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ABSTRACT

Machine Learning has become increasingly popular in developing Intrusion Detection Systems (IDS)
for cybersecurity. However, the focus has mainly been on achieving high detection accuracy rather than
evaluating the impact on cybersecurity resiliency. In this paper, we use agent-based simulation to investigate
the impact of different IDS algorithms on the cybersecurity resiliency of organizations under DoS attacks.
Our simulation includes a server agent equipped with either Naive Bayes or SMO-based IDS, and a
cybercriminal agent capable of launching different types of Denial of Service attacks. Our results suggest
that the choice of IDS algorithm can significantly affect an organization’s cybersecurity resiliency against
DoS attacks. Specifically, while SMO shows better overall accuracy on the KDD Cup 1999 dataset, Naive
Bayes-based IDS proves more effective in practice due to its better-balanced detection rates across different
types of DoS attacks. Our findings have important implications for improving organizations’ cybersecurity
posture.

1 INTRODUCTION

With the increasing number of cyber attacks in recent years, organizations are now more concerned about
their cybersecurity than ever before. In this paper, we focus on the Denial of Service (DoS) attack, which
can result in server down, financial losses, and the organization’s reputation damage. Effective detection
and response to DoS attacks is essential to minimize the damage and restore normal operations. Recently,
to achieve this, numerous machine learning-based intrusion detection system models have been developed
(Saranya et al. 2020). However, while most studies focus on achieving high detection accuracy on pre-
defined test sets, it’s important to evaluate the effectiveness of these models in real-world scenarios where
cybercriminals can analyze and exploit the vulnerabilities of IDS. This is challenging, as measuring an
IDS’s contribution to cybersecurity resiliency, the organization’s ability to withstand or recover from cyber
attacks (Butler 2018), depends not only on its performance but also on external factors such as the security
engineer’s ability, the motivation of employees for cybersecurity, the organization’s security guidelines and
strategies, and the availability of other security software such as firewalls. These outside factors vary greatly
from one organization to another, making it challenging to measure how much an IDS can contribute to
cybersecurity resiliency in a real-world environment. For example, even if an IDS has vulnerabilities, in
some organizations, these vulnerabilities may be covered by other factors, while in other organizations,
they may not. To overcome these challenges, we developed an agent-based simulation environment that
closely replicates real-world scenarios, including cybercriminal behavior patterns that prioritize exploiting
IDS vulnerabilities. By aligning all outside factors in our simulation environment, we aim to investigate
the impact of different machine learning models for intrusion detection systems (IDS) on the cybersecurity
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resiliency of organizations under various denial of service (DoS) attacks. Our study offers valuable insights
into the limitations of solely relying on accuracy as a metric for evaluating the effectiveness of ML-based
IDS models in enhancing cybersecurity resiliency, highlighting how the accuracy paradox (Thomas and
Balakrishnan 2008) can lead to higher accuracy without necessarily improving cybersecurity resiliency.

2 DATASET & INTRUSION DETECTION SYSTEM

In this paper we used the KDD Cup 1999 dataset (Stolfo et al. 1999) to build the machine learning model
for the intrusion detection systems. According to the distribution of attack types in the KDD Cup 1999
dataset (Aghdam and Kabiri 2016), we can observe that many attack types, such as Mail-bomb, Apache2,
and Process-table attacks, have data available only in the test set. To ensure equal distribution of data from
all labels in both the training and test sets, we merged the original KDD Cup 1999 training and test sets.
We then assigned 80% of the data from each label to the new training set and the remaining 20% to the
new test set. Table 2 presents the distribution of data for each label in the new training and test sets after
the merging and partitioning process.

Using the aforementioned training and test datasets, we employed the Weka software (Holmes et al.
1994; Hall et al. 2009) to develop a machine learning-based intrusion detection system (Meena and
Choudhary 2017) using both the Naive Bayes algorithm (John and Langley 1995) and the Sequential
Minimal Optimization (SMO) algorithm for Support Vector Classifier (Platt 1999). The results of our
experiments on the modified test set, including overall accuracy, accuracy for DoS detection, and specific
DoS attack detection accuracy, are presented in Table 1.

Table 1: Intrusion detection system performance with Naive Bayes and SMO algorithms.

Naive Bayes SMO
Overall Accuracy 87.26% 99.61%

DoS Accuracy 99.69% 99.92%
Neptune 99.23% 99.99%
Smurf 99.88% 99.99%
Pod 95.77% 95.77%

Teardrop 98.99% 98.99%
Land 100.00% 100.00%
Back 96.06% 9.68%

Apache2 98.74% 95.59%
Udpstorm 0.00% 0.00%

Processtable 97.36% 99.34%
Mailbomb 97.80% 99.70%

Table 1 illustrates that the SMO algorithm outperforms the Naive Bayes algorithm in terms of both
overall accuracy and DoS detection accuracy. However, both algorithms fail to detect the Udpstorm attack.
On a closer examination, it is evident that while the Naive Bayes algorithm demonstrates balanced high
detection accuracy across all specific DoS attacks, the SMO algorithm exhibits a significantly low detection
rate in the Back attack, which may be a potential vulnerability that cybercriminals could exploit. These
IDS models will be used to detect the DoS attacks in our simulation model.

3 RELATED WORKS

In recent years, there has been a growing interest in using machine learning (ML) for developing Intrusion
Detection Systems (IDS). The KDD Cup 1999 dataset (Stolfo et al. 1999), which incorporates DoS attacks
still relevant today, has been widely used as a benchmark dataset by ML researchers to evaluate the
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Table 2: Comparison of attack type distribution in original and modified KDD Cup 99 dataset.

Category Attack Type
Original

Training Set
Original
Test Set

Modified
Training Set

Modified
Test Set

Normal Normal 972781 60593 826699 206675

Denial of Service
(DoS)

Neptune 1072017 58001 904014 226004
Smurf 2807886 164091 2377581 594396
Pod 264 87 280 71

Teardrop 979 12 792 199
Land 21 9 24 6
Back 2203 1098 2640 661

Apache2 - 794 635 159
Udpstorm - 2 1 1

Processtable - 759 607 152
Mailbomb - 5000 4000 1000

Remote to Local
(R2L)

Guess_passwd 53 4367 3536 884
Ftp_write 8 3 8 3

Imap 12 1 10 3
Phf 4 2 4 2

Multihop 7 18 20 5
Warezmaster 20 1602 1297 325
Warezclient 1020 - 816 204

Snmpgetattack - 7741 6192 1549
Named - 17 13 4
Xlock - 9 7 2

Xsnoop - 4 3 1
Sendmail - 17 13 4

User to Root
(U2R)

Buffer_overflow 30 22 41 11
Loadmodule 9 2 8 3

Perl 3 2 4 1
Rootkit 10 13 18 5

Spy 2 - 1 1
Xterm - 13 10 3

Ps - 16 12 4
Httptunnel - 158 126 32
Sqlattack - 2 1 1

Worm - 2 1 1
Snmpguess - 2406 1924 482

Probe

Port-sweep 10413 354 8613 2154
IPsweep 12481 306 10229 2558
Nmap 2316 84 1920 480
Satan 15892 1633 14020 3505
Saint - 736 588 148

Mscan - 1053 842 211
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accuracy of IDS. However, this dataset is primarily composed of network traffic data with imbalanced
classes, leading to the accuracy paradox (Thomas and Balakrishnan 2008; Valverde-Albacete and Peláez-
Moreno 2014; Alabdallah and Awad 2018). To address this issue, various techniques have been proposed,
such as combining machine learning models with stratified sampling and weighted support vector machine
(Alabdallah and Awad 2018), or with extreme learning machines with kernel (Awad and Alabdallah 2019).

There have been several models developed to simulate human organizations and Denial of Service
(DoS) campaigns. Kumar and Carley developed a network simulation model to understand the flow pattern
of Internet traffic in a DDoS attack (Kumar and Carley 2017). Dobson and Carley developed the Cyber-FIT
framework (Dobson and Carley 2017; Dobson and Carley 2018; Dobson and Carley 2021) to model cyber
warfare and estimate the effectiveness of military cyber forces against various cyber attacks, including DoS,
Phishing, and Routing Protocol Attack. The OSIRIS framework (Shin et al. 2022a; Shin et al. 2022b; Shin
et al. 2023) models a human organization with realistic end-user behavior patterns and has been used as a
testbed to simulate the potential overall organizational damage from various cyberattacks, such as phishing
and ransomware, and to evaluate the effectiveness of cybersecurity strategies.

In this paper, we aim to measure and compare the cybersecurity resilience of different IDSs through the
simulations by embedding machine learning-based IDSs into the server agent in the OSIRIS framework.

4 SIMULATION MODEL DESIGN

In this section, we will describe our simulation model. Specifically, we employed OSIRIS (Shin et al.
2022b; Shin et al. 2023) to construct a virtual organization that includes end-user agents, computing device
agents (including server agents), networks among end-user agents, and connections between computing
devices. In our simulation, we imported the attacker agents and defender agents of Cyber-FIT (Dobson
and Carley 2017; Dobson and Carley 2021) as cybercriminal agents and security professional agents,
respectively. The most recent versions of OSIRIS and Cyber-FIT frameworks were built using Repast
Simphony (North et al. 2013). In Repast Simphony (North et al. 2013), time is measured in ticks, where
each tick represents a unit of simulation time. One tick in our model corresponds to one real-world minute.
This choice aligns with the empirical data (Park 2021), which measures server downtime caused by DDoS
attacks in minutes. Thus, equating one tick to one minute adequately captures the dynamics and temporal
aspects of cybersecurity events.

4.1 Organization Model

We used the OSIRIS framework (Shin et al. 2022b; Shin et al. 2023) to create a virtual organization.
Specifically, we created a virtual small and medium-sized business with 40 end user agents, each of which
was assigned a personal computing device agent. Additionally, we assigned one server agent and one
security professional agent to the organization. Then, we created several types of networks within the
organization (see Figure 1a), with end users who work together being connected by formal relationships (see
Figure 1b). To generate the informal relationship network between end user agents (see Figure 1c), we used
the Erdős-Rényi random network (Erdos 1959) generator with a probability parameter of p = 0.1, utilizing
the random network generator available in OSIRIS. Only end user agents with high levels and security
agents have direct access to the server agent. Once we finished designing the agents and networks in the
organization, we executed the simulation. The OSIRIS UI automatically exported the virtual organization
to the Repast Simphony simulator. When we started the simulation, the cybercriminal agent launched a
cyberattack campaign against our virtual small and medium-sized company.

4.1.1 Server Agent with Intrusion Detection System (IDS)

In this model, the server agent is equipped with one of the intrusion detection systems (IDS) described in
Section 2. To facilitate efficient handling of the modified test set, we separated it by attack type and saved
each segment using the respective attack type name. During each tick, if the server agent is not under
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(a) (b) (c)

(d)

Figure 1: Virtual small and medium-sized business in OSIRIS (a) Network architecture designed in OSIRIS
UI (b) Formal relationships modeled in OSIRIS UI (c) Informal relationship generated in OSIRIS UI (d)
Simulation environment in OSIRIS.
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Figure 2: MITRE ATT&CK-based Denial of Service (DoS) attack model.

attack, it randomly selects and generates a data point from the ‘normal’ dataset. However, in the event of
an attack, the server agent randomly selects and generates a data point from the corresponding attack type
file. The IDS equipped in the server agent promptly evaluates the type of attack being directed towards the
server as soon as the generated data is received. If the generated data is classified as one of the Neptune,
Smurf, Mailbomb, Land, and Back DoS attacks, the IDS immediately reports to the security professional
agent that the server is currently under a Denial of Service (DoS) attack. Although IDS may fail to detect
DoS attacks, organization members may eventually realize that they are under attack. Based on real-world
simulation results indicating that small and medium-sized companies typically take an average of 9 minutes
to detect DDoS attacks (Park 2021), we set a time frame of 7 to 11 minutes for either an organization
member to recognize and directly report to the security professional agent or for the security professional
agent to detect the DoS attack while monitoring the server.

4.2 Denial of Service (DoS) Attack Campaign

As shown at the bottom of Figure 1d, in the simulation, we imported the cybercriminal agent from Cyber-FIT
(Dobson and Carley 2017; Dobson and Carley 2021) into the simulation environment. This agent is capable
of executing five different types of Denial of Service (DoS) attacks (Neptune, Smurf, Mailbomb, Land, and
Back) using a single computer. Since this campaign is not Distributed Denial of Service (DDoS) campaign,
botnets are not used. Even though Cyber-FIT’s attacking troops followed the steps in the cyber-kill chain
(Dobson et al. 2018), the cybercriminal agent in OSIRIS performs attacks by following the MITRE
ATT&CK (Strom et al. 2018) tactics and techniques as it provides a more detailed approach to attacking
steps. Based on the descriptions of Neptune, Smurf, Mailbomb, Land, and Back attacks (Haddadi and
Beghdad 2018), we carefully break down each attack into several MITRE ATT&CK (Strom et al. 2018)
techniques to provide a more detailed and comprehensive understanding of the attacks (Figure 2).

The denial of service (DoS) attack campaign will last for 129,600 ticks (90 days). During the first
43,200 ticks (30 days), the cybercriminal agent will randomly select one of five DoS attacks during each
session, targeting the virtual organization’s server agent. A session’s attack will end when the security
professional agent begins to mitigate the attack. After each session, the cybercriminal agent will update the
average server downtime caused by each attack. After the first 43,200 ticks have passed, the cybersecurity
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team will analyze the weaknesses of the organization by identifying the most effective DoS attack that
caused the longest server downtime in previous attacks. From that point on, the cybercriminal agent will
concentrate on attacking the organization’s server agent with the DoS attack that caused the longest server
downtime until the simulation ends at 129,600 ticks.

The remaining part of this section will provide a detailed description of the five DoS attack methods
(Neptune, Smurf, Mailbomb, Land, and Back) in the context of the MITRE ATT&CK framework (Strom
et al. 2018).

4.2.1 Reconnaissance

Before launching any Denial of Service (DoS) attack, the cybercriminal agent gathers necessary information
about the target organization using techniques categorized under the Reconnaissance tactic in the MITRE
ATT&CK framework (MITRE 2020). This process is summarized in the following four attack techniques.

1. Gather Victim Org Information (T1591) : The cybercriminal agent collects critical information
about the target organization that can be useful during the attack, such as the key end-user agents
in the organization and their duties within the organization.

2. Search Victim-Owned Website (T1594): The cybercriminal agent obtains valuable information about
the target organization by searching its website, such as contact details and employee information.

3. Gather Victim Network Information : IP Address (T1590.005) : The cybercriminal agent acquires
the target organization’s IP address to use during the DoS attack.

4. Active Scanning (T1595): The cybercriminal agent examines the victim’s infrastructure through
network traffic with the intention of acquiring data for use in DoS attacks.

4.2.2 Neptune

The Neptune attack (Marchette 2001; Chang 2002; Li et al. 2010; Haddadi and Beghdad 2018) involves
flooding a TCP server with spoofed SYN packets, exploiting flaws in the TCP protocol. This causes the
server to create half-open connections, eventually leading to resource exhaustion and the rejection of new
connections from authorized clients.

1. Masquerading (T1036) : The cybercriminal agent spoofs or generates fake IP addresses in the SYN
packets.

2. Network Denial of Service - Direct Network Flood (T1498.001) : The cybercriminal agent floods
the target server with a large volume of SYN packets in order to overwhelm the target server and
disrupt normal operations.

4.2.3 Smurf

The Smurf attack (Marchette 2001; Chang 2002; Haddadi and Beghdad 2018) sends ICMP echo packets
to the intermediary server with the target server’s IP address as the source address. Then, the intermediary
server broadcasts the ICMP echo packets to all hosts in the network, causing them to respond with ICMP
echo reply packets to the target server. This overwhelms the target server with traffic, causing the server
shuts down or become unreachable.

1. Gather Victim Org Information (T1591) : The cybercriminal agent identifies an organization with
a server that can be used as an intermediary in the attack.

2. Gather Victim Network Information - IP address (T1590.005) : The cybercriminal agent obtains
the IP address of the identified intermediary server.

3. Network Denial of Service - Reflection Amplification (T1498.002) : The cybercriminal agent sends
ICMP echo packets to the intermediary server, using the target server’s IP address as the source
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address. The intermediary server and its hosts respond with ICMP echo reply packets, overwhelming
the target server with traffic.

4.2.4 Mailbomb

The Mailbomb attack (Marchette 2001; Kim et al. 2011; Haddadi and Beghdad 2018) is a type of DoS
attack in which an attacker sends a large number of emails to a target email address to overwhelm or slow
down the target organization’s mail server. To evade spam filters, the emails are sent from different email
addresses and with different messages.

1. Establish Accounts - Email Accounts (T1585.002) : The cybercriminal agent creates a large number
of email accounts to be used for sending spam emails to the target organization.

2. Masquerading (T1036) : The cybercriminal agent masks their true identity by faking the sender’s
email address, making it difficult for the target organization to trace the source of the attack.

3. Endpoint Denial of Service - Application Exhaustion Flood (T1499.003) : The cybercriminal agent
sends numerous emails to the target organization’s email address, overwhelming the mail server’s
resources and causing a denial of service (DoS) by preventing legitimate access to the email service.

4.2.5 Land

The Land attack (Marchette 2001; Li et al. 2010; Haddadi and Beghdad 2018) sends TCP SYN packets
to the target server with both the source and destination IP addresses set to the target’s IP address. This
can cause the server to lock up and require a reboot.

1. Masquerading (T1036) : The cybercriminal agent spoofs its identity by altering the source IP
address of the TCP SYN packets to make it appear that the attack is coming from the target server’s
IP address.

2. Network Denial of Service - Direct Network Flood (T1498.001) : The cybercriminal agent sends
a flood of TCP SYN packets to the target server to cause a denial of service (DoS).

4.2.6 Back

The Back attack (Marchette 2001; Li et al. 2010; Haddadi and Beghdad 2018) sends requests with thousands
of front slashes to the Apache Web server, causing it to slow down. This attack exploits the vulnerability
of Apache web server applications that cannot efficiently handle unusual input.

1. Exploit Public-Facing Application (T1190) : The cybercriminal agent identifies a vulnerability in
the Apache web server that causes a slowdown when processing requests with a large number of
front slash characters.

2. Network Denial of Service - Direct Network Flood (T1498.001) : The cybercriminal agent sends a
large number of requests with thousands of front slashes to the target organization’s server, causing
a Denial of Service (DoS).

4.3 Security Professional Agent

In the previous work using the OSIRIS framework (Shin et al. 2022b; Shin et al. 2023), the security
professional agents were primarily responsible for monitoring the computing devices of end-user agents or
managing the human firewall to prevent cyber threats and improve cybersecurity. However, in this paper,
we assigned the security professional agents a different role: mitigating Denial of Service (DoS) attacks
once they receive warnings from the intrusion detection system (IDS). After receiving a warning from
the IDS system, the security professional agent checks if the server is actually under a Denial of Service
(DoS) attack (verifying the IDS signal as a true positive), and if so, it begins mitigating the attack and
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recovering the server. We have deployed a single security professional agent within our virtual organization
and assume that it is capable of responding to and mitigating different types of DoS attacks by utilizing
various defense mechanisms (Chen et al. 2004).

Based on the results of a simulated DDoS cyberattack in small and medium-sized businesses, where
it took an average of 13 minutes to respond and mitigate attacks (22 minutes in total, including 9 minutes
for detection) (Park 2021), we estimate that the security professional agent will require 11 to 15 minutes
to mitigate each DoS campaign after detection.

5 VIRTUAL EXPERIMENTS

In this section, we will describe our virtual experiments using two different intrusion detection systems:
Naive Bayes (John and Langley 1995) and SMO (Platt 1999) algorithms. We utilized our simulation
model to conduct the experiments, and the simulation settings are summarized in Table 3. We performed
a sensitivity analysis on the impact of different time intervals between attacks on server downtime in the
absence of an IDS, as well as with Naive Bayes and SMO IDSs, for varying interarrival time between
attacks (2880, 1440, 720, 360, and 180 minutes). Our analysis consisted of 15 cells, with three IDSs tested
across five time intervals. We ran 100 simulations for each cell, resulting in a total of 1500 simulations.
The experiment result is summarized in Figure 3.

Table 3: Simulation summary.

Type Name Implication
Input Virtual Organization Virtual small and medium-sized business organizations com-

posed of 40 employees, computing device agents, and server
agents

DoS Attack Campaign Five different MITRE ATT&CK-based DoS attacks: Neptune,
Smurf, Mailbomb, Land, Back

Security System One security professional agent with capability to mitigate
the DoS attacks

Output Server Downtime The amount of time (in minutes) that the organization’s server
agent was down during the 90 days DoS Attack Campaign

Parameter Intervals Between Attacks The interarrival time between attacks : 2880, 1440, 720, 360,
and 180 minutes

Intrusion Detection System The machine learning algorithm used to build the intrusion
detection system (IDS) : No IDS or Naive Bayes or SMO

Number of Simulations 100

Based on the results of the virtual experiment in Figure 3, it can be observed that both SMO-based IDS
and Naive Bayes-based IDS were effective in mitigating the DoS attack when compared to the absence of
an IDS. Moreover, although the SMO-based IDS had higher overall accuracy and DoS detection accuracy
compared to the Naive Bayes-based IDS as described in Table 1, it caused longer server downtime for all
five different cases. In the absence of IDS, the average server downtime was approximately 21 minutes. On
the other hand, when IDS was implemented, the average server downtime per one DoS attack decreased
to approximately 13 minutes for the Naive Bayes model and 16 minutes for the SMO model. Therefore,
both IDS algorithms reduced the server downtime per attack, but the Naive Bayes-based IDS was found
to be more effective in mitigating the impact of DoS attacks. We also conducted a two-tailed t-test in the
99% significance level for each interarrival time between attacks cases to compare the results of the Naive
Bayes model and the SMO model. The obtained p-values were extremely low (close to zero), indicating
strong evidence that the results from the Naive Bayes model and SMO model are statistically significantly
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Figure 3: Virtual experiment result.

different from each other. Additionally, it was found that as the interarrival time between attacks becomes
shorter, the difference in server downtime between the SMO-based IDS and the Naive Bayes-based IDS
increases. This suggests that as interarrival time between DoS attacks decreases, more damage is expected
for the organization. Thus, SMO-based IDS may not be the optimal choice for minimizing server downtime.

6 DISCUSSION AND CONCLUSION

The research presented in this paper has various limitations. Although the Naive Bayes-based IDS model
demonstrates greater effectiveness in terms of cybersecurity resiliency compared to the SMO-based IDS
model, it is also observed to produce more false alarms when dealing with normal feature vectors. Since
security professionals have limited attention, these false alarms may impede their ability to promptly respond
to other types of cyber attacks in the real world. In future work, we will devise methods to measure the
damage caused by false alarms and strive to develop a more reliable evaluation method for the Intrusion
Detection System’s cybersecurity resilience. Additionally, validating the results of this study in the real
world is challenging since evaluating the cybersecurity resilience of an IDS in isolation is nearly impossible.
IDSs typically work in conjunction with other cybersecurity software and tools, making it difficult to isolate
their effectiveness. Future studies could explore the integration of IDSs with other cybersecurity tools and
assess their combined effectiveness in enhancing an organization’s cybersecurity resiliency.

In conclusion, we used the agent-based simulation to evaluate the cybersecurity resilience of Intrusion
Detection Systems. Our study demonstrated that while employing any IDS in the organization was helpful
in mitigating server downtime during DoS attack campaigns, relying solely on overall accuracy and DoS
detection accuracy can be misleading. It can result in lower cybersecurity resilience and longer server
downtime during attacks compared to other IDSs with lower overall and DoS detection accuracy but more
balanced detection rates among various DoS attacks. This work can inform cybersecurity professionals
and organizations in making informed decisions about their IDS and overall cybersecurity strategies.

127



Shin, Dobson, Carley, and Carley

ACKNOWLEDGMENTS

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or
publication of this article: This research was supported in part by the Minerva Research Initiative under
Grant #N00014-21-1-4012 and by the Center for Computational Analysis of Social and Organizational
Systems (CASOS) at Carnegie Mellon University. The views and conclusions are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Office of
Naval Research or the US Government.

REFERENCES
Aghdam, M. H., and P. Kabiri. 2016. “Feature Selection for Intrusion Detection System Using Ant Colony Optimization”.

International Journal of Network Security 18(3):420–432.
Alabdallah, A., and M. Awad. 2018. “Using Weighted Support Vector Machine to Address the Imbalanced Classes Problem

of Intrusion Detection System”. KSII Transactions on Internet and Information Systems (TIIS) 12(10):5143–5158.
Awad, M., and A. Alabdallah. 2019. “Addressing Imbalanced Classes Problem of Intrusion Detection System Using Weighted

Extreme Learning Machine”. International Journal of Computer Networks & Communications (IJCNC) Vol 11(5):39–58.
Butler, C. 2018. “Five Steps to Organisational Resilience: Being Adaptive and Flexible during Both Normal Operations and

Times of Disruption”. Journal of Business Continuity & Emergency Planning 12(2):103–112.
Chang, R. K. 2002. “Defending against Flooding-Based Distributed Denial-of-Service Attacks: A Tutorial”. IEEE Communications

Magazine 40(10):42–51.
Chen, L.-C., T. A. Longstaff, and K. M. Carley. 2004. “Characterization of Defense Mechanisms against Distributed Denial

of Service Attacks”. Computers & Security 23(8):665–678.
Dobson, G., A. Rege, and K. Carley. 2018. “Informing Active Cyber Defence with Realistic Adversarial Behaviour”. Journal

of Information Warfare 17(2):16–31.
Dobson, G. B., and K. M. Carley. 2017. “Cyber-FIT: An Agent-Based Modelling Approach to Simulating Cyber Warfare”.

In Social, Cultural, and Behavioral Modeling: 10th International Conference, SBP-BRiMS 2017, Washington, DC, USA,
July 5-8, 2017, Proceedings 10, 139–148. Springer.

Dobson, G. B., and K. M. Carley. 2018. “A Computational Model of Cyber Situational Awareness”. In Social, Cultural,
and Behavioral Modeling: 11th International Conference, SBP-BRiMS 2018, Washington, DC, USA, July 10-13, 2018,
Proceedings 11, 395–400. Springer.

Dobson, G. B., and K. M. Carley. 2021. “Cyber-FIT Agent-Based Simulation Framework Version 4”. Technical Report
CMU-ISR-21-113, Center for the Computational Analysis of Social and Organizational Systems, Pittsburgh, PA.

Erdos, P. 1959. “On Random Graphs”. Mathematicae 6:290–297.
Haddadi, M., and R. Beghdad. 2018. “DoS-DDoS: Taxonomies of Attacks, Countermeasures, and Well-known Defense

Mechanisms in Cloud Environment”. Edpacs 57(5):1–26.
Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. “The WEKA Data Mining Software: An

Update”. ACM SIGKDD Explorations Newsletter 11(1):10–18.
Holmes, G., A. Donkin, and I. H. Witten. 1994. “WEKA: A Machine Learning Workbench”. In Proceedings of ANZIIS’94-

Australian New Zealnd Intelligent Information Systems Conference, 357–361. IEEE.
John, G. H., and P. Langley. 1995. “Estimating Continuous Distributions in Bayesian Classifiers”. In Proceedings of the Eleventh

Conference on Uncertainty in Artificial Intelligence, 338–345.
Kim, W., O.-R. Jeong, C. Kim, and J. So. 2011. “The Dark Side of the Internet: Attacks, Costs and Responses”. Information

Systems 36(3):675–705.
Kumar, S., and K. M. Carley. 2017. “Simulating DDOS Attacks on the US Fiber-optics Internet Infrastructure”. In 2017 Winter

Simulation Conference (WSC), 1228–1239. IEEE.
Li, J., Y. Liu, and L. Gu. 2010. “DDoS Attack Detection Based on Neural Network”. In 2010 2nd International Symposium

on Aware Computing, 196–199. IEEE.
Marchette, D. J. 2001. Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint. 1st ed. New York:

Springer.
Meena, G., and R. R. Choudhary. 2017. “A Review Paper on IDS Classification using KDD 99 and NSL KDD Dataset in

WEKA”. In 2017 International Conference on Computer, Communications and Electronics (Comptelix), 553–558. IEEE.
MITRE 2020. “Reconnaissance, Tactic TA0043 - Enterprise | MITRE ATT&CK”. https://attack.mitre.org/tactics/TA0043/,

accessed 10th April.
North, M. J., N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen, and P. Sydelko. 2013. “Complex Adaptive Systems

Modeling with Repast Simphony”. Complex Adaptive Systems Modeling 1:1–26.

128

https://attack.mitre.org/tactics/TA0043/


Shin, Dobson, Carley, and Carley

Park, Sae-jin 2021. “Small and Medium Companies Take Average 9 Minutes to Detect Cyberattack: Simulation Data”.
https://www.ajudaily.com/view/20210706153945251, accessed 10th April.

Platt, J. C. 1999. “Fast Training of Support Vector Machines using Sequential Minimal Optimization”. Advances in Kernel
Methods:185–208.

Saranya, T., S. Sridevi, C. Deisy, T. D. Chung, and M. A. Khan. 2020. “Performance Analysis of Machine Learning Algorithms
in Intrusion Detection System: A Review”. Procedia Computer Science 171:1251–1260.

Shin, J., L. R. Carley, G. B. Dobson, and K. M. Carley. 2023. “Modeling and Simulation of the Human Firewall Against
Phishing Attacks in Small and Medium-Sized Businesses”. In 2023 Annual Modeling and Simulation Conference (ANNSIM),
369–380. IEEE.

Shin, J., G. B. Dobson, K. M. Carley, and L. R. Carley. 2022a. “Leveraging OSIRIS to Simulate Real-world Ransomware
Attacks on Organization”. 2022 Winter Simulation Conference (WSC) Poster Session.

Shin, J., G. B. Dobson, K. M. Carley, and L. R. Carley. 2022b. “OSIRIS: Organization Simulation in Response to Intrusion
Strategies”. In Social, Cultural, and Behavioral Modeling: 15th International Conference, SBP-BRiMS 2022, Pittsburgh,
PA, USA, September 20–23, 2022, Proceedings, 134–143. Springer.

Stolfo, S., W. Fan, W. Lee, A. Prodromidis, and P. Chan. 1999. “KDD Cup 1999 Dataset”. UCI KDD Repository. https:
//archive.ics.uci.edu/dataset/130/kdd+cup+1999+data, accessed 10th April.

Strom, B. E., A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington, and C. B. Thomas. 2018. “MITRE ATT&CK:
Design and Philosophy”. Technical Report 10AOH08A-JC, The MITRE Corporation, McLean, VA.

Thomas, C., and N. Balakrishnan. 2008. “Improvement in Minority Attack Detection with Skewness in Network Traffic”. In
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2008, Volume 6973, 226–237.
SPIE.

Valverde-Albacete, F. J., and C. Peláez-Moreno. 2014. “100% Classification Accuracy Considered Harmful: The Normalized
Information Transfer Factor Explains the Accuracy Paradox”. PloS ONE 9(1):e84217.

AUTHOR BIOGRAPHIES
JEONGKEUN SHIN is a Ph.D. student in the Department of Electrical and Computer Engineering at Carnegie Mellon
University. He is a member of the Center for Computational Analysis of Social and Organization Systems (CASOS). His
research includes modeling and simulation of human and organizational behaviors relevant to cybersecurity. He holds a bachelor’s
degree in computer science from the University of Michigan and a master’s degree in electrical and computer engineering from
Carnegie Mellon University. His email address is jeongkes@andrew.cmu.edu.

GEOFFREY B. DOBSON is a Systems Scientist at the Center for Computational Analysis of Social and Organizational
Systems at Carnegie Mellon University’s School of Computer Science. His research focuses on modeling and simulating the
human behavioral and social aspects of cyber conflict. He is an officer in the United States Air Force Reserve stationed at
the Air Force Research Laboratory, Wright-Patterson Air Force Base, OH where he oversees a research portfolio focused on
human performance in cyber missions. His email address is gdobson@cs.cmu.edu.

L. RICHARD CARLEY received an S.B. in 1976, an M.S. in 1978, and a Ph.D. in 1984, all from the Massachusetts Institute
of Technology. He is the professor of Electrical and Computer Engineering Department at Carnegie Mellon University (CMU)
in Pittsburgh, Pennsylvania. Dr. Carley’s research interests include analog and RF integrated circuit design in deeply scaled
CMOS technologies, and novel micro-electromechanical and nano-electro-mechanical device design and fabrication. For the
past several years, Dr. Carley has studied the design of efficient RF Power Amplifiers in advanced BiCMOS technologies.
Dr. Carley has been granted 27 patents, authored or co-authored over 250 technical papers, and authored or co-authored over
20 books and/or book chapters. He has won numerous awards including Best Technical Paper Awards at both the 1987 and
the 2002 Design Automation Conference (DAC), a Most Influential Paper award from DAC, and a Best Panel Session award
at ISSCC in 1993. In 1997, Dr. Carley co-founded the analog electronic design automation startup, Neolinear, which was
acquired by Cadence in 2004. His email address is lrc@andrew.cmu.edu.

KATHLEEN M. CARLEY (H.D. University of Zurich, Ph.D. Harvard, S.B. MIT) is a Professor of Societal Computing,
Software and Societal Systems Department (S3D), Carnegie Mellon University; Director of the Center for Computational Analysis
of Social and Organizational Systems (CASOS), Director of the Center for Informed Democracy and Social Cybersecurity
(IDeaS), and CEO of Netanomics. Her research blends computer science and social science to address complex real world
issues such as social cybersecurity, disinformation, disease contagion, disaster response, and terrorism from a high dimensional
network analytic, machine learning, and natural language processing perspective. She and her groups have developed network
and simulation tools, such as ORA, that can assess network and social media data. Her email address is kathleen.carley@cs.cmu.edu.

129

https://www.ajudaily.com/view/20210706153945251
https://archive.ics.uci.edu/dataset/130/kdd+cup+1999+data
https://archive.ics.uci.edu/dataset/130/kdd+cup+1999+data
mailto://jeongkes@andrew.cmu.edu
mailto://gdobson@cs.cmu.edu
mailto://lrc@andrew.cmu.edu
mailto://kathleen.carley@cs.cmu.edu

	INTRODUCTION
	Dataset & Intrusion Detection System
	RELATED WORKS
	Simulation Model Design
	Organization Model
	  Server Agent with Intrusion Detection System (IDS)

	Denial of Service (DoS) Attack Campaign
	  Reconnaissance
	  Neptune
	  Smurf
	  Mailbomb
	  Land
	  Back

	Security Professional Agent

	Virtual Experiments
	Discussion and Conclusion

