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ABSTRACT 

Integrated, demand-responsive passenger and freight transport (IDRT) potentially provides flexibility and 
higher service frequency in areas of low demand due to economies of scale, while reducing negative traffic-
related externalities such as pollutant emissions, noise emissions or accidents. However, to allow for 
efficient operations in terms of minimum travel distances, short customer waiting times, and high vehicle 
utilization rates, IDRT requires effective rebalancing strategies that balance supply and demand capacities 
by strategically positioning vehicle resources in the operational area. Therefore, we propose a rebalancing 
strategy for IDRT and measure its effectiveness through an agent-based simulation model. To evaluate our 
approach, we compare the rebalanced IDRT with a static scenario with backhauls to a central depot. Our 
results indicate that the proposed rebalancing approach can outperform a system without rebalancing by up 
to 15.1% in terms of total fleet kilometers and 30% in terms of passenger waiting time. 

1 INTRODUCTION 

Rural areas are characterized as outlying regions with low local population density and a vast majority of 
all movements that takes place by (motorized) private vehicle. Additionally, travel distances are 
comparatively long since points of interests and supply are generally located far away from the residences 
of the inhabitants (e.g., Mounce et al. 2020; Poltimäe et al. 2022). Yet, in accordance with the low local 
population density, there is still a rather low overall transport demand, especially compared to urban areas. 
Consequently, rural transport operators often struggle to establish economically feasible transport services 
that satisfy the mobility needs of rural public transport users (Cavallaro and Nocera 2023; Mounce et al. 
2020). This in turn results in a low transportation service coverage, which means that rural inhabitants are 
highly dependent on privately owned cars (Mounce et al. 2020; Poltimäe et al. 2022). However, the 
extensive use of private vehicles implies numerous negative effects such as high emissions due to 
conventional propulsion technology, detrimental influences on public health and social and spatial conflicts 
(Banister 2011; Sadeghian et al. 2022; Urry 2004). Thus, making transport more sustainable by reducing 
private traffic and fostering more affordable, accessible, healthier and cleaner alternatives is high on the 
agenda for transportation planners and has become a relevant concern for policy makers across the globe 
(Alonso-González et al. 2018; Bauchinger et al. 2021). Besides the aforementioned mobility-related issues, 
the first and the last leg of freight transport movements is also a highly challenging aspect in rural 
transportation (e.g., Macioszek 2018). Reinforced by the expansion of e-commerce and the COVID-19 
pandemic, the number of parcel deliveries has continuously risen over the last years (Meinhardt et al. 2022; 
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Romano Alho et al. 2021; van der Tholen et al. 2021). This has led to smaller and spatially as well as 
temporally more fragmented shipments that involve a wide range of interacting users, resulting in multiple 
and sporadic exchanges (Bruzzone et al. 2021; Romano Alho et al. 2021; Souza et al. 2014; van der Tholen 
et al. 2021). Moreover, the provision of express and return services contributes to operational inefficiencies 
and potentially increases negative traffic-related externalities (Romano Alho et al. 2021). Consequently, 
the first and the last mile of the supply chain in rural areas are characterized by high cost level that stems 
from inefficient operations (Bruzzone et al. 2021; Cavallaro and Nocera 2023). 

To tackle both, mobility- and last-mile-delivery-related problems, the integration of passenger and 
freight flows in a single transport service fleet is a promising approach (Bosse et al. 2023; Bruzzone et al. 
2021; Cavallaro and Nocera 2023). In view of the lack of a comprehensive, public mobility infrastructure, 
demand-responsive transport (DRT) seems to be particularly promising, as it potentially provides temporal 
as well as spatial flexibility in terms of origin and destination of a journey (Cavallaro and Nocera 2023; 
Mounce et al. 2020). A demand-responsive service integrating passenger and freight flows potentially 
implies several benefits such as reduced energy consumption and economies of scale. Additionally, cost 
reductions obtained from the integration of passenger transit and freight deliveries potentially enable higher 
service frequencies and therefore lead to a higher service level (Bosse et al. 2023; Cavallaro and Nocera 
2023; Fehn et al. 2023). 

Research on DRT revealed that fleets tend to unbalance as the demand for vehicles is often not 
uniformly distributed within the area of operation (e.g., Wallar et al. 2018). This phenomenon especially 
occurs during peak periods in the morning and afternoon when most trips occur due to commuting activities. 
This mismatch of supply and demand implies that vehicles often have to travel longer distances than 
necessary to customer’s pickup points, which leads to inefficient operations as well as lower service levels 
in terms of waiting times and unserved requests. Longer travel distances and therefore longer trip durations 
also imply that the number of passengers that can be served within a specific time is suboptimal (Chen and 
Levin 2019; Wallar et al. 2018). IDRT is also subject to these rebalancing problems. 

While rebalancing strategies have been researched in other contexts such as on-demand transport (e.g., 
Schlenther et al. 2023), there is a dearth of research that investigates this issue for the particular case of 
IDRT. To close this gap, we develop a demand-responsive rebalancing strategy and implement it into an 
agent-based simulation model that evaluates the performance of this general modelling approach in an 
exemplary case study of an IDRT service operating within the rural area of Sarstedt, Germany. Dynamic 
agent-based simulation is a suitable approach to illustrate and analyze such a system of high complexity 
with a large degree of non-linear interdependencies and system components (Auf der Landwehr et al. 2021). 
Furthermore, simulation methods are frequently used in mobility and logistics contexts as they help to 
mimic and analyze systems with highly intricate interrelationships, various design variants, and operational 
properties that have not yet been piloted in practice (Wenzel 2018). By comparing the results of IDRT with 
and without implementation of our rebalancing approach, we generate first context specific insights about 
improvements regarding total fleet kilometers driven and customer waiting times. Additionally, we provide 
insights about vehicle utilization of both scenarios by comparing the average time that vehicle spend idle, 
in service, or standby. The rebalancing strategy introduced in this paper supports future (simulation) 
research and offers an approach to optimize the performance of IDRT and to manage vehicle fleets more 
efficiently. Furthermore, our findings allow first estimates regarding the required fleet size to fulfill a given 
demand and conceptualizes the tradeoffs between employed vehicles and passenger waiting times. 

2 RESEARCH BACKGROUND 

2.1 Integrated and Demand-responsive Passenger and Freight Transport 

The idea of moving goods and passengers simultaneously is not new. The first academic discourse on 
integrated transportation dates back to more than a decade ago (Cavallaro and Nocera 2022). Trentini and 
Mahléné (2010) classified potential solutions for the integration of passenger and freight transport into three 
categories and identified areas where these solutions are tested or implemented in practice. Besides shared 
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road capacities (e.g., multiuse lanes) and shared consolidation facilities (e.g. delivery bays) they also 
mention shared public transport services (e.g., buses or subway). In order to evaluate potential 
improvements of integrated passenger and freight flows compared to the current (separate) transport 
schemes, Bruzzone et al. (2021) propose a set of operational, environmental and social key performance 
indicators (KPIs). They defined the variation in average daily traffic in distance covered and in load factors 
to be critical performance measures. Furthermore, they emphasize freight service frequency, energy 
consumption, air pollution and external costs as well as labor costs to be important benchmarks. 
Additionally, the results of two case studies indicate that integrated passenger and freight transport is 
particularly effective in cases where reduced freight volumes, limited freight pickup/delivery locations and 
comparatively low elasticity of travel demand reduce the constraints to the adoption of this integrated 
scheme. Cavallaro and Nocera (2022) provide a sound overview about research in the field of integrated 
passenger and freight transport. They identified 69 relevant contributions to this topic and provide insights 
about applied approaches, means of transport, and the territorial scale of the studies reviewed. They 
revealed, that a vast majority of research focuses on urban areas while rural areas are widely unexplored. 
Furthermore, they found a wide spread of transport modes, reaching from rail, subway, or tram (27) to boat 
(2) or even ropeway (1). 

Approaches that integrate passenger and freight flows into demand-responsive transport in particular 
are scarce. Fatnassi et al. (2015) investigate how passenger and freight could share a rapid transit network 
to enhance the sustainability of city logistics. They characterized a dynamic transportation problem and 
proposed two strategies to formulate and solve a maximum matching problem in a bipartite graph. They 
tested their solution approach on a case within the network of Corby and found that the implementation of 
the rapid transit service improves waiting time and energy consumption compared to current transportation 
options. Fehn et al. (2021) examined the potential of combining on-demand mobility and city logistics using 
a case study for the city of Munich. They examined the emission-related effects of three different scenarios 
and revealed that about 80% of the distance traveled to provide logistics services could be saved and the 
environmental impact in terms of emissions could be reduced. Possible service models for the integration 
of passenger and freight trips into a mobility-as-a-service concept to improve capacity utilization in 
passenger transport and to reduce freight movements in cities were also systematically explored by Le Pira 
et al. (2021). They identified relevant logistics segments, proposed service models and evaluated these from 
a multi-stakeholder and sustainability perspective. They do not only reveal potential for parcel deliveries 
but also for other segments requiring fast shipment such as grocery deliveries. Romano Alho et al. (2021) 
applied an agent-based simulation framework to systematically investigate the impacts of cargo transport 
integrated into a mobility-on-demand (MoD) service. They explored different operational strategies and 
considered multiple perspectives of passengers, shippers, carriers, and planners. Thereby they revealed that 
delivering parcels using MoD vehicles decreases the vehicle hours and kilometers traveled with minimal 
impact to passenger travel. Furthermore, their results provide insights on the magnitude of parcel 
movements that can be taken over by a MoD service and the impacts on the service quality for passengers 
and fleet usage. In order to combine passenger and freight flows in one single service that ensures high 
passenger service while simultaneously transporting a large number of goods, Bosse et al. (2023) introduced 
a dynamic priority policy that uses a time-dependent percentage of vehicles mainly to serve passengers. 
They found, that varying the percentage of priority vehicles during the day can be very beneficial, 
especially, when the ratio between mobility and transportation demand is volatile. 

The aforementioned studies explicitly or implicitly focus on urban areas with spatially concentrated 
and high levels of passenger and freight demand. They revealed high potential regarding the efficiency of 
the concept paired with little ecological impact and sound customer convenience. Conversely, the effects 
of integrated passenger and freight transport in less densely populated rural areas are widely unexplored. 
Cavallaro and Nocera (2023) propose a methodological framework for development and evaluation of an 
integrated demand-responsive transport service. They applied the Business Model Canvas (Osterwalder 
and Pigneur 2010), to access infrastructural, personnel and vehicle related requirements. Furthermore, they 
explored the implementation costs, potential revenues, and possible partners to be involved and recommend 
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financial, operational, environmental, and social KPIs to evaluate the performance of the service. In order 
to verify the practical suitability of their service, they propose its implementation into the municipality of 
Misano Adriatico and evaluate it using KPIs. Their analysis revealed a reduction in kilometers travelled, 
fuel consumption, and air pollutants, together with an increase in the area covered by the service, increase 
in daily potential freight deliveries, and increase in passenger occupancy rates of vehicles. 

Overall, regardless of the investigational scope, existing research commonly focuses on mileage and 
passenger waiting times (e.g., Fatnassi et al. 2015; Romano Alho et al. 2021) as main performance 
indicators. Accordingly, we also adopt these indicators to measure the effectiveness of our proposed 
rebalancing strategy. 

2.2 Rebalancing in Mobility-on-Demand Research 

Waiting times are an important factor influencing the overall passenger travel time and therefore the 
perceived attractiveness of a transport mode. Thus, one challenge of offering demand-responsive transport 
services in rural areas is to achieve reasonable waiting times which are directly influenced by the spatial 
distribution of idle vehicles (Schlenther et al. 2023). This spatial distribution can be adjusted by the service 
operator by relocating idle or empty vehicles, a procedure which is referred to as rebalancing (Bischoff and 
Maciejewski 2020; Spieser et al. 2016). Vehicle rebalancing was subject to several studies in recent years. 
Wen et al. (2017) proposed a reinforcement learning approach that adopts a deep Q network and adaptively 
moves idle vehicles to regain balanced vehicle distribution within the study area. They applied their 
approach to an agent-based simulator and evaluate it in a case study in London. They compared the results 
of their approach to anticipatory rebalancing where the probability of a vehicle moving towards a 
neighboring zone is proportional to the number of predicted requests of that zone. Their results show that 
the proposed reinforcement learning approach outperforms the local anticipatory method by reducing the 
fleet size by 14% while inducing little additional mileages. Wallar et al. (2018) presented a method to 
rebalance idle vehicles in a ride-sharing enabled MoD fleet. Their method consists of three algorithms: One 
to optimally partition the fleet operating area into rebalancing regions, one to determine a real-time demand 
estimate for every region using incoming requests, and another to optimize the assignment of idle vehicles 
to these rebalancing regions using an integer linear program. They evaluated their approach using a 
historical taxi data set from Manhattan in New York City. Their results show high number of served requests 
in Manhattan can be served employing a fleet of 3,000 vehicles, while recording an average waiting time 
of 57.4 seconds and an average in-car delay of 13.7 seconds. Compared to an earlier study by Alonso-Mora 
et al. (2017), which was conducted in the same context and under similar circumstances, they were able to 
reduce the average travel delay by 86%, the average waiting time by 37%, and the number of ignored 
requests by 95% to the expense of an increased distance travelled by the fleet. Schlenther et al. (2023) 
investigated different vehicle relocation strategies with respect to service provision equity by applying an 
agent-based simulation approach within the area of Berlin. They opted to identify ways of operation that 
support social fairness while maintaining the profitability and effectiveness of the service. In terms of 
service provision equity, they found maintaining equal vehicle density across the entire service area to be 
a promising solution. Additionally, they revealed that larger rebalancing zones lead to lower system 
efficiency and lower service quality. A study by Chen and Levin (2019) developed a dynamic traffic 
assignment of MoD systems. To evaluate their approach, they simulated the MoD system in two networks 
with different fleet sizes and varying demands. Their results showed that the average total delay and travel 
distance decreased with the increase in fleet size, whereas the average on-road travel time rose. 
Additionally, they compared the results of traffic assignment of a network with MoD system with a network 
where all travelers use private vehicles. They revealed, that the former network creates more trips but less 
traffic congestion. One of the rare studies that contributes to solve the rebalancing problem in rural areas 
was conducted by Bischoff and Maciejewski (2020). They proposed a rebalancing strategy that relocates 
vehicles in accordance to the spatial distribution of demand in the near future. This demand-anticipatory 
rebalancing approach implies that vehicles are rather transferred into areas of high demand due to high 
population density. Accordingly, areas of comparatively low demand receive less idle vehicles, leading to 
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higher waiting times that lower the demand even further. Nevertheless, they found that their approach 
reduces passenger waiting times by around 30% without increasing vehicle mileages for an autonomous 
feeder fleet in a rural area in Switzerland. 

2.3 Research Gap and Contribution 

The review of the related work reveals a wide range of possible combinations of passenger and freight 
transport, applying various means of transport. Conversely, research in the field of IDRT in general is rather 
limited. Furthermore, there is an underrepresentation regarding the application of such a service in rural 
areas, even though existing approaches where found to be very promising due to their high flexibility in 
terms of spatio-temporal network coverage and comparatively low capacity utilization in times of low 
passenger demand (Cavallaro and Nocera 2023; Fehn et al. 2023; Mounce et al. 2020). As mentioned before 
and similar to conventional DRT, IDRT-fleets tend to become unbalanced due to spatially non-uniformly 
distributed passenger demand, which is particularly valid for rural areas with low and widespread 
population density (Schlenther et al. 2023). Even if this issue was already subject to several studies (e.g., 
Bischoff and Maciejewski 2020; Chen and Levin 2019; Wen et al. 2017), a sound approach for rebalancing 
a fleet of IDRT in rural areas is still missing. To close this gap, we developed a rebalancing strategy and 
evaluated it by implementation into an agent-based simulation model to illustrate the IDRT service in the 
rural area of Sarstedt, Germany. By comparing the results of an IDRT service without (static IDRT) and 
with application of our rebalancing strategy (rebalanced IDRT), we provide insights on traffic and service 
implications in terms of total fleet kilometers driven and passenger waiting times. By proposing a 
rebalancing strategy, we contribute to optimized fleet management of IDRT in rural areas that can be 
adopted by other researcher and practitioners that opt to develop or assess IDRT systems. Additionally, 
even if our case is specific in terms of demand, infrastructure and study area, our simulation results indicate 
first generic estimates regarding the required fleet size to fulfill a given demand and conceptualize tradeoffs 
between passenger waiting times and the number of vehicles employed. 

3 METHODOLOGY 

3.1 Service Definition and Simulation Model 

The scope of our simulation study is restricted to the rural area of Sarstedt, located between the cities of 
Hanover and Hildesheim in Germany. Within this area, we develop an agent-based simulation model to 
illustrate and evaluate our rebalancing strategy to redistribute idle vehicles in order to achieve efficiency 
gains. We used the multimethod software AnyLogic (Version 8.8.1) to simulate and compare the results of 
both scenarios (static and rebalanced IDRT) on a daily basis (from 00:00 a.m. to 12:00 p.m.). We simulate 
and compare the results of the scenarios on a daily basis (from 00:00 a.m. to 12:00 p.m.). For our concept 
of IDRT, parcel deliveries take place between 8:00 a.m. and 7:00 p.m., which is the only interval when a 
simultaneous transport of passengers and freight can take place. This results in mixed routes during that 
time where the delivery of parcels and the fulfilment of mobility demand at the stopping points alternate. 
To achieve a realistic mobility demand scenario during the day, a list of mobility requests is generated 
based on traffic-flow information that have been extracted from mobile communication traffic data. Traffic 
flows are mapped based on a total of 50 mobility clusters within the area of investigation, whereby each 
cluster features a maximum size of 800x800 meters. Based on the resulting list of mobility requests, a 
vehicle routing problem with pickup and delivery (VRPPD) as described in Desaulniers et al. (2002) is 
defined and solved by means of Google OR Tools. The objective function of this mathematical problem is 
to minimize the total distance driven. Regarding the start-destination relationships, an important constrain 
of the routing problem is that the destination point must be located after the starting point. Further constrains 
have been defined in line with scientific literature (e.g., Desaulniers et al. 2002; Savelsbergh and Sol 1995). 
As IDRT includes shared rides, the destination point does not have to follow directly after the starting point. 
Instead, several starting points may be lined up before the destination points follow. From the simulation 
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model, a distance matrix with linear distances (beeline) and start- destination relationships is overhanded 
to Google OR Tools. By solving the problem, for each vehicle, the necessary detour to serve a request is 
determined. A mobility request is assigned to the vehicle that has the shortest detour. To enhance vehicle 
utilization, ride-sharing is applied and empty vehicles are prioritized. The IDRT service employs a total of 
18 vehicles to serve both, mobility requests and delivery orders. The vehicle a mobility request has been 
assigned to, always moves directly towards the stopping point which is ranked first in its mobility order 
list. This list is vehicle-specific and contains only the orders that were assigned to the vehicle. Upon arrival, 
the vehicle checks which mobility requests belong to this stopping point and passengers embark or 
disembark the vehicle. Subsequently, the vehicle consults its mobility order list again if it contains further 
requests. Is this the case, it moves directly towards the next stopping point on the list. Otherwise, the vehicle 
returns to the depot (i.e., backhaul) and waits there for new incoming requests. During its transfer to the 
depot, the vehicle checks every minute if a new mobility request was assigned and may interrupt its way to 
the depot to serve newly incoming requests. 

We assume vehicles to have been initially loaded with parcels that have to be delivered between 8:00 
a.m. and 7:00 p.m. Thus, the delivery order list is known in advance and parcels are not reloaded to vehicles 
during the day. Based on the order list, a capacitated vehicle routing problem (CVRP) is formulated (e.g., 
Toth and Vigo 2002) in order to consider the maximum vehicle capacities for parcel deliveries. Other 
constrains have been defined in accordance with related scientific studies (e.g., Ralphs et al. 2003; Toth 
and Vigo 2002). The assignment of routes to vehicles is also conducted using Google OR Tools. In order 
to deliver parcels, the vehicle always moves to the receiving household that is ranked first on the delivery 
order list and unloads/delivers the designated parcels. A vehicle conducting a delivery order while a new 
mobility request occurs will finish the delivery order and subsequently serve the new mobility request. 
Upcoming mobility requests are always prioritized over outstanding delivery orders and will be served first 
to reduce customer waiting times. Upon arrival at a destination of a current order or request, vehicles iterate 
over their list of mobility requests and delivery orders to check which request is assigned to this stopping 
point or which order belongs to this household. Although space restrictions are less important in rural areas 
than they are in urban areas, we assume idle vehicles not to wait at their current position as parking and 
road space are still limited (Winter et al. 2021). Instead, idle vehicles return to a depot which is located 
centrally in the study area. These ways are replaced by applying the rebalancing strategy as further 
described below. A synopsis on the model input parameters used for our simulation study is provided in the 
following Table 1: 

Table 1: Model parameter categories, values, unites and sources. 

Category Value Unit Sources 
Number of IDRT vehicles 18 Vehicles Industry partner 
Average vehicle speed 35 Kilometers per hour Industry partner 
Max. passengers per vehicle 9 Passengers Cavallaro and Nocera (2023) 
Max. parcels per vehicle 22 Parcels Cavallaro and Nocera (2023) 
Share of served requests 2 (419 total) Percentage (stochast.) Industry partner 
Share of served delivery orders 25 (192 total) Percentage (stochast.) Industry partner 
Embarking/ Disembarking time 14 Seconds Tirachini (2013) 
Parcel unloading time 30 Seconds Industry partner 
Number of virtual stops 50 Stops Industry partner 
Number of depots 1 Depots Industry partner 

3.2 Rebalancing Strategy Approach and Implementation 

We implemented a machine learning model (ML-model) into the agent-based simulation that was trained 
using the aforementioned mobile communication data provided by our industry partners. On basis of this 
data, The ML-model predicts the total number of journeys from a specific mobility cluster into another at 
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a specific week day at a specific time. The calculation of a vehicle deficit- or a surplus in relation to the 
mobility demand takes place on basis of the 50 mobility clusters that the area of investigation has been 
divided in. The aim of our rebalancing strategy is to anticipate future mobility demands while achieving a 
preferably uniform distribution of the vehicle fleet within the study area. As the length of the periodic 
rebalancing interval was found to have no significant influence on the KPIs empty vehicle kilometers 
travelled and waiting time (Bischoff and Maciejewski 2020), our approach conducts rebalancing 
immediately after the drop-off of the last passengers or parcel. Unlike periodic rebalancing which does not 
allow the redistribution of vehicles in between the periodic intervals, even if a vehicle is idle, immediate 
rebalancing directly after the dropoff of passenger or freight solves this issue and potentially enhances 
efficiency. Nevertheless, to avoid idle vehicles in areas where demand is expected but doesn’t occur and to 
avoid permanent redistribution, we conduct an additional periodic redistribution of particular vehicles. In 
contrast to Bischoff and Maciejewski (2020) and Fagnant and Kockelman (2014), this additional periodic 
redistribution is not conducted in a centralized manner for all idle vehicles at the same time. Instead, the 
additional periodic redistribution takes place for each vehicle individually if it has been idle for two hours. 
Accordingly, our approach combines periodic with immediate redistribution. This implies that the 
calculation of deficit and surplus clusters always takes place immediately after a vehicle becomes available 
or when a vehicle has been idle for two hours and the periodic rebalancing initiates redistribution. In order 
to adjust mobility demand and supply of vehicles within the study area, demand and supply are subtracted 
(Bischoff and Maciejewski 2020; Winter et al. 2021). The number of required vehicles is calculated in 
addition to idle vehicles and vehicles that are expected to be idle soon (Bischoff and Maciejewski 2020). 
In Bischoff and Maciejewski (2020), Winter et al. (2021), as well as Fagnant and Kockelman (2014) idle 
vehicles are redistributed from a cluster with a surplus to the cluster with the highest deficit. This implies, 
that vehicles may be transferred over long distances in cases where the cluster with the largest deficit is far 
away, even if a closer cluster shows a deficit that is nearly as high. This leads to high amounts of empty 
vehicle kilometers travelled. To avoid this phenomenon and to achieve operational efficiency gains, we 
limit the number of clusters considered for redistribution to the five clusters showing the highest deficits. 
The idle vehicle will be redistributed to the cluster which is closest to its current position. 

As passenger mobility is prioritized, parcel delivery takes place only if no remaining passenger requests 
are present or until the assignment of a new passenger request interrupts the delivery process, respectively. 
To consider parcel delivery for the rebalancing process, clusters the vehicle was initially loaded with parcels 
for, are saved in the vehicle. As delivery orders are assumed to be known in advance, the delivery order list 
and therefore the deposited logistics clusters of each vehicle are stable and do not change during the day. 
Upon availability (i.e., no remaining mobility requests), logistic-clusters are checked to identify logistics 
cluster that show a deficit. Figure 1 illustrates the simulated IDRT concept and highlights the 
implementation of the rebalancing strategy into the process. 

The following procedure demonstrates the process in detail: After the list of open mobility requests has 
been checked and no further requests where found, the vehicle stops. Subsequently, the vehicle checks the 
order list for unfulfilled parcel deliveries to redistribute it into clusters where the deliveries are due. If one 
or more logistics cluster were saved in the vehicle, it has to be determined if these clusters show deficits. 
Therefore, the predictions for the expected mobility demand of the next hour (ei = number of expected 
orders for cluster i) are requested and recorded (a), and the demand predictions for each cluster are added 
up to a total sum of predicted demand (total mobility demand) (b). Subsequently, the number of presently 
idle (ii = number of idle vehicles for cluster i) as well as soon to be idle vehicles (si = number of soon-idle 
vehicles for Clusters i) for each cluster are determined and recorded (c). Thereafter, all idle and soon to be 
idle vehicles of each cluster are added up to a total number (total number of vehicles available) (d). The 
calculation of vehicle surplus or deficit for cluster i (di) is illustrated in Equation (1) (e): 
 
 𝑑! = −$(𝑖! + 𝑠!) − 𝑒!+ ∗

"#"$%	'()*+,	#-	.+/!0%+1	$.$!%$*%+
"#"$%	)#*!%!"2	3+)$'3

 (1) 
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4 RESULTS 

To assess the impact of IDRT and the suggested rebalancing strategy within the rural area of Sarstedt, 
Germany, the proposed simulation model has been employed for two different simulation experiments. 
Preliminary tests of our simulation approach showed minimal standard deviation in the obtained target 

Figure 1: Process model illustrating IDRT and rebalancing strategy implementation. 
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figures as the stochastic input parameters are limited to the share of mobility requests and delivery orders 
served by the IDRT system. Therefore, we refrained from a Monte Carlo approach and conducted a single 
simulation run for each scenario to evaluate the individual impacts regarding average total fleet kilometers 
and average customer waiting times. Furthermore, we evaluate differences between the scenarios in terms 
of total vehicle times in service, rebalancing or idle. To enhance the usability of our results and to design 
more realistic scenarios, we chose parameters that were mentioned in recent literature as well as interviews 
conducted with public mobility and logistics service providers. 

Assuming 2% of all mobility request (419 in total) and 25% of all delivery orders (192 in total) to be 
fulfilled by the IDRT fleet, total fleet kilometers driven of 6,814.73 occur in the case of static IDRT and 
5,787.03 in the case of rebalanced IDRT. After implementing our rebalancing strategy, the total vehicle 
time at service (processing mobility requests and delivery orders) to serve the given demand can be reduced 
from 8,564.66 minutes in the case of static IDRT to 7,172.83 minutes in the case of rebalanced IDRT. This 
corresponds to an improvement of 16.3%. Furthermore, the time spend for backhaul of vehicles to the depot 
or for rebalancing vehicles in accordance to demand predictions is reduced from 2,612.01 to 2,444.11 
minutes at the expense of longer standby times of 14,742.25 minutes in the case of static IDRT and 
16,301.98 minutes when applying rebalancing (see Figure 2). Accordingly, the time spend for the backhaul 
or rebalancing respectively can be reduced by 6.4% while the vehicle time standby increases by 10.6%. 
The average passenger waiting time can be enhanced from 8.67 (static IDRT) to 6.06 minutes after applying 
the rebalancing approach which corresponds to a reduction of 30% (see Figure 2). The results show that the 
application of our rebalancing strategy reduces the average kilometers driven per vehicle from 378.6 to 
321.5 kilometers or by 15.1%. Thereby, the kilometers driven to serve mobility requests are reduced from 
244.75 kilometers in the case of static IDRT to 216.02 kilometers after the application of rebalancing. To 
serve delivery orders, 24.12 kilometers occur in static and 13.58 in the rebalanced IDRT case. This accounts 
for a reduction of 11.7% for mobility and 43.7% for delivery purposes. Furthermore, the average vehicle 
kilometers driven for the backhaul or rebalancing are reduced by 16.2% from 109.72 to 91.90 kilometers 
(see Figure 3). Furthermore, the share of service kilometers to serve mobility requests and delivery orders 
per vehicle in relation to the average total vehicle kilometers driven can be slightly improved by 0.4%. As 
shown in Figure 2 the overall reductions in fleet kilometers and expenditure of time for service and 
rebalancing are realized at the expense of higher standby times (idle vehicles). 

Figure 2: Total expenditure of time per vehicle, total fleet kilometers driven, and average passenger waiting 
times per scenario. 
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5 DISCUSSION AND CONCLUSION 

Our results show that the proposed IDRT system with application of our rebalancing strategy outperforms 
the static system in terms of total fleet kilometers driven and average vehicle kilometers driven to serve 
mobility requests, delivery orders, and for rebalancing or backhaul purposes. Furthermore, the passenger 
waiting time for the mobility service, which is an important measure for the service quality (Schlenther et 
al. 2023), can be reduced. Additionally, even if the scenarios where not investigated in terms of different 
fleet sizes, the revealed overall increase in standby time by about 10% suggests that an IDRT service 
applying our rebalancing strategy is able to serve a given demand using fewer vehicles compared to static 
IDRT. 

Our findings are in accordance to Wallar et al. (2018) who found that their rebalancing approach to 
allow for higher service rates while using less vehicles in the network of Manhattan in New York City. The 
reduction in passenger waiting time of about 30% realized by our approach is also in line with literature as 
Wallar et al. (2018) achieved reductions of even 37% in the urban area of Manhattan while Bischoff and 
Maciejewski (2020) revealed an improvement of 20% in rural Switzerland. Overall, our study emphasizes 
the high potential of rebalanced IDRT over static IDRT regarding the use of resources, reduction of 
environmentally harmful emissions and in improving access to mobility services in outlying rural areas. 

Nevertheless, to simplify our approach and as we focused on the proposed rebalancing approach, we 
made several assumptions and excluded a number of aspects from our examination, which may serve as 
fruitful amendments for future research. We did not consider any environmental factors such as congestion, 
accidents or other traffic-related disorders. Furthermore, the loading of vehicles in terms of logistics (e.g., 
with parcels) where not mimicked within our simulation. Instead, we assumed all parcels to be initially 
loaded to vehicles at the depot. Similarly, we assumed that all recipients are actually encountered for 
delivery and did not consider varying parcel sizes and their influence on vehicle capacities. Moreover, we 
did not take into account a detour factor limiting the passenger travel time and detours caused by pooling 
of different requests. Ultimately, further research is needed to expand our approach to assess the economic 
feasibility by implementing monetary cost models or the environmental impact by applying models to 
measure the actual amount of harmful emissions of IDRT. Additionally, to provide broader insights on the 
performance of different rebalancing strategies, future research may add alternative scenarios to the given 
setup or transfer the proposed approach to different study areas. 
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