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ABSTRACT

Experiments that are games played among a network of players are widely used to study human behavior.
Furthermore, bots or intelligent systems can be used in these games to produce contexts that elicit particular
types of human responses. Bot behaviors could be specified solely based on experimental data. In this work,
we take a different perspective, called the Probability Calibration (PC) approach, to simulate networked
group anagram games with certain players having bot-like behaviors. The proposed method starts with
data-driven models and calibrates in principled ways the parameters that alter player behaviors. It can alter
the performance of each type of agent (e.g., bot) in group anagram games. Further, statistical methods are
used to test whether the PC models produce results that are statistically different from those of the original
models. Case studies demonstrate the merits of the proposed method.

1 INTRODUCTION

1.1 Background

Networked games—games or experiments that assign human subjects as nodes in graphs and interaction
channels between pairs of humans as edges—are used in many different contexts. Economics uses these
types of experiments for many purposes, e.g., coordination (Kearns et al. 2012), bargaining (Chakraborty
et al. 2010), and decisions under conditions of incomplete information (Charness et al. 2014). Explore-
exploit problems, e.g., Mason and Watts (2012), are of interest in anthropology and evolutionary studies
(Gopnik 2020), cognitive science (Feng et al. 2021), and business (den Hamer and Frenken 2021). Social
scientists conduct networked experiments to study common knowledge (Korkmaz et al. 2018), collective
identity (Charness et al. 2014), and collective action (Centola 2010; Mønsted et al. 2017). They have also
been used to study anagram games (Charness et al. 2014).

In this work, we focus on a networked anagram game detailed in Cedeno-Mieles et al. (2020) and
overviewed in the next subsection. Existing work has used data from over 200 experiments to build statistical
models of game player behavior, e.g., Liu et al. (2022). Our scope here is to produce behaviors for players
that are not observed in the experimental data, especially when the players are assisted by intelligent systems
such as ChatGPT. This enables us to incorporate such a calibration model into agent-based simulations
(ABSs) and gain a deeper understanding of the dynamics of player behavior in networked group anagram
games (NGrAGs) when intelligent systems are involved in the game.
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1.2 Overview of Networked Group Anagram Game

Figure 1 conveys many of the ideas of NGrAGs that were conducted online. Games or experiments were
performed with four to fifteen players per game. Each game lasts for tg = 300 seconds. A network G(V,E)
is specified on the game players, where V is the set of players and E is the set of communication channels
between pairs of players. A network is provided at the left of Figure 1. The game platform takes all players
through game instructions and example actions. Players are told the true goal of the game: to have the
team form as many words as possible, that all players get the same remuneration, and that team earnings
are based on the number of words that the team forms. This is to foster cooperation. Initially, each player
is given three letters, assigned at random, but with an eye toward providing letters that appear most often
in words, e.g., not using letters like x and z. Each player sees their own assigned letters and those of its
neighbors. Once the game timer begins, players can, at any time in the game, think about what they want
to do (action idle a1), reply to a letter request from a neighbor (action a2), request a letter from a neighbor
(action a3), or form a word (action a4). Examples are provided on the right of Figure 1 using two of the
four players in the network. At time t1, player v4 requests the letter w from player v3. At a later time t3,
v3 responds to v4 with the requested letter w while v4 is interacting (e.g., requesting a letter from) v2. In
experiments, time is continuous, so that actions by multiple players typically do not happen at the same
instant, but they can. These examples are to illustrate that pairs of agents do not have to interact with each
other in any given instant, e.g., vi can interact with v j, who in turn, interacts with vk. The actions in the
center table can be repeated by all players any number of times, as they desire. Note, for example, that
a player does not have to request neighbor letters and does not have to reply to neighbor letter requests.
Each player’s game screen shows the letters it has to form words, its letter requests, the collection of
outstanding letter requests made to this player, and the words it has formed up through the current time.
See Cedeno-Mieles et al. (2020) for further details.
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Illustrative game setup Player action set Illustrative player actions

Action 
Number

Description

1 Idle (no-op)
2 Reply to request
3 Request letter
4 Form word

Figure 1: Illustrative networked group anagram game (NGrAG). The network G(V,E) of four players is
on the left, and sets Linit

j of nℓ = 3 initial letters are assigned to each v j ∈ V , j ∈ {1,2,3,4}. All player
action types are given in the center. The quad chart on the right shows representative interactions between
players v3 and v4 in carrying out the various actions of a game at time steps 0 < t1 < t2 < t3 < t4 ≤ tg.
Players can use a letter multiple times in the same word, e.g., using t and e twice each in tweet. Each
player may repeat these actions, in any order, throughout the tg = 300 seconds game duration.

1.3 Motivation

In this work, we construct new models for characterizing players’ behaviors to generate behaviors not
observed in networked anagram experiments. The proposed model is called the probability calibration
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(PC) model. This model forms the basis of a new agent-based model (ABM) for simulation of the NGrAG.
The proposed agent-based simulation (ABS) is named the PC-based ABS approach.

The PC-based ABS can be used for bots or simulated agents in experiments. Bots can be used to create
particular environments for a player test subject that may otherwise be difficult and/or time consuming to
create with only human subjects (e.g., to find and coach human confederates to play in particular ways).
For example, we can construct bot agents that do not reply to letter requests, thus destroying productive
player interactions that can give rise to collective identity (Polletta and Jasper 2001). In a similar way,
we can test other theories like tit-for-tat (i.e., a person only responds to a neighbor to the degree that
the neighbor responds to her) (Kollock 1998). We can do this by having bots behave in extreme ways
(e.g., replying very quickly to letter requests or making many letter requests) and determining whether
human neighbors respond in kind. As another case, in single person anagram games, experiments have
been performed where a player is given poor letters and good letter in different experiments, leading to
poor and good performance, respectively. Interestingly, players are dichotomous in their explanations of
their behaviors: they attribute good performance to skill but poor performance to bad luck (Feather and
Simon 1971). In networked versions of these experiments, we could use bots to exhibit various levels of
cooperation and determine whether players blame their neighbors for poor performance or complement
them for good performance (Monroe and Malle 2017), in addition to skill and luck attributions.

Given this motivation, it is essential to investigate the significance of differences generated by the PC
model when compared to results from the original models. In other words, when using a new model to
generate player behaviors in the ABS, it is important to quantify whether these differences are significant
or merely noise.

1.4 Novelty and Contributions

The novelty of this work is to propose a probability calibration model to characterize a player’s behavior
beyond the model developed from the experimental data. Such a modeling strategy enables ABS of
NGrAGs to be much more flexible and enables surgical use of human subjects and intelligent systems in
playing the game. We have also adopted the functional analysis of variance (FANOVA) to analyze the
significance of these new models in terms of player performance in the agent-based simulation. Previous
modeling efforts of NGrAGs are confined to building models from data and assessing uncertainty in the
models and simulation results, e.g., Liu et al. (2022). In contrast, the proposed model is developed to
accommodate varying degrees of player utilization of intelligent systems, and investigate the consequent
effects on players’ behaviors for the NGrAGs. This has not been done before for NGrAGs. The calibration
concepts and techniques developed in this work can also be applied to more sophisticated anagram game
models (Cedeno-Mieles et al. 2019) and to models of other games (Mason and Watts 2012).

Our first contribution is a principled methodology to enable a proper calibration of data-driven models
to behaviors beyond those gathered from experimental data. Our use of the word “calibration” comes from
the fact that we are generating new models by quantifying via ααα a deviation or departure from the behavior
of data-driven models, so that there is always a reference model (i.e., the data-driven model) for each new
PC model. By introducing the calibration parameters ααα for the four player actions, the model can change
player probabilities of taking each action at each time step. It is in this sense that we use the word “bot"
in this paper, i.e., an agent whose behavior is exogenously controlled by game administrators (through ααα).
Hence, the core or baseline probabilities of actions are preserved, but are scaled according to the ααα values.
By appropriately choosing calibration parameters, one can simulate different scenarios to examine how the
performance of intelligent agent players adapt in the NGrAGs.

Our second contribution is an evaluation methodology to determine whether two behaviors are the same
or different. We adopt the use of the functional ANOVA method to compare the players’ behaviors under
different deviations from the reference model. It provides insights on the degrees of deviation from the
reference model using the calibration parameters that lead to a significant difference in players’ behaviors
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in the NGrAGs. Such insights and understanding can help in developing new monitoring and mitigation
methods for adversary attacks in online social games.

Our third contribution is a simulation-based case study that employs both the reference models and
the proposed PC models (that are recast in software as ABMs) in the ABS of the NGrAG. In this case
study, the impact that different (bot) behaviors have on the actions of the agents are assessed. We specify
constant values for the ααα parameters as a first step. Using different settings for calibration parameters, the
simulation results uncover several interesting findings on the dynamics of players’ behaviors. For example,
we demonstrate that decreasing the probability of the idle action leads to more words formed by agents
than increasing the probability of the forming word action. Such findings can imply the promotion of
collective identity, which encourages more interaction among players. Note that although we consider
relatively simple scenarios of specifying the calibration parameters ααα , the setting of ααα parameters in the
PC model can be a function of time, previous player actions, and other game variables.

The remainder of the paper is organized as follows. Section 2 contains related work. Section 3 presents
the PC model. Section 4 describes the simulation process, which includes the PC model, and simulation
results from the case study. Conclusions and future work are in Section 5.

2 RELATED WORK

Networked experiments and modeling. Complex contagion (Centola and Macy 2007) was studied in
group online networked experiments (Centola 2010). A model of common knowledge (Korkmaz et al.
2014) was used to specify online networked experiments of collective action. Experiments were used to
enhance the model (Korkmaz et al. 2018). Explore-exploit network experiments were run, with a small
amount of modeling, in Mason and Watts (2012). Many economics-based games were run and modeled
on networks. A series of networked games, involving strategic complements and strategic substitutes, with
complete and incomplete information, were performed on networks and modeled (Charness et al. 2014).
Network formation and coordination games were run and modeled in Corbae and Duffy (2008). The
experiments on which our modeling herein is based is given in Cedeno-Mieles et al. (2020); illustrative
modeling works to characterize uncertainty include Liu et al. (2022). The modeling work in this paper is
different: here we seek to extend the models of player behavior for use as bots and to explore behaviors
that are reasonable but have not been gathered through experiments, owing to experimental constraints.

Experiments and modeling with bots. Bots have been used to establish broader consensus through
coordination in networks of humans, above the consensus established with humans alone (Shirado and
Christakis 2017). They have also been used in experiments on Twitter to determine whether social contagions
are spread by simple or complex mechanisms (Mønsted et al. 2017). Much work exists on detecting bots,
e.g., Mendoza et al. (2020).

Sequence analysis of game data. Game data can be viewed as a collection of action sequences or
time series data, representing the progression of in-game events over time. Numerous studies have utilized
the activity sequence in a game session to capture player behavior in massively-multiplayer online games
(MMOGs). These studies have employed various methods, such as machine learning binary classification
techniques (Ahmad et al. 2009), Levenshtein distance (Platzer 2011), time series classification (Bernardi
et al. 2017), and more, to detect bot players.

3 TRANSITION PROBABILITY CALIBRATION MODEL

In our early works, e.g., Cedeno-Mieles et al. (2020), Liu et al. (2022), a clustering-based method
was developed to quantify players’ behaviors in NGrAGs. These methods provide a way to quantify
the heterogeneous behavior of players in the experimental data and incorporate the quantified uncertainty
into ABSs. Incorporation of uncertainties into ABS enables a deeper understanding of the dynamics of
human behavior in NGrAGs and bridges the gap between experimental data and real-world applications.
However, these previous methods only produce behaviors that are represented in the experimental data.
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This section describes a transition probability calibration model that produces a wider range of player
behaviors, beyond the experimental data. These may be useful to represent bots, or humans that are aided
by intelligent systems. It can further provide insights into the larger field of human-computer interaction
and collaboration.

3.1 Previous Models

The previous model provides a generative approach to modeling the group anagram game as a discrete-
time stochastic process (Cedeno-Mieles et al. 2020). That work also includes model validation, using
Kullback-Leibler (KL) divergence to compare game data and model output distributions. In the model,
at each time step, players choose one of four pre-defined actions: idling (a1), replying to a neighbor’s
letter request (a2), requesting a letter from a neighboring player (a3), or forming a word (a4). Instead of
solely relying on the current action of a player, it is essential to consider the influence of her current state
on her decision-making process. This includes several factors at time t: the size of the buffer of letter
requests that a player has yet to reply to, denoted as zB(t); the number of letters the player has, denoted as
zL(t); the number of valid words the player has formed, denoted as zW (t); and the number of consecutive
time steps that the player has taken the same action, denoted as zC(t). Therefore, we introduce these four
variables in our model to accurately capture the evolving nature of the NGrAG and provide a more realistic
representation of player behavior and decision-making dynamics. These variables are combined into a
vector z(t) = (1,zL(t),zW (t),zB(t),zC(t))T

5×1 that evolves over time.
At time (t + 1), given a player’s most recent action ai(t), we use multinomial logistic regression to

model the probabilities of their next action a j(t +1) as πi j(t +1). The formula is as follows, where idle
(a1) is chosen as the reference level for comparison with other actions (a2, a3, and a4):

log(
πi j(t +1)
πi1(t +1)

) = β
(i)
j0 +β

(i)
j1 zL(t)+β

(i)
j2 zW (t)+β

(i)
j3 zB(t)+β

(i)
j4 zC(t)

= z(t)T
βββ
(i)
j , j = 2,3,4,

(1)

where βββ
(i)
j = (β

(i)
j0 ,β

(i)
j1 ,β

(i)
j2 ,β

(i)
j3 ,β

(i)
j4 )

T
5×1. The parameters are written as a matrix BBB(i) = (βββ

(i)
2 ,βββ

(i)
3 ,βββ

(i)
4 )T

3×5,
and the probability of a player taking each action a j at time t +1, given their current action ai at time t,
is represented by the vector πππ i(t +1) = (πi1(t +1),πi2(t +1),πi3(t +1),πi4(t +1))T .

Furthermore, Liu et al. (2022) accounted for the observed heterogeneity in player behavior and activity
levels by developing an uncertainty quantification framework to capture this variation in the observed data.
Specifically, the players were first partitioned into two groups based on their number of neighbors (i.e.,
degree of the node in the network structure), and then clustering methods were used within each group to
further divide the players into four distinct clusters. Players with a higher cluster number within a group
were found to have higher activity levels and better ability to form words. Then, Equation (1) is estimated
for each cluster within each group, resulting in a separate set of parameters for each cluster. This allows
us to model and simulate the group anagram game in a more realistic manner, taking into consideration
the diverse behaviors exhibited by different players.

3.2 Proposed Probability Calibration Model and Its Inference

Building on the previous model in Section 3.1, we can investigate individual and collective behaviors among
players in the NGrAG utilizing experimental data as a foundation. Note that the original experiments were
carried out with remote participants from Amazon Mechanical Turk, operating under specific settings and a
limited number of players. However, as intelligent systems continue to advance, there is a growing interest
in understanding the characteristics of NGrAGs when the players are aided by intelligent systems, or when
the intelligent system acts as a remote player.

To enable ABMs to simulate NGrAGs with possible intelligent systems involved in playing the game,
we propose a so-called probability calibration (PC) model to adjust the transition probability of each action
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Analytic Model:
Multinomial Logistic Regression
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Figure 2: Flowchart for the probability calibration (PC) model to adjust the probability of each action,
using ααα , at every time step.

at every time step. The proposed method differs from pre-specifying the transition probability for the
players with intelligent systems. Instead, the key idea of the proposed PC model is to first unitize an
analytic model to obtain the transition probability based on the experiment data and the player’s historical
behaviors, and then conduct a probability calibration to reflect the changes due to intelligent systems as
shown in Figure 2. Therefore, the proposed method offers flexibility in accommodating varying degrees of
player utilization of intelligent systems. When intelligent systems are involved in a player’s decision-making
process, calibration parameters can be adjusted. In particular, the previous model in Section 3.1 becomes
a special case of the proposed method in the sense that there is no calibration used. Specifically, we define
the calibration parameters ααα(i) = (α

(i)
1 ,α

(i)
2 ,α

(i)
3 ,α

(i)
4 ), i = 1,2,3,4, where i denotes the current action ai(t).

With the transition probability vector πππ i(t + 1) obtained using the analytic model in Equation (1), the
proposed PC model produces a calibrated transition probability vector as

πππ
α
i (t +1) = (1+ααα

(i)) ·πππ i(t +1)

=
1
C

(
(1+α

(i)
1 )πi1(t +1),(1+α

(i)
2 )πi2(t +1),(1+α

(i)
3 )πi3(t +1),(1+α

(i)
4 )πi4(t +1)

)T
,

where the constant C = ∑
4
j=1(1+α

(i)
j )πi j(t +1) is to make the probabilities of the four actions sum to 1.

Then, πππα
i (t +1) is used to determine the next action a j(t +1). Note that the values of α

(i)
j can be either

positive or negative, reflecting an increase or decrease in the probabilities of particular actions, respectively.
Moreover, the ααα(i) vector allows the assignment of different transition probability vectors to individual
players. This enables a more flexible and customizable approach to modeling player behaviors in the game.

Using the proposed PC model, we can simulate NGrAGs where some of the players are assisted by
the intelligent agents. To analyze the effect of incorporating the PC model into the ABS, we consider
the action sequence of a player in the game as a function of time. In this perspective, we can adopt the
functional analysis of variance (FANOVA) (Fan and Lin 1998; Cuevas et al. 2004; Shen and Faraway 2004;
Zhang 2011; Górecki and Smaga 2015) to investigate differences in the mean functions across different
conditions. For FANOVA, the test statistic is the ratio of between-group variance to within-group variance.
A large test statistic value implies that between-group variability is considerably greater than within-group
variability, indicating a significant difference between the mean functions of the two groups. Specifically,
for t ∈ T = {1, ...,300}, we define the means of the functions Xa j(t), j = 1, ...,na and Xb j(t), j = 1, ...,nb
as µa(t) and µb(t), respectively. Here, na and nb represent the number of simulation iterations under
conditions a and b, respectively. For example, Xa j(t) can be the number of formed words up to time t for
a player without the assistance of the intelligent system, while the Xb j(t) can be the number of formed
words up to time t for a player with the assistance of the intelligent system. The FANOVA aims to test
the null hypothesis H0 that there is no significant difference between the mean functions under condition a

226



Liu, Hu, Deng, and Kuhlman

and condition b:
H0 : µa(t) = µb(t), t ∈ T

H1 : µa(t) ̸= µb(t), t ∈ T.

In this work, we adopt the FANOVA test to compare the behavior of players with different calibration
parameters ααα(i). By calculating the p-value and comparing it with the significance level (α = 0.05), we
determine if there is a significant difference between the mean functions of the two conditions. A p-value
less than or equal to 0.05 indicates a significant difference, while a p-value greater than 0.05 means there
is no significant difference. Such inferences using hypothesis testing can enhance the understanding of the
PC model in NGrAGs and provide insights into the effect of intelligent agents for the networked players.

Here we would like to emphasize that the proposed PC model allows for greater control over the
decision-making process, enabling the comparison of various behaviors between players and intelligent
agents in NGrAGs. By fine-tuning the calibration parameters, we can simulate different scenarios and
analyze how artificial intelligence adapts and optimizes its performance. Ultimately, the proposed model can
make a contribution to the development of more advanced intelligent systems that can adapt to changing
environments, and can also enhance our understanding of the interaction between a human and AI in
complex tasks.

4 AGENT-BASED SIMULATION AND EVALUATION

4.1 Simulation Scenarios and Process

In this section, simulation results are provided for a NGrAG with eight players. Seven cases are studied to
compare original data-driven model results and analogous results generated with the PC model (e.g., using
bots): (1) a baseline case where all α j = 0 (i.e., no effect of ααα), (2) agents increase their probabilities of
forming words (three cases), and (3) agents reduce their probabilities of being idle (three cases). Specifically,
we have:

(1) α
(i)
1 = α

(i)
2 = α

(i)
3 = α

(i)
4 = 0, i = 1, 2, 3, and 4.

(2) α
(i)
1 = α

(i)
2 = α

(i)
3 = 0,α(i)

4 = c1, where c1 = 0.1, 0.2, and 0.5, i = 1, 2, 3, and 4.
(3) α

(i)
1 = c2,α

(i)
2 = α

(i)
3 = α

(i)
4 = 0, where c2 =−0.05, -0.1, and -0.5, i = 1, 2, 3, and 4.

For each simulation, these respective assignments of α values are made to all agents so that α values for
one simulation are homogeneous.

A simulation is a collection of 100 simulation instances or runs. Each instance models the NGrAG as
described in Section 1.2. We now provide details of simulation inputs for one instance. A graph G(V,E) is
specified for the game and this fixes the agent interactions (agents interact with their distance-1 neighbors
in G). It also fixes the group g to which each player is assigned. Initial conditions for each agent are
specified: behavior parameters (the cluster c and ααα(i) for i ∈ {1,2,3,4}) and the initial letters Linit

k assigned
to each player vk ∈V . There are |Linit

k |= 4 letters assigned to each player in a game. For space reasons, we
focus on [g,c] = [1,3] for low-degree nodes (i.e., agents vk with dk ≤ 2), and [2,3] for high-degree nodes
(i.e., agents vk with dk ≥ 3), and on the Frequentist model (McCullagh 2019). The [g,c] pair fixes the βββ

(i)
j

vectors used in Equation (1). A single 6000-word corpus CW is assigned to all players from which players
choose a word to form when the action is a4. The duration of a simulated instance is tg = 300 seconds,
consistent with experiments. The nruns = 100 instances per simulation all use the same initial conditions,
so that run-to-run differences in results are due solely to the stochasticity of a simulation (e.g., the behavior
model). The game network G(V,E) used in all simulations is provided in Figure 3.

Our simulation process is a discrete time process, which is justified by the fact that in over 200
games (Cedeno-Mieles et al. 2020), players did not take successive actions within one-second intervals.
A one-second discrete time increment is used for each time step in a simulation instance.
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The simulation process is as follows for one run; this process is repeated nruns times. At time t = 0
initial conditions are assigned to nodes (agents) of the graph. It is assumed that at t = 0 all previous actions
are idle a1. For each time 0 ≤ t < tg, the following computations are performed to determine the next
action at time (t + 1), a j(t + 1). Each player vk ∈ V receives all letter requests from its neighbors that
were made at time t and all letter replies to vk at time t from earlier letter requests by vk. Then, based on
vk’s most recent action ai(t), the base probability for each of the four next possible actions at time t +1
is computed from the Frequentist model: πππ i(t +1) = (πi1(t +1),πi2(t +1),πi3(t +1),πi4(t +1))T . These
probabilities are then scaled by the appropriate calibration parameters ααα(i) and renormalized so that the
probabilities for the four actions sum to 1. Based on these calibrated probabilities, we use a multinomial
distribution to randomly select the next action a j(t + 1) of vk. If the selected action cannot be executed
(e.g., form word a4 is the next action but an agent cannot form a word with its letters, or request letter
is the next action but all neighbor letters have already been requested), then the action is changed to idle
a1. When the computations at t = (tg −1) complete, all a j(tg) are determined for all vk ∈ V , the current
simulation instance is complete and all agent parameters are reset to the initial conditions for the start of
the next instance.

1
6

5

43

2

8 7

Figure 3: Anagram game network G(V,E) with |V |= 8 and |E|= 10, on which simulations are run. Nodes
vk with degree dk ≤ 2 are in group g = 1 degree dk ≥ 3 are in group g = 2.

4.2 Simulation Results

The time histories of probabilities for node 3 of Figure 3 for different simulations that use different ααα

vectors are shown in Figure 4. The four curves in each plot correspond to the four actions (idle a1, replying
to letter requests a2, requesting letters a3, and forming words a4; see legends), which represent the time
point-wise averages of 100 simulation instances. In Figure 4a, the probabilities for the original method
(no calibration) are shown. Here, the probability of idling (thinking) is about 0.9, with the remaining
probability distributed among the three actions involving letters and words. This observation is reasonable
since the actions are computed per second, and experimental data show that players spend most of their
time deciding what to do next.

To simulate the actions of intelligent agents, such as bots, based on observed experimental data from
human subjects, we make adjustments to represent faster decision-making processes of bots. Figure 4b
illustrates the outcome of applying the PC approach with α4 = 0.5 (ααα = (α1 = 0,α2 = 0,α3 = 0,α4 = 0.5)),
which means increasing the probability of forming words by 50% and adjusting the probabilities of the
four actions to ensure that they add up to 1.0 at each time point. The plot indicates that the probabilities of
replying and requesting are comparable to the original method, while the probability of forming a word is
more than 1.5 times greater than the original method, and the probability of being idle decreases as time
progresses.

Results of decreasing the probability of idling by 50% (PC approach with α1 =−0.5,α2 = α3 = α4 = 0)
are shown in Figure 4c. This ααα setting increases the probabilities of all three player actions involving
letters and words. The probability of idling starts at 0.8 and decreases to 0.17 by the end of the game,
while the probability of forming words increases over time from 0.06 to 0.6. It is interesting that early
in the simulation, π2, π3, and π4 are all greater than in the base case of Figure 4a, consistent with the
prescribed ααα . But as time increases, π2 and π3 both decrease to lesser values than in the other two plots,
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Figure 4: The time histories of probabilities for node 3 in the simulation setting that low-degree (ld) nodes
have [g,c] = [1,3] and high-degree (hd) nodes have [g,c] = [2,3]. (a) Probabilities for the original method
(i.e., all α j = 0). (b) Probabilities for PC approach where α4 = 0.5, other α j = 0. (c) Probabilities for PC
approach where α1 =−0.5, other α j = 0. Each curve in (a) to (c) represents the probability of an agent
taking a specific action. The displayed data are the average probabilities over 100 instances at each time
point.

and π4 increases to greater values. This is due to π4 > π2, π3, so that forming words gets amplified more
by ααα , and due to the evolution of zzz.
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Figure 5: The time histories of action sequences for node 3. (a) Action sequences for the original method
(i.e., all α j = 0). (b) Action sequences for PC approach with α4 = 0.5, other α j = 0. (c) Action sequences
for PC approach with α1 = −0.5, other α j = 0. Each iteration is represented by horizontally stacked
boxes, which are colored based on the action taken at the time, and the 100 sorted iterations are arranged
vertically. The sequences are sorted according to the scores of a multidimensional scaling analysis of the
dissimilarities between sequences. The colors of the actions used in this figure are consistent with those
used in Figure 4.

Figure 5 displays the action sequence plot of 100 iterations from the same three simulations for node 3.
Each iteration is represented by horizontally stacked boxes, which are colored based on the action taken
at the time, and the 100 sorted iterations are arranged vertically. The colors of the actions used in this
figure are the same as those used in Figure 4. The sequences are sorted according to the scores of a
multidimensional scaling analysis of the dissimilarities between sequences. This plot allows for clearer
visualization of the action transitions and duration spent in each action throughout the simulation. There
is progressively more red, for forming words, moving from the left-most plot to the right-most plot. They
also show the increased words formed in Figure 5c, particularly in the later stage of the game.
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It is important to recognize that each probability is dependent on players’ current state vectors z(t) and
the BBB(i) matrices, as described in Equation (1). By decreasing the probability of idling, the PC approach
encourages players to be more active and responsive, resulting in more requests and replies sent by players
as shown for node 3 in Figure 6. Additionally, the increase in activity level also contributes to a more
significant increase in the probability of forming words compared to merely increasing the probability of
forming words directly (using the PC approach with α4 = 0.5). It is worth noting that the case α4 = 0.5
produces little change in action counts for requests sent and replies sent, as expected. Moreover, unlike
forming words, the numbers of possible requests and replies are bounded by a player’s number of neighbors
and number of letters per neighbor.
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Figure 6: (a) and (b) show the average number of requests sent and replies sent by node 3, respectively.
The curves are the time point-wise averages over the 100 instances, with error bars for ± one standard
deviation. The three scenarios in the legend are original (i.e., all α j = 0); α4 = 0.5, other α j = 0; and
α1 =−0.5, other α j = 0.

Figure 7 provides the time histories of the number of words formed for selected nodes. The curves
are the time point-wise averages over the 100 instances, with error bars for ± one standard deviation. The
figure shows that the number of words formed at the end of the NGrAG increases from node 1 to 4, as the
latter two nodes have d = 3 and node 4 is connected to more high-degree nodes, per Figure 3. The chosen
nodes can form more than 3 times the number of words by the end of the game using the PC approach
with α1 =−0.5, compared to the original model (i.e., baseline). From these various plots, it is clear that
the PC approach is versatile in changing player behavior in a controlled fashion.
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Figure 7: (a), (b), and (c) show the average number of words formed using the PC approach for nodes 1,
3, and 4, respectively. The curves are the time point-wise averages over the 100 instances, with error bars
for ± one standard deviation. The three scenarios in the legend are original (i.e., all α j = 0); α4 = 0.5,
other α j = 0; and α1 =−0.5, other α j = 0.

Table 1 presents the results of hypothesis testing using FANOVA. Each test has na = nb = 100, as
there are 100 simulation iterations under each condition. The objective is to demonstrate statistically that
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some values of ααα do not significantly change the action sequence or the number of words formed sequence
from those of the original method that does not employ the PC approach. These data show that the cases
α4 = 0.1 and 0.2, and α1 =−0.05 do not have significant effects on player behavior.

Table 1: Functional analysis of variance (FANOVA) test results for the null hypothesis that there are no
significant differences in the mean of sequences between the PC approach and the original method. If the
p-value obtained from the test is ≥ 0.05, we fail to reject the null hypothesis and conclude that there is
no significant difference in the mean of sequences. Conversely, if the p-value is ≤ 0.05, we reject the null
hypothesis and conclude that there is a statistically significant difference in the mean of sequence.

Number of Words Action Sequence
p-value Decision p-value Decision

α4 = 0.1 0.47 fail to reject 0.483 fail to reject
α4 = 0.2 0.068 fail to reject 0.083 fail to reject
α4 = 0.5 <0.001 reject <0.001 reject

α1 =−0.05 0.736 fail to reject 0.389 fail to reject
α1 =−0.1 0.009 reject 0.005 reject
α1 =−0.5 <0.001 reject <0.001 reject

5 CONCLUSION AND FUTURE WORK

In this work, we propose a Probability Calibration (PC) approach to simulate group anagram games with
certain players having bot-like behaviors. The PC model starts with data-driven models and calibrates the
parameters that alter player behaviors in principled ways. Our PC-based agent-based simulations demonstrate
how this approach can change the performance of players in the game. In addition, statistical methods are
used to compare the behaviors of players with different calibration parameters. Our contributions are listed
in Section 1.4. This PC approach can also be applied to many other models where taking actions or changing
states are governed by probabilities. Future work includes exploring more complicated expressions for
calibration parameters ααα , investigating the effects of heterogeneous assignments of calibration parameters
to players, and developing additional evaluation methodologies.
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