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ABSTRACT

We review bootstrapping and batching as devices for statistical inference in simulation output analysis.
Bootstrapping, discovered in the late 1970s and developed over the ensuing three decades, is widely held
as being among the important scientific discoveries of the previous century due primarily to its facility
for general statistical inference. By contrast, batching was introduced in the 1960s but was developed
within the simulation community (in the 1980s) for the narrower contexts of variance parameter estimation
and confidence interval construction. In recent years, however, there has been increasing realization that
batching, much like bootstrapping, can be used also for general statistical inference, and that batching
often compares favorably with bootstrapping in dependent data contexts. Bootstrapping and batching have
tremendous applicability for uncertainty quantification in simulation, and are prime candidates for adoption
in simulation software. We describe the general principles underlying bootstrapping and batching, outline
guarantees, and discuss implementation.

1 INTRODUCTION

Suppose we have a “dataset” (X1,X2, . . . ,Xn) of identically distributed X -valued random variables obtained
somehow, e.g., using a simulation, in the service of estimating an unknown quantity θ . We stipulate only
that (X ,A ) is some measurable space, and that the X -valued random variables (X1,X2, . . . ,Xn) form the
initial segment of a time-series in steady-state. For our purposes, the desired unknown “parameter” θ is
general — it can reside in the d-dimensional Euclidean space Rd ,d ≥ 1, or can also be function-valued
although the technical parts of this tutorial do not treat the latter case. It is important that the X js may not
be independent, and can exhibit heavy serial correlation as is often the case in simulation settings. Since
(X1,X2, . . . ,Xn) come from a steady-state distribution, we can assume each of X1,X2, . . . ,Xn is distributed
according to P (unknown), and that θn, constructed using the dataset (X1,X2, . . . ,Xn), estimates the unknown
parameter θ . The error in the estimator θn is thus εn := θn −θ .

A substantial portion of simulation output analysis, and all of statistical inference, is about understanding
the nature of Fεn , the sampling distribution of εn. For instance, when θn,θ ∈ R, statistical inference on εn
means estimating such objects as the standard error

se(εn) =
√

Var(εn) :=
√∫

∞

−∞

(x−µεn)
2 dFεn(x); µεn :=

∫
∞

−∞

xdFεn(x),

the bias
bias(θn,θ) = E[θn]−θ ,

the γ-quantile
Qγ(εn) := min{x : Fεn(x)≤ x)≥ γ}, γ ∈ [0,1],
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or the (1−α)-confidence interval on θ , that is, an interval In constructed from data (X1,X2, . . . ,Xn) such
that limn→∞ P(θ ∈ In) = 1−α. All such effort to understand Fεn is in the important service of providing a
simulation practitioner with some measure of uncertainty on the estimator θn.

1.1 Bootstrapping and Batching in a Nutshell

In this tutorial, we detail two “omnibus” methods for estimating aspects of the distribution Fεn . The first of
these, called bootstrapping (Efron and Tibshirani 1994; Efron 1979; van der Vaart and Wellner 1996; Hall
1992), broadly works as follows. Since Fεn is unknown, bootstrapping identifies another random variable
ε∗

n whose distribution Fε∗n approximates Fεn as n → ∞ (in a sense that will be made precise), and from which
observations can be generated easily. The facility to generate from Fε∗n , called resampling, is important
because observations generated from Fε∗n can then be used to estimate virtually any aspect of Fε∗n . Thus,
for instance, when seeking a (1−α) confidence interval on θ ∈ R, the logic of bootstrapping suggests
approximating the exact (but unknown) (1−α) confidence interval

(
θn −F−1

εn
(α

2 ), θn +F−1
εn

(1− α

2 )
)

with
the interval (

θn −F−1
B,ε∗n

(
α

2
), θn +F−1

B,ε∗n
(1− α

2
)
)
,

where

FB,ε∗n (x) =
1
B

B

∑
j=1

I(Yj ≤ x), Yj
iid∼ Fε∗n

and the notation I(A) = 1 if A is true and 0 otherwise.
The second method we discuss in this tutorial, called batching (Su et al. 2023; Pasupathy et al. 2023;

Calvin and Nakayama 2013; Alexopoulos et al. 2007), works as follows. Assume there exists a “variance
constant” σ so that

√
nεn/σ stabilizes for large n (in a sense to be made clear). Then batching constructs

an estimator σ̂n of σ , and identifies a limiting random variable TOB so that

√
n

εn

σ̂n

d→ TOB as n → ∞, (1)

where “ d→” refers to convergence in distribution. A crucial point in batching is that the limit TOB
is “distribution free” in that it does not depend on any unknown parameters. Thus, when seeking a
(1−α) confidence interval on θ ∈ R, batching suggests approximating the (1−α) confidence interval(
θn −F−1

εn
(α

2 ), θn +F−1
εn

(1− α

2 )
)

with(
θn − tα/2,OB

σ̂n√
n
, θn + t1−α/2,OB

σ̂n√
n

)
, (2)

where tγ,OB denotes the γ-quantile value of TOB — tγ,OB is known because TOB is free from unknown
parameters, and “percentile tables” for TOB can be (and have been) computed.

When one seeks an object other than a (1−α) confidence interval on θ , e.g., se(εn), bias(θn,θ), or
Qγ(εn), similar ideas apply, as we briefly outline in Section 3 and Section 4.

1.2 Paper Organization

The remaining portion of the tutorial is organized as follows. The ensuing section, in an attempt to further
the reader’s intuition, details three settings where a simulationist might naturally want to perform statistical
inference. This is followed by Section 3 and then by Section 4 which describe bootstrapping and batching,
respectively.
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2 EXAMPLE SETTINGS

To provide the reader a sense of the diversity of contexts that come under the purview of the methods
described in this paper, we present three example settings. In each case, we clarify the unknown parameter
θ , the estimator θn, and the dataset (X1,X2, . . . ,Xn).

Example I (Wait Time in a G/G/1 Queue)

Consider the G/G/1 queue where a single server that serves customers arriving according to an arrival process
with independent and identically distributed (iid) inter-arrival times having distribution G1. Customers
are served in the order in which they arrive after joining a queue having infinite capacity. Service times
for customers are iid according to a distribution G2. Suppose G1, G2 and the initial conditions are such
that the system is at steady-state, that is, Wn

d
= W ∀n ≥ 1, where W is a well-defined random variable

having distribution FW . Let θ = min{w : FW (w) ≥ 0.90} denote the 0.9-quantile of W , and suppose that
(X1,X2, . . . ,Xn) are the observed waiting times of the first n customers in the system, so that

θn := min{w : Fn,W (w)≥ 0.90} ; Fn,W (w) :=
1
n

n

∑
j=1

I(W ≤ w).

And, as described in the introduction, a simulationist interested in statistical inference on θn is essentially
attempting to understand the sampling distribution of εn = θn −θ .

Example II (Time-Dependent Inventory Levels in a Supply Chain)

Figure 1: A queueing network model of a supply chain.

As a more elaborate example, consider the global supply chain introduced in the tutorial by Ingalls
(2014), where the simulationist wishes to analyze the delivery of computing servers produced in Europe to
the Asia-Pacific region, with the specific intention of evaluating whether it may be wise to move production
to Singapore. Due to the complexity and scale of such a supply chain, it is easy to see why a simulation
model would be helpful in answering many narrow questions, e.g., effect on inventory, effect on on-time
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delivery, effect on costs and revenue, which together will be pertinent to the broader question of whether
a move to Singapore is warranted.

Consider one such narrow question, that of time-dependent inventory level, that is, inventory as a
function of time, at a specified location and observed over a horizon [0,T ] of interest. The simulationist
executes n runs of the simulation, producing time-dependent inventory level X j(t), t ∈ [0,T ] during the
j-th run. Importantly, notice that the j-th “observation” denoted X j := X j(t), t ∈ [0,T ] is a function of
time, or a random function. Suppose the simulationist is especially interested in analyzing low inventory
levels and so chooses the parameter θ to be the 20-th percentile inventory level as a function of time, that
is, θ := θ(t), t ∈ [0,T ], where θ(t) is the 20-th percentile inventory at time t. Recognize again that the
parameter θ is a fixed, unknown function in time. Recalling the “dataset” (X1,X2, . . . ,Xn) generated by n
runs of the simulation, an estimator θn := θn(t), t ∈ [0,T ] of θ can then be constructed as:

θn(t) := min

{
y :

1
n

n

∑
j=1

I(X j(t)≤ y)≥ 0.2)

}
, t ∈ [0,T ]. (3)

The simulationist may have chosen a different parameter of interest, e.g., the mean vector of inventory
levels at d specific locations ℓ1, ℓ2, . . . , ℓd in the supply chain, at the fixed time instant T . In this case,
denoting π j,T , j = 1,2, . . . ,d as the inventory level distribution at time T in location j, and denoting
Xi, j(T ), j = 1,2, . . . ,d; i = 1,2, . . . ,n as the i-th observed inventory level in location j at time T , we can
write:

θ :=
(∫

ℓ
ℓπ1,T (dℓ),

∫
ℓ
ℓπ2,T (dℓ), . . . ,

∫
ℓ
ℓπd,T (dℓ)

)
.

In such a case, the estimator θn :=
(1

n ∑
n
i=1 Xi,1(T ), 1

n ∑
n
i=1 Xi,2(T ), . . . , 1

n ∑
n
i=1 Xi,d(T )

)
.

Example III (Nonlinear System of Equations)

Variable toll pricing has become a popular method to manage traffic on highways, by shifting purely
discretionary traffic to off-peak hours or other roadways. Accordingly, a question of immense interest
involves identifying the relationship between the toll price and the resulting congestion levels at steady
state, toward better congestion pricing policies.

Let’s introduce notation to make this question more precise. Suppose p = (p1, p2, . . . , pd), pi ∈ [0,M]
represents the prevailing toll price for d vehicle classes, and θ = {(θ1(p),θ2(p), . . . ,θd(p)), p ∈ [0,M]d}
the corresponding expected steady state waiting time at the tolls for each of the d classes. Given the
complicated relationship between the expected wait time and the toll price, a simulation (whose mechanics
are not relevant for our purposes) is used to estimate the parameter θ . Suppose the simulation yields the
output (X1,X2, . . . ,Xn), where Xi = (Xi1(p),Xi2(p), . . . ,Xid(p)), p ∈ [0,M]d represents the i-th realization
of the wait time vector, that is, the vector wait times corresponding to the i-th vechicle in each of the d
classes, with p held fixed. It is important to observe that each output observation Xi in this example is a
random function or surface of the toll price. A useful thought experiment that clarifies the nature of Xi is
as follows. Fix and hold all “random elements” of the simulation while varying the toll price p to form a
time series of observations, each of which is a function of the price p.

Suppose the simulationist is interested in setting the tolls p = (p1, p2, . . . , pd) so that the expected wait
times for the d classes matches target wait times γ1,γ2, . . . ,γd , respectively. Then the parameter θ is the
solution (in p) to the following nonlinear system of equations:∫

x
x jπp(dx) = γ j, j = 1,2, . . . ,d. (4)
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Of course the solution θ to (4) is unknown, but can be estimated as θn by solving the corresponding system
constructed using the data generated by simulation, that is, by solving the system:

1
n

n

∑
i=1

Xi j(p) = γ j, j = 1,2, . . . ,d. (5)

(There are existence and uniqueness issues pertaining to the solution of (5) but we omit discussion about
such details here.) And, as in Example I and Example II, the inference question here is whether anything
can be inferred about the nature of the error θn −θ .

The type of inference considered within each of the examples described is conditional on a given
simulation model and pertains to quantifying the output uncertainty θn −θ . This is in important contrast
to another modern popular topic called simulation input uncertainty (Henderson 2003; Chick 2001; Cheng
and Holland 1997; Barton 2012; Lam 2016), which quantifies the effect of errors in the input distributions
that form the primitives to the simulation. In effect, the type of inference treated in this paper provides
a sense of how decision-making might be affected due to performing too few simulation runs, whereas
input uncertainty deals with the corresponding effects due to a lack of adequate real-world data used when
estimating the distributional input to the simulation.

Both output uncertainty and input uncertainty in simulation are subsumed by the recently phrased
“umbrella” topic uncertainty quantification (Abdar et al. 2021; Najm 2009; Soize 2017) which should be
understood loosely as the effort to quantify the effect of all sources of error, e.g., input parameters, structure,
logic, and solution, within models that include, but not limited to, simulation. Some examples of models
other than simulation are stochastic differential equations (Hoel et al. 1986), neural networks (Bottou et al.
2018), and regression (Wasserman 2004).

3 BOOTSTRAPPING

Recall the “observed dataset” (X1,X2, . . . ,Xn) in (X ,A ) and the empirical measure

Pn(A) := n−1
n

∑
j=1

δX j(A), A ∈ A

constructed from the observed dataset. Also recall the notation θ ≡ θ(P) and θn ≡ θ(Pn) for the unknown
parameter of interest and its estimator, respectively, and εn := θ(Pn)−θ(P). (Writing θ and θn as θ(P) and
θ(Pn) allows treating these objects as functions of the probability measures P and Pn, respectively; so, θ(·)
can be viewed as a statistical functional.) We wish to (a) estimate ψ(Fεn), where ψ : W →R is a statistical
functional that subsumes such objects as se(εn), bias(θn,θ), or Qγ(εn); or (b) construct an asymptotically
valid (1−α) confidence interval on θ . For simplicity of exposition, let’s suppose that θ ,θn ∈ R.

In the simplest and most pervasive flavor of the bootstrap, a “bootstrap dataset” (X∗
1 ,X

∗
2 , . . . ,X

∗
n ) is

defined through uniform iid sampling with replacement from the observed dataset (X1,X2, . . . ,Xn), that
is, each X∗

j
iid∼ Pn, j = 1,2, . . . ,n. Let P∗

n (A) := n−1
∑

n
j=1 δX∗

j
(A),A ∈ A denote the empirical measure

constructed from the bootstrap dataset (X∗
1 ,X

∗
2 , . . . ,X

∗
n ). Then, the following two loosely stated observations

underlie the bootstrapping principle and naturally lead to a method to perform inference on θn −θ .

(a) Under arguably weak conditions, the “conditional distribution” of
√

n(P∗
n −Pn) converges almost

surely, as n→∞, to the weak limit of
√

n(Pn−P). (When we refer to the distribution of
√

n(P∗
n −Pn),

we are referring to its distribution conditional on the “dataset” (X1,X2, . . . ,Xn), and so converging
“almost surely” means given almost all sequences {Xn,n ≥ 1}.)

(b) Under (a), and if the functional θ(·) is well-behaved at P in the sense of being Hadamard differen-
tiable (van der Vaart and Wellner 1996, page 373), the distribution of

√
n(θn(P)−θ(P)) stabilizes

to a P-Brownian bridge process (defined in Section 3.1) and is consistently approximated by the
distribution of

√
n(θ(P∗

n )−θ(P)).
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The observations in (a) and (b) lead to a basic bootstrapping algorithm to estimate ψ(Fεn) and to construct
an asymptotically valid (1−α) confidence interval on θ . To see how, notice from (a) and (b) that the
distribution of ε∗

n := θ(P∗
n )−θ(Pn) is a “good approximation” to the distribution of εn := θ(Pn)−θ(P).

Furthermore, it is in principle easy to generate iid observations from Fε∗n through the generation of multiple
bootstrap datasets, thus allowing to readily estimate ψ(Fε∗n ).

Algorithm 1: The Basic Bootstrap

Compute θn := θ(Pn), where Pn =
1
n ∑

n
j=1 δX j .

for j = 1,2, ...B do
(X∗

j,1,X
∗
j,2, . . . ,X

∗
j,n)

iid∼ Pn;
Compute θ ∗

j,n := θ(P∗
j,n) for j = 1,2, . . . ,B where P∗

j,n := 1
n ∑

n
j=1 δX∗

j,n
;

Compute ε∗
j,n := θ ∗

j,n −θn;
end
Compute ψ̂(Fε∗n ) := ψ(P∗

B,ε∗n
), where P∗

B,ε∗n
:= 1

B ∑
B
j=1 δε∗j,n

.

So, as an example, if θ ,θn ∈R and the standard-error of the error distribution is the target of inference,
Algorithm 1 suggests estimating se(εn) as

ŝe(ε∗
n ) :=

√√√√ 1
B

B

∑
j=1

(θ ∗
j,n −θn)2.

Similarly, if the γ-quantile Qγ(εn) of the error is the target of inference, then Algorithm 1 implies estimating
Qγ(εn) as

Q̂γ(ε
∗
n ) := min

{
x :

B

∑
j=1

I(θ ∗
j,n −θ

∗
n ≤ x)≥ γ

}
.

And, as Section 1 notes, a (1−α) confidence interval on θ as suggested by Algorithm 1 becomes(
θn −F−1

B,ε∗n
(
α

2
), θn +F−1

B,ε∗n
(1− α

2
)
)
, (6)

where FB,ε∗n (x) =
1
B ∑

B
j=1 I(ε∗

j,n ≤ x).

3.1 Bootstrap Guarantee

The bootstrap procedure in Algorithm 1 is a natural outgrowth of the two ideas outlined in (a) and (b). In
what follows, we make the ideas in (a) and (b) rigorous through two theorems stated without proof. We
ignore all measurability issues when stating these theorems; see (van der Vaart and Wellner 1996) for a
complete treatment.

Suppose F is a collection of measurable functions (“random variables”) from X →R. This automat-
ically defines the F -indexed empirical process Gn given by

f 7→Gn f =
√

n(Pn −P) f ,

where we have used the notation Q f =
∫

f dQ and (Pn −P) f =
∫

f dPn −
∫

f dP. For a given f ∈ F , if P f

exists we have the classical “law of large numbers” Pn f
wp1→ P f as n → ∞; and if P f 2 < ∞, we have the

classical central limit theorem Gn
d→N(0,P( f −P f )2) as n → ∞. (As a matter of terminology, each Gn

is a “process” indexed by f ∈ F , that is, each Gn is a collection of random variables labeled by f ∈ F .

66



Pasupathy

Less confusion ensues if we do not use the word process but simply refer to Gn as a “random variable”
or “random object” and, correspondingly, to {Gn,n ≥ 1} as a sequence of random variables.)

Define the envelope F associated with F as F(x) := sup f∈F | f (x)−P f |, x ∈ X , and notice that if
F(x)< ∞ for each x, then Gn f ∈ ℓ∞(F ) and so the process {Gn f , f ∈ F} can be viewed as a map into
ℓ∞(F ), where ℓ∞(F ) is the space of uniformly bounded real-valued functions on F , that is, the set of
g : F → R such that sup f∈F |g( f )|< ∞.

The class F is said to be P-Donsker if the sequence {Gn,n ≥ 1} converges weakly to a tight Borel-
measurable element in ℓ∞(F ): Gn

d→ G in ℓ∞(F ). In such a case, the limit process G is a mean-zero
Gaussian process called the P-Brownian bridge having covariance

E [G f1 f2] :=
∫

G f1G f2 = P( f1 −P f1)( f2 −P f2)

= P f1 f2 −P f1P f2.

Corresponding to the empirical process Gn, let’s also define the bootstrap empirical process

G∗
n :=

√
n(P∗

n −Pn) =
1
n

n

∑
j=1

(Mn,i −1)δXi ,

where Mn,i is the number of times the observation Xi was chosen from the “original dataset” (X1,X2, . . . ,Xn)
during the iid resampling process. Accordingly, the vector M := (Mn,1,Mn,2, . . . ,Mn,n) is a multinomial
random vector having parameters n and (1/n,1/n, . . . ,1/n), independent of (X1,X2, . . . ,Xn). We are now
ready to state a theorem that rigorizes the statement in (a) made earlier; BL1 in Theorem 1 refers to the
bounded Lipschitz metric (van der Vaart and Wellner 1996, page 73).
Theorem 1 (Theorem 3.6.2, (van der Vaart and Wellner 1996)) Let F be a class of X → R measurable
functions with a finite envelope. Then, the following statements are equivalent.

(i) F is P-Donsker and
∫

sup f∈F ( f −P f )2 < ∞.

(ii) suph∈BL1
|EMh(G∗

n)−E[h(G)]| wp1→ 0.

It is important to recognize that the assertion in (ii) of Theorem 1 is conditional on the dataset
(X1,X2, . . . ,Xn), that is, given almost all sequences X1,X2, . . .. In what sense does Theorem 1 rigorize
the statement in (a)? Notice from the arguments preceding Theorem 1 that if F is P-Donsker, then Gn
converges weakly to the P-Brownian bridge process. With the added condition that

∫
sup f∈F ( f −P f )2 < ∞,

Theorem 1 guarantees that the empirical bootstrap process G∗
n also converges weakly to the P-Brownian

bridge process, rigorously establishing the idea loosely stated in (a).
Under Hadamard differentiability of the statistical functional θ(·) along with the postulates of Theorem 1,

the following theorem provides a rigorous statement of the principle stated in (b).
Theorem 2 (Theorem 3.9.11, (van der Vaart and Wellner 1996)) Let θ : W →R be a statistical functional
that is Hadamard differentiable on the normed space W , and suppose the sequence Pn ∈ W for n ≥ 1. Let
F be a class of X → R measurable functions such that F is P-Donsker and

∫
sup f∈F ( f −P f )2 < ∞.

Then
sup

h∈BL1

∣∣EM
[
h
(√

n(θ (P∗
n )−θ(Pn)

)]
−E

[
h
(
θ
′(G
)]∣∣→ 0,

where G is the P-Brownian bridge process.
The requirement for Hadamard differentiability is in general weak but can be further weakened.

Also, Thoerem 2 demonstrates consistency (that is, convergence in probability) of the conditional law of√
n(θ(P∗

n )−θ(Pn)) to the law of
√

n(θ(Pn)−θ(P)). Such convergence can be strengthened to almost sure
convergence if a certain form of uniform Hadamard differentiability is assumed — see Theorem 3.9.13
in van der Vaart and Wellner (1996).
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Recall that the broad idea in bootstrap is to approximate the unknown sampling distribution Fεn of εn
with the “known” distribution Fε∗n . Theorem 1 in effect assures us that under certain regularity conditions,
as n → ∞,

sup
t∈Rd

∣∣∣∣P(√nε
∗
n ≤ t

)
−P

(√
nεn ≤ t

)∣∣∣∣wp1→ 0, (7)

where ε∗
n = θ(P∗

n )−θ(Pn) and εn = θ(Pn)−θ(P). In other words, Fε∗n converges to Fεn almost surely on
the

√
n scale. One of the most celebrated aspects of the bootstrap is what is called higher order accuracy.

Specifically, under certain conditions usually imposed on the higher order moments associated with θ(Pn),
a guarantee such as what follows obtains.

√
n sup

t∈Rd

∣∣∣∣P(√nε
∗
n ≤ t

)
−P

(√
nεn ≤ t

)∣∣∣∣ p→0, (8)

Loosely, the guarantee in (8) states that the supremum norm deviation between Fε∗n and Fεn (on the
√

n
scale) converges to zero in probability faster than O(1/

√
n). We do not go into further detail on the specific

nature of a guarantee such as (8) but instead direct the reader to (Shao and Tu 2012).

3.2 Named Bootstrap Contexts

The bootstrap principle as reflected through (a), (b) and Algorithm 1 is remarkably general and has been
applied for statistical inference in a wide variety of classical contexts such as estimating standard errors
in curve fitting (Efron and Tibshirani 1994, page 70), regression (Efron and Tibshirani 1994, Chapter 9),
and bias estimation (Efron and Tibshirani 1994, Chapter 10). As a reflection of such widespread use,
particular contexts in which the bootstrap has been used has given rise to names that have become popular
in the literature. For example, the percentile bootstrap interval (Efron and Tibshirani 1994, page 170) is
used to describe contexts where a required (1−α) confidence interval on θ is constructed as in (6), using
the quantiles associated with the empirical cdf FB,ε∗n . By contrast, the bootstrap-t interval constructs the
(1−α) confidence interval for the same context as(

θn −F−1
B,t (1−α)ŝeB,n,θn +F−1

B,t (α)ŝeB,n

)
,

where FB,t is the empirical cdf constructed from Z j = (θ ∗
j,n−θn)/ŝeB,n, j = 1,2, . . . ,B. Similarly, the residual

bootstrap (Efron and Tibshirani 1994, page 113) refers to bootstrapping residuals from a complicated model
in service of estimating standard errors within the model; and parametric bootstrap (Cheng 2017; Efron
and Tibshirani 1994) where an assumed parametric model for the underlying population drives resampling
as opposed to the empirical measure used in the basic bootstrap algorithm we have described.

3.2.1 Moving Blocks Bootstrap

The basic bootstrap in Algorithm 1 and weighted variations such as the exchangeable bootstrap (van der
Vaart and Wellner 1996, Section 3.6.2) assume that the data (X1,X2, . . . ,Xn) in the original dataset are
iid. This, of course, need not be the case. In fact, in simulation contexts such as those discussed in
Section 2, it is routinely the case that the data (X1,X2, . . . ,Xn) form the initial segment of a steady state
time series that exhibits heavy autocorrelation. In such contexts, applying the bootstrap principle by iid
resampling will destroy the underlying correlation structure that is present in the dataset and potentially
lead to inconsistency.

The Moving Blocks Bootstrap (MBB) is a variation on the basic bootstrap procedure designed to
preserve the dependence in the underlying time series. In a nutshell, MBB performs iid sampling of “blocks
of data” as shown in Figure 2. Each block contains mn contiguous observations from the original dataset.
So, MBB and the basic bootstrap differ only in the way the B bootstrap datasets are generated. While the
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j-th bootstrap dataset in the basic bootstrap contains observations (X∗
j,1,X

∗
j,2, . . . ,X

∗
j,n), where X∗

j,n
iid∼ Pn, the

j-th MBB dataset contains the data(
XL1 ,XL1+1, . . . ,XL1+mn−1,XL2 ,XL2+1, . . . ,XL2+mn−1, . . . ,XLbn

,XLbn+1, . . . ,XLbn+mn−1
)
,

where mnbn = n and the block starting locations L1,L2, . . . ,Lbn are obtained using uniform iid sampling
from {1,2, . . . ,n}.

Figure 2: Illustration of Moving Blocks Bootstrap with block size mn = 3, adapted from Efron and Tibshirani
(1994).

It is easy to see that the block size mn will play a crucial role in determining the performance of MBB.
For instance, making mn too small, e.g., mn = 1 will make the resulting procedure resemble the basic
bootstrap. At least as envisioned and stated in (Efron and Tibshirani 1994, page 102), the blocks in MBB
should be large enough that observations more than mn time units apart should be nearly independent. The
choice of block size mn, however, remains a question that is not yet fully resolved in the MBB literature.

4 BATCHING

Recall again the “observed dataset” (X1,X2, . . . ,Xn) in (X ,A ), the empirical measure

Pn(A) := n−1
n

∑
j=1

δX j(A), A ∈ A

constructed from the observed dataset, the unknown parameter of interest θ ≡ θ(P), and the estimator
θn ≡ θ(Pn). As before, we seek a (1−α) confidence interval on θ , or an estimate of ψ(Fεn), where
ψ : W → R is a statistical functional subsuming such objects as se(εn), bias(θn,θ), or Qγ(εn).

Fundamental to batching, and analogous to the “moving block” in MBB (Section 3.2.1), is a batch
of contiguous observations from the dataset (X1,X2, . . . ,Xn). Let’s introduce notation to make this idea
precise. Partition (X1,X2, . . . ,Xn) into bn possibly overlapping batches each of size mn as shown in Figure 3.
The first of these batches consists of observations X1,X2, . . . ,Xmn , the second consists of observations
Xdn+1,Xdn+2, . . . ,Xdn+mn , and so on, and the last batch consists of observations X(bn−1)dn+1,X(bn−1)dn+2, . . . ,Xn.
The quantity dn ≥ 1 represents the offset between batches, with the choice dn = 1 corresponding to “fully-
overlapping” batches and any choice dn ≥ mn corresponding to “non-overlapping” batches. Notice then
that the offset dn and the number of batches bn are related as dn =

n−mn
bn−1 . Now use the data in batches

1,2, . . . ,bn to construct the corresponding empirical measures:

Pi,n(A) := m−1
n

mn

∑
j=1

δX(i−1)dn+ j(A), A ∈ A ; i = 1,2, . . . ,bn.

Analogous to the observations (a) and (b) that explain the bootstrap principle, the following two
observations underlie the batching principle.
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batch 1

batch 2

batch 3
1 mn

dn +1 dn +mn

2dn +1

Figure 3: The figure depicts partially overlapping batches. Batch 1 consists of observations X j, j =
1,2, . . . ,mn; batch 2 consists of observations X j, j = dn + 1,dn + 2, . . . ,dn +mn, and so on, with batch
i consisting X j, j = (i− 1)dn + 1,(i− 1)dn + 2, . . . ,(i− 1)dn +mn. There are thus bn := d−1

n (n−mn)+ 1
batches in total, where n is the size of the dataset.

(c) The variance parameter σ2 := limn→∞ nE
[
(θ(Pn)−θ(P))2

]
, assumed to exist, can be estimated

in one of various ways, e.g.,

SOB-S(mn,bn) =

√√√√ mn

n−mn
×mn ×

1
bn

bn

∑
j=1

(θ(Pj,mn)−θ(Pn))2. (9)

(The first multiplier mn/(n−mn) in (9) ensures asymptotic unbiasedness of SOB-S(mn,bn) with respect
to σ2, and the second multiplier mn in (9) accounts for using batches of size mn to estimate σ2.
The “OB” and the “-S” in the notation SOB-S(mn,bn) stand for “overlapping batch” and “sectioning,”
respectively.)

(d) Under certain regularity conditions, the following weak limit

TOB-S(mn,bn) :=
√

n
(

θ(Pn)−θ(P)
SOB-S(mn,bn)

)
d→ TOB-S as n → ∞ (10)

exists, and the random variable TOB-S can be characterized. Importantly, TOB-S is “distribution-free,”
that is, it does not depend on unknown parameters.

The limit in (10) immediately suggests the symmetric (1−α) confidence interval(
θn −F−1

TOB-S
(
α

2
)
SOB-S(mn,bn)√

n
, θn +F−1

TOB-S
(1− α

2
)
SOB-S(mn,bn)√

n

)
, (11)

where FTOB-S denotes the cdf of TOB-S. And, if estimating ψ(Fεn) is the object of statistical inference, then,
assuming SOB-S(mn,bn)

p→σ2 as n → ∞, the limit in (10) suggests the estimator ψ(SOB-S(mn,bn)√
n TOB-S).

Why should the confidence interval suggested by batching “work well”? And, in particular, why should
it work better than what is suggested through bootstrap? The straightforward answer to this question is
that batching assumes more structure (as encoded through Assumption 1 to be stated in Section 4.1) and
exploits it for efficiency. To be more precise, batching uses overlapping sets of data when estimating the
variance parameter σ . Overlapping batches reduce loss of information, but also introduce dependence
across batches estimates. The crucial point is that Assumption 1 allows to capture such dependence through
the characterized random variable TOB-S. This also means that batching can be expected to not perform as
well when Assumption 1 is violated, which is indeed something we observe in numerical experiments.

At least two measures are important when considering the quality of a reported confidence interval: (i)
coverage probability, that is, does the probability of a reported confidence interval such as (11) containing
θ tend to the nominal probability (1−α) as n → ∞, and if so, how rapidly? and (ii) expected halfwidth,
that is, what is the expected half-width of the reported confidence interval? Better confidence interval
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procedures exhibit rapid convergence (as n → ∞) of the coverage probability to 1−α , along with low
expected half-widths.

Extensive numerical experimentation (Pasupathy et al. 2023; Su et al. 2023) reveals that batch sizes
mn have a dominant effect on coverage probability, with large batch sizes ensuring more rapid convergence
to the nominal probability 1−α . Numerical experimentation also reveals that the effect of batch sizes
mn on the expected half-width is more muted, with the number of batches bn playing a more dominant
role. Increasing bn tends to rapidly decrease the expected half-width of the confidence intervals, especially
for small values of bn. These two insights from experimentation, (i) large mn generally leads to better
coverage, and (ii) large bn generally leads to smaller expected half-widths, together suggest the use of
fully-overlapping batches when constructing confidence intervals such as (11). (We recognize that “large
mn” in (i) is not a precise statement, but choosing mn so that mn/n ≈ 0.15 exhibits good performance across
diverse experimental settings; and, fully overlapping batches means dn = 1 and bn = n−mn + 1 but this
choice needs to be traded-off against the resulting increased need for computation.)

4.1 Theoretical Guarantee

In this section, we present Theorem 3 as a rigorous statement of the weak limit stated as a key principle
in (d) of Section 4. Theorem 3 relies crucially on a certain type of regularity assumption called strong
approximation (Glynn 1998; Csörgö and Révész 1981; Su et al. 2023) on the sequence {θ(Pn),n ≥ 1}.
Assumption 1 (Strong Invariance) The sequence {θ(Pn),n ≥ 1} of estimators satisfies the following strong
invariance principle. On a rich enough probability space, there exists a standard Wiener process {W (t), t ≥ 0}
and a stationary stochastic process {X̃n,n ≥ 1} d

= {Xn,n ≥ 1} such that as n → ∞,

sup
0≤t≤n

∣∣σ−1 (
θ(P⌊t⌋)−θ(P)

)
− t−1W (t)

∣∣≤ Γn−1/2−δ
√

logn a.s., (12)

where the constant δ > 0 and the real-valued random variable Γ satisfies E[Γ]< ∞.
Assumption 1 is a statement about {θ(Pn),n ≥ 1} “looking like” a Wiener process on a certain scaling.

There is evidence that Assumption 1 holds in diverse contexts (Su et al. 2023), although a proof of
Theorem 3 also suggests that Assumption 1 can be relaxed to a functional central limit theorem (Serfling
1980) without losing the strength of the assertions in Theorem 3.
Theorem 3 (Su, Pasupathy,Yeh, and Glynn (2023)) Suppose that Assumptions 1 holds, and that β =
limn→∞ mn/n ∈ (0,1). Assume also that bn → b ∈ {2,3, . . . ,∞} as n → ∞. Define

χ
2
OB-S(β ,b) :=



1
κ1(β ,b)

1
β (1−β )

∫ 1−β

0
(W (u+β )−W (u)−βW (1))2 du b = ∞;

1
κ1(β ,b)

1
βb

b

∑
j=1

(W (c j +β )−W (c j)−βW (1))2 b ∈ N\{1},

(13)

where κ1(β ,b) = 1−β and c j := ( j−1)1−β

b−1 . Then, as n → ∞,

S2
OB-S(mn,bn)

d→σ
2
χ

2
OB-S(β ,b); and TOB-S(mn,bn)

d→ W (1)√
χ2

OB-S(β ,b)
=: TOB-S. (14)

The real-valued random variable TOB-S := W (1)√
χ2

OB-S(β ,b)
has been tabulated (Pasupathy et al. 2023; Su

et al. 2023) thereby allowing one to construct the confidence interval in (11).
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4.2 Batching Variants

Batching variants arise as a result of using estimators other than SOB-S(mn,bn) (in (9)), or by replacing the
estimator θ(Pn) in (9) and (10) with the alternate estimator

θ̄n :=
1
bn

bn

∑
j=1

θ(Pj,mn). (15)

For example, suppose θ̄n is used in place of θn = θ(Pn) in (9) to get the alternate estimator

SOB-B(mn,bn) =

√√√√ 1
κ2

×mn ×
1
bn

bn

∑
j=1

(
θ(Pj,mn)− θ̄n

)2
, (16)

where κ2 is a bias correction factor (see Theorem 4). Then, the weak limit analogous to (10) becomes

TOB-B(mn,bn) :=
√

n
(

θ̄n −θ(P)
SOB-B(mn,bn)

)
d→ TOB-B as n → ∞, (17)

where TOB-B exists and is given through Theorem 4. Importantly, and like TOB-S, TOB-B does not depend on
unknown parameters. The resulting (1−α) confidence interval becomes(

θ̄n −F−1
TOB-B

(
α

2

) SOB-B(mn,bn)√
n

, θ̄n +F−1
TOB-B

(
1− α

2

) SOB-B(mn,bn)√
n

)
, (18)

where FTOB-B denotes the cdf of TOB-B. The following theorem characterizes TOB-B.
Theorem 4 (Su et al. (2023)) Suppose that Assumption 1 holds, and that β := limn→∞ mn/n > 0. Assume
also that bn → b ∈ {2,3, . . . ,∞} as n → ∞. Define

χ
2
OB-B(β ,b) :=



1
κ2(β ,∞)

β−1

1−β

∫ 1−β

0

(
W̃u(β )−

1
1−β

∫ 1−β

0
W̃s(β )ds

)2

du b = ∞;

1
κ2(β ,b)

1
β

1
b

b

∑
j=1

(
W̃c j(β )−

1
b

b

∑
i=1

W̃ci(β )

)2

b ∈ N\1,

(19)

where W̃x(β ) :=W (x+β )−W (x),x ∈ [0,1−β ], {W (t), t ∈ [0,1]} is the standard Brownian motion, ci :=
(i−1)1−β

b−1 , i = 1,2, . . . ,b, and κ2(β ,b) is the “bias-correction" factor given by

κ2(β ,b) :=



1 β = 0;

1−2
(

β

1−β
∧1
)
+

1
β

(
β

1−β
∧1
)2

− 2
3

1−β

β

(
β

1−β
∧1
)3

β > 0,b = ∞;

1− 1
b
− 2

b

b

∑
h=1

(
1− h

b−1
1−β

β

)+

(1−h/b) β > 0,b ∈ N\1.

(20)

Then, as n → ∞,
S2

OB-B(mn,bn)
d→σ

2
χ

2
OB-B(β ,b); (21)
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and

TOB-B(mn,bn)
d→



1√
χ2

OB-B(β ,b)

1
β

1
(1−β )

∫ 1−β

0
(W (s+β )−W (s)) ds b = ∞;

1√
χ2

OB-B(β ,b)

1
β

1
b

b

∑
i=1

W (ci +β )−W (ci) b ∈ N\1,

(22)

where ci := (i−1)1−β

b−1 , i = 1,2, . . . ,b.
Another prominent batching variant arises due to using the weighted area estimator (Schruben 1983;

Alexopoulos et al. 2007; Goldsman and Schruben 1990; Goldsman et al. 1990) in place of S2
OB-S(mn,bn) or

S2
OB-B(mn,bn) to estimate the variance constant σ2. See Su et al. (2023) for the corresponding weak limit

and also for variants that result from using small batch sizes, that is, mn such that mn/n → 0.

5 NOTES FOR FURTHER DISCUSSION AND STUDY

The following notes are salient and will be discussed during the oral presentation of this paper.

(a) Bootstrapping and batching are resampling devices that appear to have wide applicability for statistical
inference in simulation settings. They are both easy to implement and remarkably effective in diverse
settings so that their incorporation into general simulation software seems appropriate.

(b) Our presentation has assumed that all aspects of Fε∗n can be easily obtained. This is generally not
true in practice, especially when n is large. In such cases, implementers typically resort to what is
called bootstrap Monte Carlo where aspects of Fε∗n are estimated by drawing B observations from
Fε∗n . Incorporating the error due to such sampling is generally a very challenging problem.

(c) For batching, we only treated the construction of confidence intervals. While batching methods for
estimating ψ follow in a straightforward fashion, various aspects such as strong convergence and
higher order accuracy have not been studied yet. Some other narrow questions like the theoretical
characterization of the effect of batch sizes on coverage error and expected half-width in batching
are also open.

(d) A frequent question among simulation practitioners is whether resampling is needed if “additional
simulation runs can be performed” easily. This question becomes moot if efficiency (in the sense of
teasing out more information from a given amount of data) is of interest. Batching and bootstrapping
are methods that allow for efficient inference.

(e) The parameter θ is routinely not real-valued, that is, they can be vector-valued or function valued as
in the examples we described. In such cases, the interpretation of simulation output X j, j = 1,2, . . . ,n,
and the ensuing inference, needs to be performed carefully even though the fundamental insights
do not change.

(f) Our treatment assumes that the simulation output data (X1,X2, . . . ,Xn) are in steady state. This
is usually not the case in practice, leading to what has been called the initial transient problem.
See Pasupathy and Schmeiser (2010) for an annotated bibliography on this problem. For appropriate
inference, ideas from removing the initial transient need to be used in concert with batching,
constituting what is an interesting research question.

(g) A consistent estimator of the variance constant σ2 is neither needed nor preferred when constructing
a confidence interval using batching. Interestingly, however, in the sequential context where the
data X1,X2, . . . are revealed one by one, a risk-optimal estimator of θ might entail consistently
estimating σ2. See Pasupathy and Yeh (2020) for more.

(h) Virtually all discussion in this paper applies to estimators constructed in the context of digital
twins (Biller et al. 2022).
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(i) Parametric batching, analogous to parametric bootstrap (Cheng 2017), has not been sufficiently
explored and should form a topic of future research.

(j) Bias estimation tends to be tricky and delicate, and should be performed with care. This issue is
not specific to batching and similar caution has been issued even in the context of the bootstrap
and the jackknife (Efron and Tibshirani 1994).

(k) There is a deep and interesting connection between variance estimation and certain types of input
model uncertainty, as explained through semi-parametric estimation (Kosorok 2008).
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