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ABSTRACT

With steadily increasing performance of computers, agent-based modeling has evolved from an analysis
method for qualitative phenomena to strategy for quantitative decision support. With this orientation,
however, the modeler faces new challenges during implementation. In particular, an appropriate simulation
tool must feature the combination of data and model flexibility, process reproducibility, performance and
portability. While existing simulators often do not sufficiently cover these features, it is also not sustainable
to generally implement models from scratch. In this work, we want to present the idea of simulation
templates as a compromise between the two strategies. We show, on the example of our Agent-Based
Template and two use cases, the importance of the described challenges and how the simulation template
concept supports solving them. We aim to generally promote the idea of developing a customized template,
which, as a layer between simulator and from-the-scratch implementation, combines the advantages of
both approaches.

1 INTRODUCTION

With the steadily increasing performance of computers, agent-based models (ABM) have evolved from
an analysis tool to investigate qualitative phenomena to an approach for quantitative decision support. In
these situations, the focus is no longer on the emergence and understanding of complexity, but on the
most accurate microscopic representation of reality, the precise determination of the parameter values, and
the quantification of outcomes and uncertainty. The trend towards quantitative use of ABMs has been
observable for some time, but was undoubtedly fueled by the COVID-19 crisis. During this time, many
research groups (e.g., Müller et al. 2021; Hoertel et al. 2020) used ABMs for epidemiological forecasting
and scenario computation because, unlike classical compartmental models, many relevant aspects of the
pandemic and pandemic management, such as contact tracing, school closures, virus variants, or immunity
waning, can be modeled directly. Implementing an ABM for a fully integrated simulation application
(compare with Popper et al. 2022) gives rise to multiple challenges. A simulation tool or software used
for the implementation should support in these matters. Although the details and depth of these challenges
can differ a lot between ABM research groups, they can, on the top level, be summarized into the five key
areas shown in Table 1.

The most common strategies for the implementation of ABMs are (1) from-the-scratch using a funda-
mental programming language or (2) using an existing simulator or simulation framework. The first strategy
is clearly the most flexible and portable one, but is neither efficient nor sustainable: Every algorithmic
component, from random-number-generator to event-queue has to be implemented or integrated manually.
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Table 1: Challenges to an ABM simulation tool, when used in quantitative decision support projects.

Data Flexibility. The tool must offer methods to load and export potentially large amounts of data and
must provide interfaces to various data structures such as CSV tables, JSON structures, domain specific
XML files, or even SQL databases.
Model Flexibility. The tool must provide sufficient flexibility to implement all possible types of ABMs
a modeler could think of. Moreover, the tool must support integrated use of the simulation within a
custom outer framework, e.g., a custom calibration or optimization routine.
Process Reproducibility. The tool must ensure reproducible processes. This includes data preprocessing,
model parametrization, random number generation, Monte-Carlo simulation, and code administration.
Performance. The tool must be capable of dealing with a potentially huge number of complex agents
which leads to high memory and computation time demands. Therefore, the tool must use computationally
optimized algorithms and must be capable of exploiting all computational resources given, e.g., via parallel
computing.
Portability. Products developed with the tool and the tool itself must be fully portable and must run
platform-independent. The ported tool must remain editable and maintainable. It must allow to add
interfaces to third party products and various forms to present results, like visualizations.

Providing well-structured and easily readable source code as well as maintenance and communication
of such becomes a time-consuming task which furthermore complicates onboarding of new colleagues.
For the second strategy, a huge and constantly growing number of simulators and toolkits are available,
but this comes with different challenges. Using a third party tool can be very restrictive with respect to
model flexibility, performance or portability. If problems arise on the simulator level, the programmer is
stuck and needs to look for a workaround.

In the past 15 years the team around the author has worked in projects in which large scale ABMs were
used for quantitative decision support. In this time various from-the-scratch implementations were made
and multiple simulators and toolkits were evaluated and tested for large-scale ABMs. During this work, the
team experienced the mentioned problems: First, almost all from-the-scratch implementations (using Java,
Python and C++) were eventually archived. Only the original developer could have theoretically maintained
or further extended said projects within reasonable time. Tested simulators include AnyLogic (Grigoryev
2012) and Netlogo (Tisue and Wilensky 2004), which were both experienced great for prototyping, yet
difficult to apply for large-scale applications due to issues with computational performance. Since most of
our applications require millions of complex agents, neither AnyLogic nor Netlogo qualifies as a standard
modeling tool for our research group.

An intermediate solution would be beneficial, i.e., a strategy that combines the advantages of a flexible
from-the-scratch implementation with the benefits from using a simulator. Our solution to this problem is
a Simulation Template (ST) for ABM , i.e. a code skeleton consisting of various algorithms and classes
and a set of conventions, which (a) can and should be fully customized to the needs of the modeling team
and (b) supports all points listed in Table 1. This way, the modeler does not have to re-implement basic
simulation components in every new project, but is still left with sufficient flexibility to write a program
that meets all the criteria and challenges for their specific application. This code skeleton can either be
newly developed or taken, as a whole or in part, from one of the many ABM toolkits.

In 2019, the team around the author started with the development of their own ST for ABM: ABT,
short for Agent-Based Template. The two toolkits Mesa (Masad and Kazil 2015) or Repast Simphony
(North et al. 2013) were properly tested for their applicability as a code skeleton. Due to quickly visible
performance deficiencies of Python compared to Java for agent-based simulations, MESA was quickly
ruled out. Repast Simphony was tested in early 2019 on the example of a hospital utilization model
(https://www.dwh.at/en/projects/premiqamed/). The ABM capabilities of the toolkit were fully sufficient to
implement the model. Yet, we had difficulties overcoming certain design decisions, which are completely
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reasonable for a holistic simulator, but not as well-suited as a template or library. For our use cases, we
needed, e.g., a less tight coupling of the various components. We also consider a leaner core component
to be beneficial for distribution. After some internal discussion and weighing all the pros and cons, we
began implementing our ABT from scratch.

In this work, we will generally discuss the key ideas and advantages of using a simulation template as
a compromise between the usage of an existing simulator and an implementation from scratch. For this
purpose, we also present ABT, our own simulation template, and discuss its ability to properly handle the
challenges in Table 1 for two use cases.

2 METHODS

2.1 Simulation Template for ABM

In our understanding, a ST for ABM is a customized collection of implemented code pieces and conventions
which together support solving the challenges which occur in the course of the implementation, the application
and the maintenance of ABMs in a research group (see Table 1). In our definition, it consists of two parts:
an algorithm and a convention part.

The first part is comprised of multiple, layered components to facilitate building ABMs. As basic
building blocks, the components allow the modeler to reason about the intricacies of a model without
ambiguity about behavior of the system in the simulation context. In our understanding of ABM, both
tick-based as well as event-based time updates are allowed. Hence, these components should always include
a discrete-event-scheduler which handles the event-loop and general events. The scheduling logic and
its concrete implementation should be chosen according to the specific type of models and performance
requirements of the modeling team. Furthermore, the template should provide an agent-based component.
It provides a dedicated agent class and everything necessary for describing and running an ABM: a simulation
class with an interface for configuration, utility functions for keeping record of intermediate ephemeral
simulation recordings, and a wrapper class for efficiently generating pseudo random variables in various
distributions. Finally, the template should include an input-output component, responsible for managing
input and output of simulation runs, tracking of system variables, as well as statistical examination of the
output data.

The second part of a template is a set of written or implemented conventions modelers have to comply
when implementing models with it. Three main areas should be covered: version control, code structure,
and standards for model in- and output. Together, they ensure that reproducibility standards are met and
support onboarding of new members to the programming team.

2.2 Implementation of ABT

In the following, we will present our own simulation template implementation, the ABT, and explain
how it meets the requirements of our modeling team. For brevity we focus on the original Java-based
implementation for the algorithm part, but the same concepts were also applied to a C# based version.

Discrete-event component. ABT provides both a tick-based scheduling system and a datetime-based
one. The tick-based system is limited to integer values to model discrete increments as simulation progress,
while the datetime-based system is better suited for describing events in a more calendar-centric way. This
allows us to schedule events, e.g., next week or in a month. Because of the performance penalties of
describing time in such a way, concrete timestamps are evaluated on demand. This is achieved through the
TimeInstant class, which wraps and consolidates the Java.time classes. To break ties on simultaneously
occurring events, a priority system was implemented. The higher the priority of a given event, the earlier it
is triggered. The ordering of events, which may be created dynamically during runtime, is taken care of in
the {Tick-, Time}Scheduler classes. They are based on priority-queues which have a runtime performance
of O(logn) for enqueing and dequeing operations.
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The base object is the Entity which by default just provides a unique id. To enhance their capabilities,
ABT provides the Listener interface to allow it to receive and react to messages or events. We distinguish
between simple point-to-point messages and scheduled events. Messages are sent to their destination and
processed (handled) immediately. They are primarily meant for inter-agent communication. Messages
provide a source, a destination, and a unique id. Events are derived from Messages. They may be scheduled
and processed either as soon as possible or at a future point in time. Since events are meant to be trigger
by the Scheduler, they need to be sortable and thus have attached a datetime or integer in addition to a
priority.

Usually, we derive from the BaseEvent class for the different types of events our models need. This
allows us to separate responsibility and encapsulate behavior in distinct events. Another benefit of this
granularity, is that ABT is capable to filter by event-type (tracing) during runtime for logging or visualization
purposes.

Agent-based component. Our agent-based component is a layer on top of the discrete-event
component with more capabilities. Its central element is the Agent class which is derived from the Entity
class and has more complex properties, such as a name or a position, and by default implements the Listener
interface to handle messages and events. Processing of messages can be restricted to a specific event-type
to implement a simple broadcasting mechanism.

We usually employ Monte-Carlo (MC) simulation and have to ensure reproducibility with respect to
pseudo random number (PRN) generation. This is guaranteed through our Simulation class, which uses
by default a Mersenne Twister based pseudo random number generator. To enable parallelization, each
instance of the Simulation runs independently from one another. They are started through a Factory class,
that ensures proper (PRN-)seeding and initialization of used agents. The intermediate results are recorded
in a special tabular data structure (see Recorder description below). Note, that ABT does, by itself, not
offer any implemented methods for parallelization within single ABM runs, but solely for the Monte Carlo
simulation. This is due to the fact that in all prior applications, we were always capable of fully utilize all
available kernels on our computation server by parallel Monte-Carlo runs. Therefore, we did not yet put
any further efforts in parallelization of individual runs or GPU programming.

Input/Output component. As our models have a very heterogeneous need for data import, we
implemented various helper classes for importing and exporting data. Most of them are based on the
jackson library, see Young (2013), as it works well with various tabular and hierarchical data structures.

Additionally, we provide a fast internal tabular datastructure, called Recorder, for collecting output
information from agents during runtime. The main consumer of this class the Statistician class which
collects all Recorder instances and provides methods for automated aggregation and statistical analysis.

For storing the state of our simulations, including the recorder, we use object-serialization with JSON.
This allows us to create checkpoints and resume the simulation at arbitrary times. All the classes in our
template can be serialized and deserialized by default. This allows ABT to save and restore the state of the
simulation which can be used to drastically reduce the runtime cost of performing exhausting parameter
variation, optimization, or calibration processes.

Version control. Our workflow is centered around source code and text-based configuration files.
Hence, ABT must be used with a version control software like git (Chacon and Straub 2014) to track the
progress of implementation and keep model results reproducible during development.

Code Structure. Our projects that build upon ABT implement the following classes:

• Versions of an Agent class: They provide the properties and the state of the model agents. Every
Agent must extend a BaseAgent class provided by ABT.

• Versions of an Event class: They are typically used to describe the actions an agent takes at a
certain point in time, but can also be used for administrative reasons such as time-ticks for output
recording. Every Event must extend a BaseEvent class provided by ABT.

• Config: Configuration of the simulation experiment, such as general setup (e.g., name, random
number seed, . . . ), general simulation properties (start-date, end-date, scale, . . . ) and scalar pa-
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rameters and paths to parameter files. Typically this class is filled by a configuration file in JSON
format (see below).

• Simulation: Responsible for initializing the agents. Also the central authority with respect to
time-tracking, event scheduling, and recording of intermediate data. Must extend a suitable base
class provided by ABT.

• Run: Starts the simulation experiment, takes care of instantiating the Simulation instances for
parallelized MC simulation, and is responsible to process the results further as soon as all Simulation
runs are finished. The Run routine is the main entry point for the program.

This basis allows us to cover many use-cases by default, while still retaining enough flexibility to adjust
our models and data interfaces on actual demand. As all our classes are by default serializable, it was easy
to write automatic tests for verification and performance optimizations of the basic systems. For cases
not covered by unit tests, we compared known output or known behavior of old simulations with newer
iterations of ABT and so ensured no involuntary API breakage. It also allowed us to replace computational
expensive parts of the simulation, for example, sampling of complex agents, with reading them from a file
and so allowed us to iterate faster.

Model in- and output. By convention, all model input is specified by one configuration file in
JSON format. This file includes experiment-specific variables such as random number seed, Monte-Carlo
iterations and scenario-name, scalar parameter values and all file paths to additional parametrization files.
The usage convention of ABT suggests that the model output of any experiment is saved into a new folder
labeled by a timestamp of the time it was started. The folder must include all results of all individual
simulation runs collected by the Recorder classes, all statistics created by the Statistician class, as well as a
full copy of the configuration file. This convention ensures that results are not unintentionally overridden,
fully transparent, and easily reproducible.

3 CASE STUDIES

We will furthermore present two projects, both long-term decision support projects of TU Wien and dwh
GmbH together with different stakeholders, in which a comparably large and complex ABMs were developed
based on ABT. The models are fully validated, parametrized with real data, and are still maintained, enhanced
and used for counseling (as of Spring 2023).

The two simulation models are fundamentally different: They (a) originate from different fields of
application, (b) are based on different time update strategies, (c) use different data structures and interfaces
for parametrization and calibration, and (d) have entirely different forms of result and model usage.

3.1 RailwaySim

In railway traffic, locomotives, usually called traction units, are the most valuable component. Hence, the
circulation plan, the plan defining which unit is assigned to carry which train between which stations,
must be planned properly to avoid overheads. This leads to a multifactorial optimization problem which
involves reducing the number of units and the idle distance, i.e., the covered distance without carrying any
carriages, at the same time. On top, if the schedule is too rigorously optimized, it is more vulnerable to long
propagation of delays. The latter was key motivation for the development of RailwaySim in 2017 together
with company partner Austrian Federal Railways OEBB, see Rößler et al. 2018. Given a circulation plan,
the model assesses the robustness of the schedule as feedback to planners by simulating all Austrian trains,
locomotives, delays and delay propagation.

Due to the highly intertwined planning processes at OEBB, more and more aspects were identified to be
tested for robustness regarding delays and delay propagation such as shift plans for drivers and personnel,
energy consumption, concepts for interruption of operations, and long term and strategic planning of
resources and operations. Therefore, in its current version, RailwaySim plays the role of a common core
for various robustness assessment studies.
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3.1.1 Model Concept

The original concept of RailwaySim was presented in Rößler et al. 2020. Components of the model are:
Infrastructure is used and occupied during a simulation run. Infrastructure elements are operational

points, stations, tracks, and sections, i.e., infrastructure that is directly used by trains, but can also include
bases and common rooms for personnel or garages to repair traction units. Resources advance the simulation
by executing a predefined task list. Resources include trains, traction units, or train drivers and personnel.
Tasks have to be completed by and are assigned to (possibly multiple) resources. Each task is also assigned
to an infrastructure element, which is occupied during its execution. Tasks include train runs and stops,
empty runs of traction units, as well as operational tasks for drivers and personnel, that are planned during
shift planning, like driving trains, handovers, or paid and unpaid breaks among others.

During simulation the execution of each task can be delayed by a primary delay, which is applied
randomly for each simulation run using machine learning (ML) components. Those primary delays are
propagated through the systems and lead to secondary delays in the following ways: (a) If a task is
assigned to multiple resources, it can only be executed if all of these resources are ready. The delay of
one of the assigned resources results in a delay of the task. (b) If infrastructure is already occupied and
cannot support another task to be executed, the task is delayed until the infrastructure is available again.

The model is implemented in such a way that it can easily be extended to incorporate additional
resources or outcomes such as the energy consumption during a task.

3.1.2 Parametrization Data

The model uses a variety of different data sources including infrastructure data and various schedule data:
historic/actual freight/passenger traffic schedules for trains and traction units. In this context, the data for
actual traction unit schedule is considered as the input of the model (see Section 3.1.3).

Data is provided in various formats including CSV-, JSON-, XML-files as well as SQL-databases.
While using established standards, like railML (www.railml.org), the harmonization into a common data
structure was challenging.

Historical schedule data is primarily used for validation and for training the ML model for prediction
of accurate primary delays (Leser et al. 2019).

3.1.3 Model Usage

To assess robustness of a schedule, the model is run with two scenarios: a base scenario where availability
of traction units is assumed to be always provided, and another scenario where the traction units must follow
the circulation plan. A quotient, the so called markup value, between the regional/overall secondary delays
from the two scenarios quantifies the regional/overall robustness of the plan. In this context, secondary
delays are the ones resulting from delay propagation. Figure 1 shows an exemplary result visualization
comparing planned and simulated schedules.

The stochastic nature of the model with randomly sampled primary delays makes it necessary to run
it as parallelized MC simulations. Therefore, random number streams must be carefully synchronized
between the two scenarios to compute unbiased markup values.

The model is used either with human (planners) in the loop or in a simulation-optimization setting
with automated circulation planning optimization (Rößler et al. 2020).

3.1.4 Implementation with ABT

To be compatible with the overall software architecture of company partner OEBB the implementation was
required to use the programming language of C# instead of Java. Being in full control of all components
of ABT, a clone of the implemented core of the template in C# could be developed easily and the Java

260

www.railml.org


Brunmeir, Bicher, Rößler, Urach, Rippinger, Wastian, and Popper

Figure 1: Visualization of simulation results of the RailwaySim model, that is used for robustness assessment
of circulation plans. The figure shows the planned circulation plan in green and yellow and the corresponding
simulation results in red and orange.

prototype of the model presented in Rößler et al. 2020 could be ported quickly. Verification-scenarios
confirmed that the results of the ported model match the results of the original.

Since ABT is based on C#, we were able to directly incorporate the developed ML model for primary
delays and generate the primary delay distribution for each task on runtime. Through this, we could also
directly integrate changes in the ML-model due to updated data. This feature will be also used for the
computation of energy consumption, as the energy demand of single tasks will be calculated based on a
ML component.

The loose coupling of the components in ABT and the direct implementation in C# made the development
of the integrated application for circulation planning, as presented above, possible. Furthermore it allows
for a distributed and interchangeable architecture of various components where the implementation may
be either changed during runtime or parts of the model may be processed outside of the simulation
itself. The tracing framework and the serialization capabilities allow us to distribute these processes via
Inter-Process-Communication (IPC) protocols, files or a database, as is the plan for other use cases.

The model development began with a small group of researchers, but the multiplicity of new use cases
and research questions made it necessary to enlarge this team. While the new members were all skilled
modelers and programmers, the template structure and conventions of ABT and the use of object oriented
programming made communicating the inner workings of the model much more direct and therefore much
easier.

The multiple use cases that need different features in the model make it necessary to have different
instances of the model with different features. Basing all of them on ABT and the RailwaySim model
makes it possible to share common features over multiple instances of the model and also to automatically
integrate performance upgrades and extensions of one of the base models into all model instances.

3.2 SARS-CoV-2 Model

The second case study is an epidemic ABM which simulates the spread of SARS-CoV-2 in Austria. The
model was developed to analyze the effects of various non-pharmaceutical interventions (NPIs) on the
spread of the virus and the burden of the COVID-19 disease in Austria. The microscopic modeling strategy
was chosen in favor of a compartment model because a modeled contact network was required to properly
depict NPIs like school-closures or contact tracing. First results could already be generated and published
in January 2020(Red, wien.ORF.at/Agenturen 2020). Key to this short development time were two older
models which were used as basis: The first one simulates the spread of influenza and was implemented
in Java in 2011 (Miksch et al. 2011). The contact module of this model was directly taken into the
SARS-CoV-2 Model. The second model simulates the structure and dynamics of the Austrian population
(GEPOC: (Bicher et al. 2018)). It was originally implemented in Python 3, but was ported to ABT in 2019.
The two models were combined, adapted, and parameterized to the specific requirements of SARS-COV-2.
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3.2.1 Model Concept

The SARS-COV-2 model is a comparably large ABM which consists of four different modules:
The population module (GEPOC) simulates the Austrian population with respect to age, gender, birth

and death rates and regional distribution. Each inhabitant of Austria is represented as one model agent,
leading to a model with approximately 9 million agents. The contact module models contacts between agents
and the subsequent spread of the infections. Agents are grouped in households, schools, and workplaces, at
which a given number of daily contacts occur with other members of these locations. Additional leisure-time
contacts are generated between random agents according to their regional distribution. Figure 2 shows a
snippet of the modeled contact network. The disease module simulates the “internal” progression of the
infection in an agent. It decides, depending on the agent’s immunity status, whether a contact with an
infectious agent results in a transmission, and models the different stages of the disease, such as infectious
period, symptoms, hospitalization, and gain and loss of immunity. The policy module handles all NPIs, as
well as any other measure which can influence the spread of the disease. This includes lockdown measures
such as school closures, but also quarantine or contact tracing regimes, and vaccination strategies.

The model implements a hybrid time update strategy. While policies as well as agent-agent contacts are
modeled with discrete time steps (days), processes within individual agents, such as disease and immunity
dynamics, are updated based on events. Most decisions such as the choice of contact partners, the risk of
infection, or the duration of different disease stages are based on random distributions.

We refer to the supplemental material of Bicher et al. 2021 for more details on the model. Newer
versions of the model specification were published on https://www.dwh.at/en/projects/covid-19/.

3.2.2 Parametrization Data

The model uses a variety of data from all sorts of data sources including demographic data (e.g., age and
gender distribution, household configurations, birth and death rates, . . . ), contact data (contact location
data, distribution of daily number of contacts, mobility data), virus data (transmissibility, latency time,. . . ),
immunization data (vaccine effectiveness, immunity waning distributions, . . . ), vaccination data (number
and time of vaccinations) and epidemiological data from various national surveillance systems. The latter
were used as reference for calibration of policy event parameter values. In total, the model relies on more
than 30 different parameter files and about 50 additional scalar or vector valued parameters defined in the
configuration file.

Often-changing data is maintained and updated using GIT and GIT-LFS. In particular, epidemiological
data were kept on a secure server infrastructure due to privacy concerns and loading into the simulation is
solved using a tailored aggregation interface.

With few exceptions data is given in form of CSV files and is loaded accordingly. Geographical
information requires a parser for GEOJSON, a specific variant of a JSON files suited for geographical
shapes, and GEOTIFF, an image-format for geographical raster images.

3.2.3 Model Usage

In general, the model is applied to answer what-if questions related to interventions yet also forecasts
are possible. For most uses, the model needs to be first calibrated to the past epidemic spread. In this
process, a MC simulation of the model is executed in the loop with a calibration heuristic to reproduce the
daily confirmed cases. Afterwards, a snapshot of one of the simulation runs is created to get a simulated
population which has the same properties regarding active or past infections and immunity as the Austrian
population at the desired time point. This population can then be re-imported into the model and used for
a multitude of research questions by taking a further look into the future.

This way, the model was applied for counseling various Austrian decision-makers and advisory boards
between 2020 and 2022. These applications include the creation of weekly forecasts in the Austrian COVID
Forecasting Consortium (Bicher et al. 2022), the evaluation of contact tracing (Bicher et al. 2021), the
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analysis of undetected cases and herd dynamics (Rippinger et al. 2021; Bicher et al. 2022), and the
evaluation of logistic strategies, such as the vaccine prioritization in 2021 (Bicher et al. 2022; Jahn et al.
2021; Jahn et al. 2022), and the generation of synthetic disease data, which can be shared with everyone
without data security concerns for further epidemiological research (Popper et al. 2021).

3.2.4 Implementation with ABT

The portation of the underlying population model (GEPOC) from Python 3 to the Java-based ABT greatly
improved the computational performance: Simulations became about five to ten times faster and required
about one fifth of the original memory. In addition, the experimental setup and quality of the simulations
were greatly improved by ABT reproducibility standards. Considering the continuously changing knowledge
base in the COVID-19 crisis, the model and its implementation was continuously adapted and extended.
The corresponding GIT repository has more than twenty branches and over thousand commits. Source
data was updated daily using GIT and GIT-LFS as well.

Moreover, the contact module of the influenza simulation from 2011 could be incorporated almost
unchanged into the new model thanks to the flexibility of ABT. Together with a new developed disease
and policy module the SARS-CoV-2 Model finally became a large ABM: the source code, not counting
source files from ABT, amounts to about 140 classes and more than 10,000 lines of code. The model is
parameterized with about 30 CSV files and requires additional, more than 100 scalar parameter values to
be set in the JSON configuration file. One simulation run with 9 million agents requires about 20-40GB
of memory and takes 10-30s per simulated day. Calculation and calibration of the model is therefore
performed exclusively on a dedicated computational server.

The optimized time-class was one cornerstone of improving the performance. Date queries are essential
for pandemic simulations, since most external parameters (e.g., the timing of containment measures) are
parameterized using a date-time format, but this format usually comes with computationally inefficient
manipulations. The time class provided by ABT offers both date queries and time-optimized event
scheduling. Another cornerstone was using individual discrete event schedulers for each agent, which was
easily supported by the ABT Scheduler class. This way, events that only concern one agent, such as a
change in disease severity or loss of immunity, can be handled completely inside the scope of the agent.
This strategy both reduces unwanted interference between agents and the computational effort, since the
internal events of 9M agents do not need to be scheduled and sorted into the global queue.

The visualization capabilities posed the only minus of the software switch: Since visualization libraries
in Java are rather bulky, the ported model used an ABT interface to a Python 3 plot server, instead of
implementing visualizations directly. More than 500 results with scenarios or forecasts were created,
visualized and published in some format (scientific journal, newspaper, television, homepage,. . . ) this way.

4 DISCUSSION

The two case studies shown highlight how the challenges presented in Table 1 arise in the respective
application projects and how a simulation template supports solving them:

Data Flexibility. The two projects are characterized by specific requirements for importing and
exporting data. These range from huge CSV and JSON files, specific XML or JSON formats (railML,
GEOTIFF), geographic image files (GEOTIFF), to direct SQL database connections. The use of a customized
template is optimal for the import of these formats, because besides the pre-implemented IO routines in
ABT, new project specific parsers can easily be implemented and added to the method pool in the appropriate
generic form. Furthermore, output standards of a template allow implementaion of direct interfaces to
optimization algorithms, calibration algorithms an visualization tools.

Model Flexibility. The two models differ by very specific model mechanisms and time update
strategies. For example, the RailwaySim requires runtime use of an ML method and the SARS-CoV-2
Model uses a hybrid time update strategy and agent-specific schedulers. The extensibility of the template
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Figure 2: Visualization of the contact network in the SARS-CoV-2 Model. It shows the surrounding of
the village Markt Piesting in Lower Austria with around 14×6 [km] (OpenStreetMap contributors 2017)
and the modeled 12,287 inhabitants of the region together with their (locally reduced) contact network.
Note, that all agents and locations are sampled based on regional distributions and are not taken from data
directly.

approach eases the implementation of corresponding, special methods and therefore does not limit the
modeler in the model design – at least not within the range defined by the project team. In the specific
case of Java based ABT the sheer-endless availability of free third party libraries is helpful as well.

Reproducibility. In both projects the reproducibility of simulation results is of highest relevance,
since these are used directly in the decision support. The main challenge here is to maintain reproducibility
throughout the development phase of the model and under constantly changing model requirements, data
and knowledge base. In ABT, the use of a configuration standard including the RNG seed of the experiment,
and the required version control software for the code already provide a very high level of reproducibility.
Together with a version management of the input files, full reproducibility is given.

Performance. The usability of both projects directly depends on the runtime of the model. In the
RailwaySim it is decisive for whether the simulation is a bottleneck in the loop with the optimization, and
in the SARS-CoV-2 Model it is crucial for the general computability of the model with its almost 9M
agents. Many factors that negatively affect the performance of an ABM are found deep in the logic of the
programming language (e.g., what type of list is used, or which number format is chosen). So they ultimately
must be identified and optimized by the implementer of the model itself. Yet, a simulation template like
ABT helps to harvest “low hanging fruits” with many default implementations, e.g., a heap-structure for
discrete event queues or a KDTree for efficient spatial neighbor finding.

Portability. In particular, RailwaySim shows how special requirements for model portability can
affect the project flow. The requirement to implement the model using C# rather than Java would completely
preclude the use of an external simulator or a third party toolkit. However, since not only the model but
also ABT was developed by our research group, both could be ported to C# with reasonable effort.

We have presented two case studies from the fields of transportation and epidemiology, in which the
five mentioned challenges of quantitative ABM (Table 1) became clearly visible. A variety of other recent
projects, also implemented with ABT but not described in detail here due to space limitations, also show
that the same challenges can be found in other application areas: Healthcare, referring to a project to
evaluate MMR and polio vaccination rates (Miksch et al. 2017), logistics, referring to a project to analyze
bottlenecks in election processes (Weibrecht et al. 2021), or building infrastructure, referring to a project
to optimize utilization in hospitals (Dwh GmbH 2019).

ABT is our customized simulation template and our answer to the challenges defined in Table 1. It has
turned out highly useful in all agent-based simulation projects since 2019, it meets our expectations and
needs of data and model flexibility, reproducibility, performance and portability, and it lies in our hands to
adjust ABT to potential new needs in the future.

The idea of a template poses a third layer between using simulators, sometimes stiff and inflexible, and
implementing models from the scratch, which may potentially imply reinventing the wheel. A layer, which
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can be fully customized and may range from simple guidelines for code structuring to a huge toolkit of
optimized classes and methods for various tasks related to implementation, parametrization and validation
of conceptual models. A simulation template can ensure compliance with scientific standards by providing
sound, uniform implementation of essential algorithmic components and conventions for all models based
on it, while combining the onboardability features of simulators, i.e., that new members can be added to
the project team easily, with the flexibility of a from-the-scratch implementation. Experience from multiple
case studies, two of which were presented in this work, shows that the development of a simulation template
causes overheads for a research group that pays off quickly.
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