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ABSTRACT 

This paper presents an open-source agent-based simulation model to study bio-inspired charging policies 
for local sustainable energy systems in an industrial setting where electric vehicles (EVs) perform 
transportation jobs. Within this context, we focus on a system that allows to control the charging-schemes 

of individual EVs. To this end, we develop an agent-based simulation model in NetLogo. We present and 
implement a bio-inspired approach based on the foraging behavior of honeybees and our approach results 
in simple, yet effective decision-making logic. Our approach provides the necessary parameters to control 
and balance sustainable energy systems in terms of EV productivity and the consumption of locally 
generated energy. Our simulation results look promising: the balance between EV productivity and the use 
of sustainable energy can be efficiently tweaked in a predictable manner using the parameters and 

thresholds of the model, yielding close-to-optimal performance.  

1 INTRODUCTION 

It is widely recognized that the transition from fossil fuels to renewable energy sources is vital for achieving 
a sustainable future and to reduce greenhouse gas emissions. In industrial and logistics contexts, the 
transition to electric-powered machinery and Electric Vehicles (EVs) is gaining traction and seems to be 
irreversible. However, the adoption of EVs also brings significant challenges, including the need for 

efficient and sustainable Energy Management Systems (EMSs). Related to the notions of Industry 4.0 and 
Smart Grids, there is a growing interest in using advanced techniques to optimize the use and charging of 
EVs, both in terms of sustainable energy use as well as in productivity. Deploying EVs in an industrial 
context (e.g., a logistics park) allows for a certain control on when and how much to charge an EV, opposed 
to, for example, passenger transport requiring charging services on highways. In an industrial area, EVs 
typically remain on the premise and are controlled by a single or a small set of stakeholders. As such, the 

focus on industrial areas allows us to deploy optimization techniques to continuously coordinate energy 
resources (e.g., solar panels and wind turbines) and energy consumers (e.g., EVs).  

Deploying sustainable EMSs involves design, planning, and control optimization problems that are 
typically complex and computationally challenging due to their stochastic nature (Nguyen et al. 2020). 
Hence, traditional optimization techniques based on global information and centralized control may be 
unsuitable (e.g., the use of integer programming). This is particularly relevant in systems that include 

multiple (competing) stakeholders, where central systems may no longer be feasible due to the required 
data-sharing of all stakeholders and the inability of the centralized system to adequately represent the 
interests of the different stakeholders (Gerrits 2023). Moreover, in stochastic and dynamic environments 
such as logistics parks, global optimization techniques are sensitive to information updates and are typically 
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less suitable to respond in a timely manner (Mes et al. 2007). As a result, bio-inspired algorithms have 
gained attention in the extant literature due to their ability to mimic natural systems' efficient and adaptive 
behavior (Nguyen et al. 2020). Note that bio-inspired algorithms are not the only alternative solution 

method to traditional optimization techniques, see for example Mukherjee and Gupta (2015) for a review 
on central and decentral optimization techniques in the context of charging EVs in smart grids. Nonetheless, 
bio-inspired algorithms such as evolutionary systems and swarm intelligence have been successfully 
applied in numerous areas of science, including computer science, mathematics, and operations research 
(Fan et al. 2020; Kar 2016). In our context, to coordinate the energy resources and energy consumers in an 
industrial area, the behaviour of honeybees seems to be the most compatible of all bio-inspired approaches. 

 In this paper, we focus on a swarm-based approach, inspired by the foraging behaviour of honeybees, 
to divide labor and allocate tasks. Inspired by this natural phenomena, we control the charging strategy of 
a fleet of individual EVs that performs transport jobs at an industrial area. The goal of our approach is two-
fold: (i) maximize the use of locally generated renewable energy, opposed to using energy from the grid, 
and (ii) minimize the job queue. Regarding the former goal, our use case allows to select which energy 
source (local or grid) to use at a given point in time. When local energy production is insufficient at a point 

in time, it can be supplemented by energy from the grid. To reach the goals, we develop a model based on 
fixed response thresholds, where the thresholds refer to the likelihood of reacting to task-associated stimuli 
(Bonabeau et al. 2001). In our problem, this corresponds to two tasks: (i) charge vehicle, and (ii) perform 
transport job. This paper is not the first to apply the behaviour of bees (or any social insect for that matter), 
where the most commonly known bee-inspired approach is the Artificial Bee Colony (ABC) algorithm. 
However, most of these approaches, including ABC and Ant Colony Optimization (ACO), are applied to 

travelling salesman types of problems and are typically promising in single objective optimization problems 
(Fan et al. 2020). In our approach, we focus on a bi-objective optimization problem that requires 
simultaneous optimization of the two abovementioned objectives and these are (as we will see) often 
conflicting. Therefore, there is no single optimal solution and thus we search for a set of nondominated 
(Pareto optimal) solutions. That is, we aim to balance the system in terms of the two objectives. Our bio-
inspired approach allows to intuitively and effectively shift the balance based on the preferences of the 

decision-maker, by controlling the system’ parameters. To the best of our knowledge, this is the first paper 
to present such an approach in the context of charging policies for EVs in industrial areas.  
 The remainder of this paper is structured as follows. Section 2 presents our bio-inspired approach for 
charging EVs. In Section 3, we present our conceptual model. The corresponding agent-based simulation 
model is described in Section 4 and the results are discussed in Section 5. The paper closes with conclusions 
and directions for further research in Section 6.  

2 A BIO-INSPIRED CHARGING STRATEGY 

To control the charging for each individual EV within a fleet of vehicles, we deploy a bio-inspired approach 
based on the foraging behaviour of bees. Let us first briefly discuss the nature of this metaphor. Honeybees 
need to continuously control the performance of the colony as a whole under constantly changing 
environmental conditions. The key aspect is the balance between the number of foragers (collecting nectar) 
and the number of processors (processing nectar in the hive). Based on the work of Hölldobler and Wilson 

(2009), the decision rules to achieve this balance can be summarized as follows. When more nectar is 
coming to the nest than can be processed, bees are stimulated to process nectar using the so-called tremble 
dance. When too few foragers are available to exploit a nectar source, bees alert each other by the shaking 
signal. Bees affected by the shaking signal dispatch to the food site. These simple rules followed by the 
individual bees, result in behavior on the colony level that is close to optimal and stays close to this level 
even when faced with perturbations (Hölldobler and Wilson 2009). Our bio-inspired approach consists of 

two main components: (i) an activation function, for which we use a fixed-threshold model, and (ii) a model 
to balance the use of sustainable energy and EV productivity, for which we integrate three different stimuli. 
In Section 2.1, we first discuss our probabilistic model in a general way. In Section 2.2, we discuss the three 
different stimuli for our specific use case.  
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2.1 A Fixed-threshold Model 

Inspired by the intriguing foraging system of honeybees, this paper presents an approach to balance the 
performance of a fleet of EVs performing transport jobs at an industrial area in terms of two objectives: (i) 

maximize the use of locally generated renewable energy (solar panels and wind turbines), and (ii) minimize 
the job queue. We base our algorithm on a fixed threshold based approach as developed by Bonabeau et al. 
(1996). In this model, every individual 𝑖 (i.e., an EV) has a response threshold θ𝑖 for every task. In our case, 
we can simplify the model by assuming there is only one type of task (i.e., a transport job). When an 
individual 𝑖 is not performing a job, it is always charging. Each individual engages in a transport job based 
on a job-associated stimulus. Let 𝑠  denote the intensity of the stimulus associated with performing a 

transport job, where 𝑠 can be the number of jobs currently in the queue, the expected lateness, or any 
quantitative measure indicating the urgency of the jobs to be performed. The response threshold θ𝑖 , 
expressed in units of stimulus 𝑠, determines the tendency of an EV to respond to the stimulus 𝑠 and perform 
the job. We require that θ𝑖 is such that the probability of a response is low for s ≪ θ𝑖 (low urgency) and 
high for s ≫ θ𝑖 (high urgency). A family of functions that meets this requirement, and has been shown to 
adequately model the behaviour of honey bee foraging (Seeley 1995), is given by  

 

 𝑇𝜃(𝑠) =
𝑠𝑛

𝑠𝑛+𝜃𝑖
 , (1) 

 
where 𝑛 > 1  determines the steepness of the threshold. Intuitively, the meaning of threshold θ𝑖  is as 
follows. When s ≪ θ𝑖 , the probability of performing a job is close to 0. Similarly, when s ≫ θ𝑖  the 
probability goes to 1. At 𝑠 = θ𝑖 the probability is 0.5. As such, individuals with a low θ𝑖 are more likely to 
respond to a lower level of stimulus 𝑠. Note that Equation 1 results in an exponential response function. 

Under the assumption that there is only one type of task, we can view the stimulus 𝑠 as the demand for 

transport jobs. When demand increases, the intensity 𝑠 also increases. Let 𝑋𝑖 be the state of individual 𝑖. 
𝑋𝑖 = 0 corresponds to inactivity and 𝑋𝑖 = 1 corresponds to performing a job by individual 𝑖. Let us assume 
that when an individual 𝑖 becomes inactive, it instantaneously arrives at a charger. That is, we omit the 
travel time to and from the charger. Given that there are jobs available, an inactive EV starts performing a 
job with a probability 𝑃: 

 

 𝑃 (𝑋𝑖 = 0 → 𝑋𝑖 = 1) =  𝑇𝜃(𝑠) =
𝑠𝑛

𝑠𝑛+𝜃𝑖
 . (2) 

 
When a job is finished, the EV automatically returns to the charger (i.e., 𝑋𝑖 = 0). Although it is 

common in natural systems for individuals to be able to give up performing a task with a certain probability 
𝑝 (irrespective of stimulus), we omit this from our model due to practical reasons. Whenever an EV starts 

a job, it is committed and has to finish before being able to become inactive again. Using this model, 
whenever an individual performs a job, it reduces the intensity of the task-related stimulus (e.g., measured 
in number of remaining jobs), and therefore influences the stimulatory field of the remainder of the fleet. 
Similarly, when demand increases, so does stimulus s, stimulating individuals into performing jobs. 
Information about the necessity of performing jobs is thus transmitted through a combination of direct and 
indirect communication. Indirect communication is done through modifying the environment (i.e., 

influencing s) and is known as stigmergy (Theraulaz and Bonabeau 1999). 

2.2 Integrating Different Types of Stimuli  

To balance the use of locally generated sustainable energy and the productivity of the EV fleet, we combine 
three different stimuli, influenced by (i) the amount of sustainable energy, (ii) the battery level of the EV, 
and (iii) the number of jobs that require service. The three stimuli are discussed in the subsections below.  
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2.2.1 Sustainable Energy Stimulus 

To capture our intention to utilize as much locally generated sustainable energy as possible, we include an 
energy stimulus in our algorithm. Intuitively, we aim to attract EVs to charge their batteries (i.e., transition 

to state 𝑋𝑖 = 0) whenever there is a high amount of sustainable energy available. Although this intuition 
holds for all sorts of sustainable energy sources, we focus on locally generated solar energy and energy 
from wind turbines. Let us denote the energy-related stimulus by 𝑠𝑒 and let 𝑡 denote the hour of the day 
(0 ≤ 𝑡 < 24). For example, an energy-related stimulus function can be defined as follows. First, wind 
energy is assumed as a constant energy source over the day, producing 𝐸𝑊 for every 𝑡 (in kW). Even though 
wind energy shows fluctuations over the day, we justify this assumption as we expect that the share of wind 

energy compared to solar energy is small for our use case and solar energy shows much more fluctuation. 
In other use cases, the current function can be replaced by a more realistic model in Equation 4. Second, 
the solar system uses a Normal-distribution, producing 𝐸𝑆 (in kW) over the day, with mean 𝜇 and standard 
deviation 𝜎, such that the solar production in hour 𝑡 follows: 

 

 𝐸𝑆(𝑡) = µ − (δ ∗ (6 −
t

2
)) ∗ σ , (3) 

  
where 𝜇 denotes the maximum solar energy production measured in kW (i.e., around noon) and 𝛿 is a 
scaling factor to capture seasonal effects. That is, when 𝛿 increases, the sun rises later during the day and 
vice versa, as exemplified in Figure 1. Equation 3 allows us to capture the natural incentive of solar power 

to stimulate EVs to charge their batteries. Using the expected solar production 𝐸𝑆(𝑡) at hour 𝑡, we calculate 
a probability 𝑝𝑠(𝑡) using the probability density function of 𝑁(𝜇, 𝜎2) and normalize this such that at noon, 
the probability is equal to 1 (i.e., 𝑝𝑠(12) = 1). Intuitively, 𝑝𝑠(𝑡) denotes the probability that an EV goes 
charging, based on the sustainable energy stimulus. The energy-related stimulus at time 𝑡 is the combination 
of 𝑝𝑠(𝑡) and 𝑝𝑤(𝑡), where the latter denotes the probability that the wind turbines produce 𝐸𝑊, which is, 
given our example, equal to 1 for all 𝑡. Hence, the energy-related stimulus 𝑠𝑒 at hour 𝑡 can be expressed as 

the weighted average of both energy components, and is given by: 
 

   𝑠𝑒(𝑡) = α ∗ p𝑠(𝑡) + 𝛽 ∗ 𝑝𝑤(𝑡) , (4) 
  

where, 𝑎 = 𝜇 (𝜇 + 𝐸𝑊)⁄ , and 𝛽 = 1 − 𝛼 , denoting the fraction of solar energy and wind energy 
respectively. Using Equation 4, we are able to calculate a probability between 0 and 1, indicating the 
stimulus of the locally generated energy, and the balance between solar and wind energy. Equation 4 can 
be easily extended to include for example hydro-generated energy. However, we focus on two common 
sources of sustainable energy: solar and wind. Note that the energy stimulus does not depend 𝑖. 

Figure 1: Illustration of sustainable energy stimulus. Stimulus curve for 10% wind energy and 90% solar 
energy (green), and 100% solar energy (brown). 
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2.2.2 Battery Stimulus 

To ensure that the batteries of each individual 𝑖 are sufficiently charged, we include a battery stimulus. This 
captures the intention of the EVs to maintain a certain state of charge. Obviously, when the battery of an 

EV is depleted, it is not able to perform jobs. We use a threshold response function similar to Equation 1. 
Let 𝑠𝑏(𝑖) denote the battery stimulus of individual 𝑖, expressed in percentage points (0% = empty; 100% = 
full), and let 𝑝𝑏(𝑖) denote the probability that individual 𝑖 goes to the charger, which is given by: 

 

   𝑝𝑏(𝑖) = 1 −
𝑠𝑏(𝑖)𝑛

𝑠𝑏(𝑖)𝑛 + 𝜃𝑏(𝑖)
 , (5) 

 
where 𝑛 > 1 determines the steepness of the threshold, and 𝜃𝑏(𝑖) denotes the battery-related threshold for 
individual 𝑖 (expressed in state of charge). Similarly to Equation 1, the probability of a response (i.e., go to 

the charger) is low for s𝑏 ≪ θ𝑏 (low urgency, charged battery) and high for s𝑏 ≫ θ𝑏 (high urgency, low 
battery). Note that Equation 5 only captures the state of charge of an individual EV, where it can be extended 
to also capture the state of charge of the fleet as a whole.  

2.2.3 Job Stimulus 

To capture the incentive of the industrial area to maintain efficient operations, we include a job stimulus 
denoting the urgency of the jobs that require processing. Let 𝑠𝑗 denote the job-related stimulus, expressed 

in some quantitative measure indicating the urgency of the jobs to be processed (e.g., waiting time, length 
of the queue or expected tardiness). Let 𝑝𝑗(𝑖) denote the probability that individual 𝑖 starts processing a 
job. As we ignored the travel time to and from the charger, the probability of an EV remaining at (or going 
to) the charger is 1 − 𝑝𝑗(𝑖). The job-related probability is then given by:  

 

   𝑝𝑗(𝑖) = 1 −
𝑠𝑗

𝑛

𝑠𝑗
𝑛 + 𝜃𝑗(𝑖)

 , (6) 

 
where 𝑛 > 1 determines the steepness of the threshold, and 𝜃𝑗(𝑖) denotes the job-related threshold for 
individual 𝑖 (e.g., expressed in queue size). Similarly to the battery-related stimulus, the probability of 

processing a job increases when the stimulus exceeds the threshold. Intuitively, when the queue increases, 
EVs are more likely to start processing a job.  

2.2.4 Combining the Three Stimuli 

We combine the three different stimuli discussed in the previous sections to determine the transition 
probability of an individual when currently charging, i.e.,  𝑃(𝑋𝑖 = 0 → 𝑋𝑖 = 1). Note that the transition the 
other way around is only possible after a job is completely finished (i.e., no preemption), although an EV 

may immediately start a new job if the stimulus is still high. Hence, the system can be described by two 
transitions: 𝑃(𝑋𝑖 = 0 → 𝑋𝑖 = 1), and 𝑃(𝑋𝑖 = 0 → 𝑋𝑖 = 0) = 1 − 𝑃(𝑋𝑖 = 0 → 𝑋𝑖 = 1). The probability of 
starting a job by individual 𝑖, when currently charging, is given by: 
 

   𝑃 (𝑋𝑖 = 0 → 𝑋𝑖 = 1) = 𝑤𝑠𝑝𝑠(𝑡) + 𝑤𝑏𝑝𝑏(𝑖) + 𝑤𝑗𝑝𝑗(𝑖) , (7) 

 

where 0 ≤ 𝑤𝑠 ≤ 1, 0 ≤ 𝑤𝑏 ≤ 1, and 0 ≤ 𝑤𝑗 ≤ 1 are tuning parameters, denoting the weights of the solar 
stimulus, the battery stimulus, and the job stimulus respectively, such that 𝑤𝑠 + 𝑤𝑏 + 𝑤𝑗 = 1. 
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3 CONCEPTUAL MODEL 

Before presenting the implemented simulation model, an abstraction is made using a conceptual model. We 

aim to develop a reusable and highly configurable simulation model (e.g., to quickly analyze the impact of 

the tuning parameters of our bio-inspired approach), for which we require some abstraction. The following 

elements are described: inputs (Section 3.1), outputs (Section 3.2), experimental factors (Section 3.3), and 

model assumptions (Section 3.4). 

3.1 Inputs 

Regarding the inputs, we distinguish between (i) the local sustainable energy system, (ii) the fleet of EVs, 

(iii) the charging area, and (iv) the working area. 
 
1. Sustainable energy system. For our purposes, it suffices to focus on three parts of the energy 

system: (i) the sustainable energy production, (ii) energy to/from the grid, and (iii) a buffer battery. 
The latter is used to temporarily store the locally produced energy at times of overproduction. That 
is, in our settings, the buffer battery is only charged by the local energy system and not by the grid. 
The EV fleet can use this buffer battery for charging purposes. In our focus, the sustainable energy 
production includes solar and wind energy. We include an abstract representation of these 
production modes. For solar energy, we suffice in including the maximum power output (in kWh) 

and a standard deviation to create a Normal distribution. A scaling factor is used to include seasonal 
effects (i.e., during summer the sun rises earlier). As discussed in Section 2.2.1, these inputs are 
used to model the solar production for every hour of the day. Moreover, we include a connection 
to the grid to either supply energy (i.e., overcapacity) or request energy (i.e., undercapacity). That 
is, whenever the local energy sources do not supply enough power as requested by the EVs, the 
deficit is supplied by the grid. Similarly, when there is a surplus of locally produced energy it is 

supplied back to the grid, or used to charge the buffer battery. The buffer battery is simply modelled 
by defining its capacity (in kWh) as an input parameter. The buffer battery is only charged in times 
of overcapacity of locally produced energy, and never charged from energy originating from the 
grid.   

2. EV fleet. The fleet of electric vehicles is modelled using the following inputs: (i) the number of 
EVs, (ii) the battery capacity (in kWh), (iii) the charging speed (in %/h), and (iv) the energy 

consumption (in %/h). 
3. The charging area. The charging area is a single physical area where the EVs are able to charge 

their batteries. The charging area is modelled as a collection of chargers, such that each EV has a 
dedicated charger. That is, every EV is able to charge at any given time. Each charger has a charging 
capacity (in %/h) equal to the charging speed of the EVs. There is thus no bottleneck in charging 
speed. When the battery of an EV is full, it remains at the charging area until it is allocated to a job 

using Equation 7.  
4. The working area. The working area is a physical area modeled as a queuing system, and for 

experimentation purposes we use a 𝐷/𝐺/𝑐 queue, where 𝑐 is equal to the number of EVs, where 
the arrival process of jobs is deterministic, and the processing time depends on (i) the bio-inspired 
charging strategy as discussed in Section 2, and (ii) a deterministic service time. That is, when a 
job arrives, an EV is available, and the stimulus to perform a job is high, the total processing time 

has a high probability of being close to the (deterministic) service time. However, when the 
stimulus is low, there is a high probability that an EV remains charging, and thus the processing 
time of a job increases as waiting time is induced. 

3.2 Outputs 

The simulation model has the following outputs: (i) the percentage of consumed energy originating from 
the locally generated energy, (ii) the percentage of consumed energy originating from the grid, (iii) the 
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percentage of energy supplied back to the grid, (iv) the average and standard deviation of the job queue, (v) 
the average and standard deviation of the battery level for every EV, and (vi) the utilization of the buffer 
battery. Using these outputs, we are particularly interested in the balance between the use of locally 

generated energy (e.g., the degree to being off-the-grid), and the size and dynamics of the job queue.  

3.3 Experimental Factors 

Given our interest to balance the sustainable energy system in terms of consumption and EV productivity, 
we define several experiments. We first create a base-scenario (Scenario 0) in which the system is 
configured such that (i) the total required energy is equal to the total energy production over the whole 
simulation run, (ii) the number of deployed EVs are able to handle the workload, and (iii) the charging 

speed and energy consumption of the EVs lead to a realistic utilization of the fleet. That is, the system is 
theoretically able to be fully powered by locally generated energy, and the average required processing time 
is equal to the average effective operating time of the EVs (i.e., the time remaining after charging). To 
exemplify, we choose 7 EVs, a deterministic arrival rate of 5 jobs per hour, and a processing time of one 
hour per job. This results in an average utilization of 71.4%. A completely depleted battery takes 4 hours 
to fully charge, and a full battery takes 10 hours to fully deplete. Hence, in a cycle of 14 hours, the maximum 

EV utilization is also 71.4%, and, when there is no idling, the EVs are able to process all jobs. In Scenario 
0, the job arrival rate is deterministic (no fluctuations) and there is no buffer battery used. In Scenario 1, 
we experiment with demand fluctuations to test the robustness of our approach. In this scenario, there is a 
constant demand of 4 jobs per hour and 6 extra jobs are generated at random hours during the day, such 
that the total number of jobs is equal to Scenario 0. The remainder of the settings are equal to Scenario 0. 
In Scenario 2, we assess the impact of a buffer battery and set the capacity to 6000 kWh (equal to the total 

daily required energy). The remainder of the settings are equal to Scenario 1. For each scenario, we 
experiment with the tuning parameters of the bio-inspired approach as given by Equation 7. We denote 
each experiment using the following tuple (𝑤𝑠, 𝑤𝑏 , 𝑤𝑗), e.g., (1,0,0) only includes the sustainable energy 
stimulus.  

3.4 Model Assumptions and Limitations 

To reduce the complexity of the simulation model, several assumptions are introduced. First, we assume 

no failures for the EVs. Second, we assume that EVs instantaneously move to the working area to start a 
job, when allocated to it. Similarly, when a job is finished, the EV instantaneously arrives at the charging 
area and starts charging. EVs are not allowed to prematurely stop a job. Therefore, EVs are only allowed 
to start a job when their State of Charge (SoC) is above 10% (i.e., the required energy to process a single 
job). Moreover, we assume a fixed linear charging speed (i.e., expressed in %/h) and there is always 
sufficient supply from the grid in case of a shortage. In case of overproduction, energy can always be 

supplied back to the grid. Furthermore, we control the frequency of evaluating the bio-inspired charging 
strategy per EV. As such, at discrete time-intervals the charging strategy is evaluated to determine whether 
an EV starts processing a job. We found that an interval of 15 minutes gives a good balance in the system.  

4 SIMULATION MODEL 

Based on the bio-inspired approach and conceptual model described, an agent-based simulation model is 
proposed, implemented in NetLogo. An impression of the simulation model is given in Figure 1, and the 

model is freely available at Gerrits and Andringa (2023) and can be run in the cloud using NetLogo Web. 
We invite researchers and practitioners to use and extend the model. Additional information on the inner 
workings and possible extensions of the model can also be found online. For experimentation and data-
analysis purposes, we use an offline version of the model with a custom-build experiment manager and 
data-logging capabilities. Below, the main components of the simulation model are discussed: the energy 
system (Section 4.1), the EVs (Section 4.2), and the jobs (Section 4.3).  
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4.1 The Sustainable Energy System 

To capture how the energy is supplied and consumed in the network, we first focus on the visualization of 
the flow of energy. As shown in Figure 2, we visualize a wind turbine, a solar system (both on the left), and 

the grid (on the right). These are connected to the charging area (visualized by an orange charging station) 
and a buffer battery (if used) in the middle of the model. 

Figure 2: Screen capture of the cloud-based simulation model. The input parameters and experimental 
factors are shown on the left and the visualization of the energy system is shown on the right, including a 

charging area (left white square) and a working area (right white square). 

When pressing Setup, the visualization is generated using NetLogo code by coloring the relevant Patches. 

For the purpose of animation, the flow of energy is visualized using color-coding: solar or wind energy 
(green), grid energy (grey), or a mix of both (yellow). If no buffer battery is used, the network is adjusted 
accordingly during initialization. Moreover, to visualize the solar production, the sun rises and sets at the 
top of the model (see Figure 1), with discrete (hourly) time steps in between. That is, every hour the solar 
production (in kW) is calculated based on the input parameters and Equation 3. 

4.2 The Electric Vehicle Fleet 

The EVs are modelled as an agent-set of workers in NetLogo. The worker-agents are initialized at individual 
x- and y-coordinates at the charging area (left white square in the simulation), based on the input parameter 
number-of-workers. The individual agents of this breed have the following custom-defined properties: (i) 
the current SoC (in %), (ii) a Boolean indicating whether the agent is processing a job, (iii) the unique 
identifier of the job it is currently processing (or -1 if none), and (iv) x-and-y coordinates when the agent is 
charging (for visualization purposes). Whenever an EV requires charging, it is automatically charged using 

the energy that is currently available, where the priority is as follows: (1) direct from sustainable source, 
(2) from buffer battery, or (3) from the grid. Lastly, the EVs are visualized using truck icons showing the 
current SoC in the bottom-right corner. The EVs are green when the SoC is higher than the minimum 
required charge to process a job (i.e., they are available), and yellow otherwise.   
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4.3 Job Generation 

Similarly to the EVs, the jobs are modelled as an agent-set and each job-agent has the following custom-
defined properties: (i) the ID of the worker assigned to it (or -1 if none), (ii) the tick indicating the time 

when the job is created, (iii) the tick indicating the time when a worker starts the job, and (iv) the x-and-y 
coordinates of the job in the working area (for visualization purposes). The jobs are generated at the start 
of each hour, based on the number-of-jobs-per-hour parameter. The job-agents are color-coded green when 
a worker is processing the job and grey otherwise. After completion of the job, the job-agent is removed.  

5 RESULTS 

This section presents the simulation results. First, the experimental design is discussed in Section 5.1. Next, 

we present the results of the base scenario (Section 5.2), of introducing demand fluctuations (Section 5.3), 
and of including a buffer battery (Section 5.3). 

5.1 Experimental Design 

Recall that our goal is develop and evaluate a bio-inspired approach to balance a local sustainable energy 
system for electric vehicles in an industrial context. To this end, we define several experiments. First, we 
aim to evaluate whether our bio-inspired approach is able to balance the system using the base-scenario (as 

discussed in Section 3.3). Next, we experiment with disturbances in the job generation pattern (Scenario 
1), and test the influence of a buffer battery (Scenario 2). We use a terminating simulation representing a 
working week, with a run length of 5 days (120 hours). At the initialization of every simulation run, the 
SoC of all EVs are set at 50% and the buffer battery is fully charged (only in Scenario 2). For each scenario, 
we experiment with the parameters of the bio-inspired approach, denoted by the tuple (𝑤𝑠, 𝑤𝑏 , 𝑤𝑗). We use 
a step-size of 0.1 for each parameter (i.e., 0, 0.1, 0.2, …, 0.9, 1.0), resulting in a set of 66 experiments for 

each scenario. Five replications are used for each experiment, resulting in a relative error of at most 𝛾 = 
0.01 using a significance level 𝛼 = 0.05. The input values as described in Section 4 are shown in Table 1. 
Table 2 gives on overview of the results, which are further discussed in Sections 5.2-5.4.  

Table 1: Input parameters and their values. SoC = State-of-Charge (0-100%). 

Input Value  Input Value 

Sustainable energy related  Job related 

Max. solar production (kWh) 840  Jobs per hour 5 

Solar production (std. dev) 100  Processing time (h) 1 

Seasonality parameter 0.7  Min. required SoC  10% 

Max. wind production (kWh) 0  before starting job  

     

EV related  Buffer battery related 

Number of EVs 7  Available Yes (Sc. 2) or no (Sc. 0-1) 

Energy consumption (%/h) 10  Capacity (kWh) 6000 

Charging speed (%/h) 25    

Battery capacity (kWh) 500    

5.2 Balancing the System in the Base-scenario 

Figure 3 shows the results of the experiments in terms of the average queue and the percentage of 

sustainable energy use for Scenario 0 (gold colored) and Scenario 1 (green colored). To compare the impact 
of the parameters of the bio-inspired approach, we alternatingly set one of the three parameters of the bio-
inspired approach to zero, resulting in 12 remaining experiments. From Figure 3 it can be clearly seen that 
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when the focus is fully on solar stimulus, i.e., configuration (1,0,0), that the both the average queue size 
and the sustainable energy use is the highest.  
 

Figure 3: Simulation results. Scenario 0: gold, Scenario 1: green.  

This result suggests that when sustainable energy usage is important, a sacrifice needs to be made in terms 
of logistics performance. In our system, the average queue size is more dependent on the parameters of the 
bio-inspired approach than the sustainable energy use. As a matter of fact, only a few statistical differences 
can be found for the latter, i.e., when the confidence-intervals do not overlap. Nevertheless, the trade-off 

between logistics performance and sustainable energy use is clear in our system. Hence, looking for Pareto 
optimal solutions is required to balance the system. As a start, we used Excel to solve an ILP tailored to our 
system to find the extreme points. That is, the minimum and maximum of the average queue and the 
sustainable energy use. Our ILP found that the minimum queue is very close to 0 with a corresponding 
sustainable energy use of 48.9%. Our bio-inspired approach, when focusing mainly on the job stimulus, 
also achieves a queue size close to zero, with a sustainable energy usage of 48.2%. At the other extreme, 

focusing on maximum sustainable energy usage, the theoretically maximum proved to be 62.4% in our use 
case, while our bio-inspired approach achieved 52.5% with a slightly smaller average queue. These results 
suggest that our bio-inspired approach is able to (i) intuitively control the balance in the system, and (ii) 
achieve good results with negligible computational power. As part of further research, we aim to explore 
the set of Pareto optimal solutions to further substantiate the power of our approach.  
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5.3 Introducing Disturbances 

The goal of introducing disturbances in demand is to verify the robustness of our approach under different 
parameters. From Figure 3 it can be seen that disturbances increase the average queue, while the sustainable 

energy use remains more or less the same (i.e., the green colored values). Regarding the average queue, we 
find that when focusing on the job stimulus, the increase is substantially less than when focusing on the 
battery or the sustainable energy stimulus. When focusing on the job stimulus, the system is thus more 
responsive to demand fluctuations. But again, the system should be balanced in terms of both KPIs, and the 
user of the system needs to determine acceptable levels for both KPIs. Our simple, yet effective approach, 
allows the user to (automatically) configure the parameters of the bio-inspired approach in real-time to 

control the balance.  

5.4 The Impact of a Buffer Battery 

In our system, we focus on 24-hour operations and hence sustainable energy produced at night is typically 
insufficient to meet demand. We therefore experiment with a buffer battery that can be used to temporarily 
store locally generated energy. We set the capacity of the buffer battery to the total daily required energy. 
As a result, the surplus energy during the day is stored and used during the night. Through experimentation, 

we assess how the parameters of the bio-inspired approach influence the maximum required capacity to be 
100% self-sufficient, as capacity is typically the main indicator of the costs of a buffer battery. Figure 4 
shows the results for the experiments where 𝑤𝑏 = 0, as these experiments showed the lowest and highest 
values for the required buffer capacity.  

 

Figure 4: Impact of parameters on required buffer capacity. 

From Figure 4 we see that focusing only on the sustainable energy stimulus, i.e., configuration (1,0,0), 
the maximum required buffer capacity is approximately 40% lower than when focusing only on the job 
stimulus. As discussed in Section 5.2, focusing on solar energy comes at the sacrifice of a longer average 
queue, but with a higher percentage of immediate use of sustainable energy, and hence, a smaller buffer is 
required. 

6 CONCLUSIONS AND FURTHER RESEARCH 

This paper proposes a bio-inspired approach based on the foraging behavior of honeybees to control the 
charging of a fleet of electric vehicles in an industrial setting. We present an approach based on three 
different stimuli to balance the system in terms of usage of locally generated sustainable energy and the 
performance of the logistics system. To this end, we present an open-source agent-based simulation model 
to study the behaviour of the bio-inspired approach in various scenarios. Results from our simulation 

experiments suggests that our approach (i) intuitively and effectively controls the balance between charging 
and working, and (ii) is able to show close-to-optimal performance at the extreme points of the Pareto 
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optimal solutions by tweaking the parameters included in the model. Our open-source simulation model is 
freely available online and can be easily extended to include different bio-inspired approaches or to model 
different logistics systems. We invite researchers and practitioners to use and extend the model. For 

example, we identify the following topics for extension and further research: (i) include a more realistic 
model of sustainable energy production with fluctuations due to weather changes, (ii) assess the impact of 
the different stimuli of the bio-inspired approach for different logistics systems, and (iii) extend the model 
to include optimization in terms of monetary KPIs (e.g., strategically sell/buy energy).  
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