starting
empty at time 0. Suppose that we consider piecewise-constant staffing functions that can only change at multiples

of D > 0. Suppose that in each iteration n we can obtain the actual stochastic process {Q,(n) :0 <t < T} associated
with the staffing function {s,(") :0 <t < T} (without statistical error). Suppose that st(o) =Vt €[0,T].
(1). If r > 1, then s,(n) < st(m) for all n > m > 0 and there exists a positive integer ng such that

st(SOLSA) = st(”°> = s,(")Vt and n > ny.

(2). If r < 1, then there exist two subsequences, {st(zn)} and {s,(2"+1)}, such that st(zn) { st(mn) and

st(2n+ 1) 4 St(odd) ‘

st(O) > st(Zn) > st(2n+2) > S£2n+3) > S,(2n+]) > St(l)

for all 1,0 <t < T, and for all n > 0. Moreover, there exists a positive integer ng such that

Sl(Zn) _ St(2n0) _ Sl(even) > st(odd) _ St(2n0+l) _ Sz(2n+1)
for all 1,0 <t < T, and for all n > ny.
Proof of case 1: r > 1. First, assume that s,(o) = oo, We therefore know that s,(O) > st(l). Therefore, by

Thm. 7.1, we know that Q,(O) >y Q,(l). By the construction of our algorithm and the monotonicity of wait

time with respect to the staffing level, we know that st(l) satisfies the following:

PW(s", 0 > 1) < a<PW(s” —1,0) > 1). )

(4) shows that at each time ¢, the staffing level is chosen such that removing one server would increase the
TPoD above the target level.
Next, we utilize Thm. 2.2.8 from Belzunce et al. (2016). {W(s,q)|q € N} is a family of random variables,

and it is easy to verify that W(s,q) <y W(s,q). Since Q,(I) <yt Q,(O), Thm. 2.2.8 allows us to say that
wist o) <a wis” o).

By the definition of stochastic comparison, this means that IP’(W(S,(I),Qt(l)) >1) < P(W(s,(l),Q,(O)) > 7).
Combining this result with (4), we see that

Pw (s, 0"y > 1) <PW(st", 0" > 1) < .

For each time ¢, we now seek to find s,(z), which is found using the distribution of Q,(I). Let us begin by

assuming st(z) = s,(l). Since the TPoD is monotonically decreasing w.r.t. s;, one of the following must be true:

Pw (s, 0N > 1) <a<PW(E? —1,0M > 1) or PW(P, 0" > 1) <PW(s® —1,0Y) > 1) < .

Therefore, st(z) < s,(l). Now, we repeat the process and we see that Q,(") is stochastically decreasing with respect

to n and st( ) is also decreasing in n. Since our staffing levels are non-negative integers and we only use a

finite number of values of ¢, then our algorithm is guaranteed to converge in finitely many steps.
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(0) ) o (1)

Proof of case 2: r < 1. Again, let us assume that s; ' = oo, so we know that s, * > s,”’. Therefore, by

Thm. 7.1, we know that Q,(O) <g Qt(l). By the construction of our algorithm and the monotonicity of wait

time w.r.t. the staffing level, we know that st(l) satisfies the following:

PW(st”,0”) > 1) <a <PW(s" —1,0") > 7). 5)

We again utilize Thm. 2.2.8 from Belzunce et al. (2016) to say that W(s,(l), Q,(l)) > W(s,(l), Qt(o)), which
means that ]P’(W(st(l) ,(1)) >1T) > P(W(S,(()),Qt(l)) > 7). Combining this result with (5), we see that

Pw (s, 0" > 1) > Pw (s, 0 > 1) < a.

Therefore, if we again start by assuming that s,(z) = st(l), then we again have two possible situations. Either

P(W(s,(l),Qt(l)) > 1) < o is true, in which case

Pw (2,0 > 1) <a <PW(s? - 1,0 > 1)

and s,(z) = st(l). Otherwise, }P’(W(s,(l), Q,(l) ) > T) > a, in which case, by the monotonicity of the TPoD w.r.t. s,

we must increase st(z) until P(W(st(z), Q,(l)) > 1) < « is true. Thus, s,<2) > st(l). We can now order our staffing

functions as st(o) > st(z) > s,(l) (since st(o) = o0), which leads us to the following ordering of the distributions of

number in the system: Qt(o) < Qt(z) <st Qz( Y,

Using our previous arguments, we can see that st(z) > s,(3) > s,(l). This pattern will continue, and we will
see that s,(zn) will decrease in n and s,(2"+1) will increase in n, maintaining the relationship that St(2n) > s,(Z"H).

Since our staffing levels are again integers and we are using only finitely many values of ¢, we will again
achieve convergence in finitely many steps, though it may be to two different limits, separated by at most 1.

4.3 Convergence with Discretized Staffing Changes

At its core, the modified algorithm remains nearly identical to the original, thus it follows that the algorithm
should converge, but we will briefly remark on the reasoning behind the belief, which is indeed correct.
At each iteration, the algorithm selects a candidate staffing function §/*!) based on the previous iteration’s
staffing function s(). The selection of this candidate staffing function occurs just as in the original algorithm.
Thus, if r > 1, §U+1) < s, Now, for a given staffing interval ¢ (with its corresponding time interval 7),

the staffing level selected for the next iteration s,(iH), which is the max level observed during that interval,

must also be less than or equal to s,(l). Therefore, the original proof of convergence remains effecting and the
modified algorithm will converge. By the same reasoning, if r < 1 and i is even, we know that s+ < s,
However, if i is odd, then §U+1) > s, For each staffing interval, the maximum value is certainly at least as
large as the value observed in iteration i, therefore st > 50 Once again, the original proof of convergence

remains effective and the modified algorithm will converge.

5 CONCLUDING REMARKS

This work contributes to the ongoing efforts to achieve stable SL targets in time-varying queueing systems.
Our SL goal builds on the TPoD which has many practical applications including customer contact centers and
healthcare. We develop a new simulation-based offline reinforcement learning algorithm which recursively
learns the desired staffing functions by alternating between two phases: (i) exploitation of the present candidate
solution to produce decision-aware queueing data, and (ii) exploration of improved decisions using newly
generated data. The effectiveness and efficiency of our new method are substantiated by (i) comprehensive
simulation experiments and (ii) theoretical convergence guarantees. We also consider the practical constraint
of fixed staffing intervals. One practical future direction is to expand the scope of SOLSA to include other
commonly used SL metrics such as the mean waiting time and probability of abandonment. Key steps in these
extensions is to develop one-to-one mapping from the queue lengths to these other metrics. Another important
dimension is to generalize SOLSA from queues with Markovian structure to non-Markovian settings, with
nonexponential service and abandonment times.
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