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ABSTRACT

The goal of this paper is to develop a methodology for the systematic analysis of asymptotic statistical
properties of data-driven DRO formulations based on their corresponding non-DRO counterparts. We
illustrate our approach in various settings, including both phi-divergence and Wasserstein uncertainty sets.
Different types of asymptotic behaviors are obtained depending on the rate at which the uncertainty radius
decreases to zero as a function of the sample size and the geometry of the uncertainty sets.

1 INTRODUCTION

The statistical analysis of Empirical Risk Minimization (ERM) estimators is a well-investigated topic both
in statistics (e.g., (van der Vaart 1998)) and stochastic optimization (e.g., (Shapiro et al. 2009)). In recent
years, there has been significant interest in the investigation of distributionally robust optimization (DRO)
estimators (e.g., (Rahimian and Mehrotra 2019)). The goal of this paper is to develop a methodology for
the study of asymptotic statistical properties of data-driven DRO formulations based on their corresponding
non-DRO counterparts.

Our objective is to illustrate the main conceptual strategies for the statistical development, emphasizing
qualitative features, for instance, the different types of behavior arising from the interaction between
the distributional uncertainty size and the sample size, while keeping the discussion easily accessible.
Consequently, in order to keep the discussion easily accessible, we do not necessarily focus on the most
general assumptions to apply our results.

To set the stage, let us introduce some notation. We use P(S ) to denote the set of Borel probability
measures supported on a closed (nonempty) set S ⊂ Rd . Let X1, ...,Xn be a sequence of independent
identically distributed (i.i.d.) random vectors viewed as realizations (or i.i.d. copies) of random vector X
having distribution P∗ ∈P(S ). Consider the corresponding empirical measure Pn = n−1

∑
n
i=1 δXi , where

δx denotes the Dirac measure of mass one at the point x ∈Rd . The sample mean of a function ψ : S →R
is EPn [ψ(X)] = n−1

∑
n
i=1 ψ(Xi). By the Strong Law of Large Numbers, we have that EPn [ψ(X)] converges

with probability one (w.p.1) to EP∗ [ψ(X)], provided the expectation EP∗ [ψ(X)] is well defined.
By the Central Limit Theorem, n1/2(EPn [ψ (X)]−EP∗ [ψ (X)])⇝N

(
0,σ2

)
, where “⇝” denotes the

weak convergence (converges in distribution) and N
(
0,σ2

)
represents the normal distribution with mean

zero and variance σ2 = VarP∗ [ψ(X)], provided this variance is finite.
We consider a loss function of the form l : Rd ×Θ → R, with Θ ⊂ Rm being the parameter space.

Unless stated otherwise, we assume that the set Θ is compact and l(x,θ) is continuous on S ×Θ. We
define

fn (θ) := EPn [l (X ,θ)] and f (θ) := EP∗ [l (X ,θ)] . (1)

So, the standard ERM formulation takes the form

min
θ∈Θ

fn (θ) , (2)
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and viewed as an empirical counterpart of the “true” (or limiting) form

min
θ∈Θ

f (θ) . (3)

The statistical properties such as consistency and asymptotic normality of the ERM estimates have been
widely studied in significant generality as the sample size n → ∞. These types of results hold under
structural properties of the function f (·) and natural stability assumptions (to be reviewed) which guarantee
a functional Central Limit Theorems for fn (·). Our goal is to present a development that is largely parallel
to the associated distributionally robust counterpart to (2).

More precisely, (2) can be endowed with distributional robustness by defining a set of probability
measures, called the ambiguity set, Mδ (Pn)⊂P(S ), which are seen as “reasonable” (according to some
criterion) perturbations of the empirical measure. The parameter δ ≥ 0 is the uncertainty size and the
family of sets {Mδ (Pn) : δ ≥ 0} is typically nondecreasing in δ (in the inclusion partial order sense). The
ambiguity set can be defined around any reference probability measure, but unless otherwise stated, we
will center the ambiguity set around Pn. In this paper we deal with ambiguity sets of the form

Mδ (Pn) := {P ∈P(S ) : D(P,Pn)≤ δ},

where D(Q,P) is a divergence between Q,P ∈P(S ). Specifically, we consider the phi-divergence and
Wasserstein distance cases.

In order to state the DRO version of (2) we define

Fn(θ ,δn) := sup
P∈Mδn (Pn)

EP [l (X ,θ)] ,

where δn is a monotonically decreasing sequence tending to zero as n → ∞. The DRO version of (2) takes
the form

min
θ∈Θ

Fn(θ ,δn). (4)

The aim of this paper is to investigate asymptotic statistical properties of the optimal value and optimal
solutions of the DRO problem (4). There are typically (but not always) three types of cases involving the
limiting asymptotic statistics depending on the rate of convergence of δn to zero. These can be seen both
in terms of the value function error

min
θ∈Θ

Fn(θ ,δn)−min
θ∈Θ

f (θ) ,

and the optimal solution error (assuming it is unique for the limiting version of the problem and sufficient
regularity conditions are in place).

Intuitively, if δn is smaller than a certain (to be characterized) critical rate relative to the canonical
parametric statistical error rate n−1/2, then the DRO effect is negligible compared to the statistical error
implicit in a sample of size n. If δn decreases to zero right at the critical rate, the DRO effect is comparable
with this statistical error and can be quantified in the form of an asymptotic bias. If δn is greater than the
critical rate, the DRO effect overwhelms the statistical noise. These critical rates depend on the sensitivity
of the optimal value function with respect to a small change in the size of uncertainty.

Our objective is to provide accessible principles that can be used to obtain explicit limiting distributions
for the errors, both for value functions and optimizers, when δn → 0 in these three cases; see Theorems 1
and 2 for general principles and Theorems 3 and 4 for the application of these principles to value functions
of phi-divergence and Wasserstein DRO, respectively; and Theorem 5 for the corresponding application to
phi-divergence optimal solutions (we omit the Wasserstein case due to space constraints).

It is important to note that it is common in the data-driven DRO literature to suggest choosing δn
to enforce that P∗ is inside Mδn(Pn) with high probability. This selection typically will fall in the third
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case, that is, this choice will induce estimates that are substantially larger than standard statistical noise.
Therefore, prescriptions corresponding to the third case should be assigned only if the optimizer perceives
that the out-of-sample environment is substantially different from the observed (empirical) environment
due to errors or fluctuations that fall outside of standard statistical noise.

The remainder of the paper is organized as follows. In Section 2 we will quickly review the elements
of the statistical analysis of Empirical Risk Minimization (ERM) – also known as Empirical Optimization
or Sample Average Approximation – which corresponds to case δn = 0. Then, in Section 3, we will follow
a parallel discussion to that of Section 2 and discuss assumptions for the data-driven DRO version of
the problem. The objective is to use these assumptions so that we can obtain a flexible and disciplined
approach that can be systematically applied to various DRO formulations. Then, in Section 4 we will
discuss the application of this approach to the explicit development of asymptotics for the optimal value
in phi-divergence and Wasserstein DRO and, finally, in Section 5, we also develop these explicit results
for associated optimal solutions.

We use the following notation throughout the paper. For a sequence Yn of random variables, by writing
Yn = op(n−γ) we mean that nγYn tends in probability to zero as n → ∞. In particular Yn = op(1) means
that Yn tends in probability to zero. The notation Q ≪ P means that Q ∈P(S ) is absolutely continuous
with respect to P ∈P(S ). Unless stated otherwise, probabilistic statements like “almost every" (a.e.), are
made with respect to the probability measure P∗. By saying that a function h : S → R is integrable we
mean that EP∗ |h(X)|< ∞. It is said that a mapping φ : Rm → Rk is directionally differentiable at a point
θ ∈ Rm if the directional derivative

φ
′(θ ,d) := lim

t↓0

φ(θ + td)−φ(θ)

t

exists for every d ∈ Rm. We will use the term εn(θ), θ ∈ Θ, to denote a random field such that

sup
θ∈Θ

|εn (θ)|= op(1). (5)

2 STATISTICS OF ERM: REVIEW

In addition to the population objective function f (θ) := EP∗ [l (X ,θ)], introduced in (1), we also let

ϑ := inf
θ∈Θ

f (θ) and Θ
∗ := argmin

θ∈Θ

f (θ),

be the optimal value and the set of optimal solutions of the population version of the optimization problem,
respectively.

As defined in (1), fn(θ) = EPn [l (X ,θ)] is the objective function of the ERM version of the problem
and

ϑn := inf
θ∈Θ

fn(θ) and θn ∈ argmin
θ∈Θ

fn(θ)

are the respective optimal value and an optimal solutions of the ERM problem. We will now quickly review
the development of the asymptotic statistics of the optimal value in ERM and then we will discuss the
corresponding results for optimal solutions.

2.1 Asymptotics of the Optimal Value

In order to analyze the statistical error in the difference between the optimal values ϑn −ϑ , we start by
enforcing a functional Central Limit Theorem (CLT) for fn (·). In particular, one imposes assumptions that
guarantee an expansion of the form (recall that εn(·) satisfies (5))

fn (θ) = f (θ)+n−1/2rn (θ)+n−1/2
εn (θ) , (6)
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where we have functional weak convergence

rn (·)⇝g(·)

in the uniform topology on compact sets, with g(·) being a mean zero Gaussian random field with covariance
function

Cov
(
g(θ) ,g

(
θ
′))= CovP∗

(
l (X ,θ) , l

(
X ,θ ′)).

There are several ways to enforce (6); a simple set of sufficient conditions satisfying this is given next (cf.,
(van der Vaart 1998, example 19.7)).
Assumption 1 (i) For some θ̄ ∈ Θ the expectation EP∗ [l(X , θ̄)2] is finite. (ii) There is a measurable function
ψ : S → R+ such that EP∗ [ψ(X)2] is finite and

|l(X ,θ)− l(X ,θ ′)| ≤ ψ(X)∥θ −θ
′∥

for all θ ,θ ′ ∈ Θ and a.e. X ∈ S .
In particular, under this assumption, it follows that the expectation function f (θ) and variance

σ
2(θ) := VarP∗(l(X ,θ))

are finite valued and continuous on Θ. Furthermore, since the set Θ is compact, it follows that the optimal
value, ϑn, of the ERM problem converges to ϑ in probability (in fact, almost surely). Moreover, it is
not difficult to show from (6) that the distance from θn to Θ∗ converges in probability to zero (actually,
convergence occurs almost surely) as n → ∞. Finally, since the functional V (φ) := infθ∈Θ φ(θ), mapping
continuous functions φ : Θ →R to the real line, is directionally differentiable, the following classical result
is a direct consequence of the (functional) Delta Theorem (cf., (Shapiro 1991)).
Proposition 1 Under Assumption 1,

n1/2(ϑn −ϑ)⇝ inf
θ∈Θ∗

g(θ) (7)

as n → ∞. In particular, if Θ∗ = {θ ∗} is a singleton, i.e. θ ∗ is the unique optimal solution of the true
problem, then n1/2(ϑn −ϑ ∗) converges in distribution to normal N(0,σ2(θ ∗)).

2.2 Asymptotics of Optimal Solutions

We assume now that Θ∗ = {θ ∗} is a singleton, i.e., θ ∗ is the unique optimal solution of the true (population)
problem (3). We also assume that for a.e. X , the function l(X , ·) is continuously differentiable. As was
argued in the previous section, the asymptotics of the optimal value is governed by the asymptotics of
the objective function. On the other hand, the asymptotics of optimal solutions can be derived from the
asymptotics of the gradients of the objective function.

Let us consider the following parametrization of problem (3):

min
θ∈Θ

f (θ)+ vT
θ , (8)

with parameter vector v ∈ Rm. Denote by θ∗(v) an optimal solution of the above problem (8) viewed as a
function of vector v. Of course, we have θ∗(0) = θ ∗.
Assumption 2 (uniform second order growth) There is a neighborhood V of θ ∗ and a positive constant
κ such that for every v in a neighborhood of 0 ∈ Rm, problem (8) has an optimal solution θ∗(v) ∈ V and

f (θ)+ vT (θ −θ∗ (v))≥ f (θ∗ (v))+κ∥θ −θ∗ (v)∥2,

for all θ ∈ Θ∩V .
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The following assumption can be viewed as a counterpart of Assumption 1 applied to the gradients of
the objective function.
Assumption 3 (i) For some θ̄ ∈ Θ the expectation EP∗

[
∥∇l(X , θ̄)∥2

]
is finite. (ii) There is a measurable

function Ψ : S → R+ such that EP∗ [Ψ(X)2] is finite and

∥∇l(X ,θ)−∇l(X ,θ ′)∥ ≤ Ψ(X)∥θ −θ
′∥, (9)

for all θ ,θ ′ ∈ Θ and a.e. X ∈ S .
By the functional CLT it follows that

∇ fn (θ) = ∇ f (θ)+n−1/2dn (θ)+n−1/2
εn (θ) , (10)

where we have a functional weak convergence dn (·)⇝G(·) in the uniform topology on a closed neighborhood
of θ ∗, with G(·) being a continuous mean zero Gaussian random field with covariance function

Cov
[
G(θ),G(θ ′)

]
= EP∗ [(∇l(X ,θ)−∇ f (θ))(∇l(X ,θ ′)−∇ f (θ ′))T ].

It follows from (10) that

[∇ fn(θ)−∇ f (θ)]− [∇ fn(θ
∗)−∇ f (θ ∗)] = n−1/2 [dn (θ)−dn (θ

∗)+ εn (θ)− εn (θ
∗)] .

Also since ρn := ∥θn −θ ∗∥ tends in probability to zero, we have

sup
θ :∥θ−θ ∗∥≤ρn

[dn (θ)−dn (θ
∗)+ εn (θ)− εn (θ

∗)] = op(1). (11)

Thus we have the following result from (Shapiro 1993, Theorem 2.1), where the respective regularity
conditions are ensured by the above property (11).
Proposition 2 Suppose that Assumptions 2 and 3 hold. Then it follows that

θn = θ∗(Zn)+op(n−1/2), (12)

where Zn := ∇ fn(θ
∗)−∇ f (θ ∗).

The above result reduces the analysis of asymptotic properties of optimal solutions to the investigation
of the asymptotic behavior of optimal solutions of the finite dimensional problem (8). By the (finite
dimensional) Central Limit Theorem, n1/2Zn converges in distribution to normal N(0,Σ) with covariance
matrix Σ = Cov(∇l(X ,θ ∗)). Moreover, if the mapping θ∗(v) is directionally differentiable at v = 0 (in the
Hadamard sense), then by the finite dimensional Delta Theorem it follows from (12) that

n1/2(θn −θ
∗)⇝θ

′
∗(0,Z),

where Z ∼ N(0,Σ). In particular, if θ ′
∗(0,w) = Aw is linear (i.e., θ∗(v) is differentiable at v = 0 with Jacobian

matrix A), then n1/2(θn −θ ∗) converges in distribution to normal with null mean vector and covariance
matrix AΣAT .

Directional differentiability of optimal solutions of parameterized problems is well investigated. For
example, if θ ∗ is an interior point of Θ, f (θ) is twice continuously differentiable at θ ∗ and the Hessian
matrix H := ∇2 f (θ ∗) is nonsingular, then the uniform second order growth (Assumption 2) holds, and
θ∗ (v) is differentiable at v = 0 with θ ′

∗ (0,w) = H−1w. When θ ∗ is on the boundary of the set Θ, the
sensitivity analysis of the parameterized problem (8) is more delicate and involves a certain measure of the
curvature of the set Θ at the point θ ∗. This is discussed extensively in (Bonnans and Shapiro 2000). We
also refer to (Shapiro, Dentcheva, and Ruszczyński 2009, sections 5.1.3 and 7.1.5) for a basic summary of
these results.

It is worthwhile to note at this point that the regularity conditions of Assumptions 2 and 3 address
different properties of the considered setting. Assumption 2 deals with the limiting optimization problem
and is of deterministic nature. The uniform second order growth condition was introduced in (Shapiro
1993), and in a more general form was discussed in (Bonnans and Shapiro 2000, section 5.1.3). On the
other hand Assumption 3 is related to the stochastic behavior of the ERM problem (2).
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3 STATISTICS OF DRO: GENERAL PRINCIPLES

We now provide sufficient conditions for the development of DRO statistical principles based on assumptions
which are parallel to those imposed in the ERM section. Define

ϑ̄n := inf
θ∈Θ

Fn(θ ,δn) and θ̄n ∈ argmin
θ∈Θ

Fn(θ ,δn),

the optimal value and an optimal solution of the DRO problem (4).

3.1 DRO Asymptotics of the Optimal Value

Similar to the ERM case, in the DRO setting, we will typically have an expansion of the form

Fn(θ ,δn) = fn (θ)+δ
γ
n Rn (θ)+δ

γ
n εn (θ) , (13)

for some γ > 0, where Rn(·) converges in probability in the uniform topology over Θ to a continuous
deterministic process ρ(·),

Rn(θ) = ρ(θ)+ εn(θ). (14)

Since Fn(·,δn) ≥ fn(·), it follows then that ρ(·) ≥ 0. We will characterize γ > 0 and ρ (·) explicitly
in the next sections in the context of phi-divergence and Wasserstein DRO formulations under suitable
conditions.The following result, summarizes the type of behavior that we expect in DRO formulations
depending on the rate of decay to zero of the uncertainty size δn.
Theorem 1 Suppose that Assumption 1 and conditions (13) - (14) hold. Then there are three types of
asymptotic behavior of the DRO optimal value:
(a) If δ

γ
n = o

(
n−1/2

)
, then

ϑ̄n = ϑn +op

(
n−1/2

)
, (15)

and hence
n1/2 (

ϑ̄n −ϑ
)
⇝ inf

θ∈Θ∗
g(θ),

which coincides with (7) and thus the DRO formulation has no asymptotic impact.
(b) If δ

γ
n = n−1/2, then

n1/2 (
ϑ̄n −ϑ

)
⇝ inf

θ∈Θ∗
{g(θ)+ρ (θ)} , (16)

so the DRO formulation introduces an explicit and quantifiable asymptotic bias which can be interpreted
as a regularization term.
(c) If o

(
δ

γ
n
)
= n−1/2, then

δ
−γ
n

(
ϑ̄n −ϑ

)
⇝ inf

θ∈Θ∗
ρ (θ) ,

so the bias term induced by the DRO formulation is larger than the statistical error.

Proof. Part (a). By (13) and (14) we have that in the considered case

Fn(θ ,δn) = fn(θ)+o(n−1/2)εn (θ) ,

where εn (θ) is the generic term satisfying (5). Thus (15) follows.
Part (b). By (13) and (14) in the considered case, we can write

n1/2 (Fn(θ ,δn)− f (θ)) = n1/2( fn(θ)− f (θ))+ρ(θ)+ εn (θ) .
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Under Assumption 1, by the functional CLT we see that n1/2( fn(θ)− f (θ))+ρ(θ) converges in distribution
to g(θ)+ρ(θ), and hence (16) follows by the Delta Theorem.

Part (c) may appear somewhat different because the right hand side is deterministic but, under case
(c) note that we can simply write

Fn(θ ,δn) = f (θ)+δ
γ
n Rn (θ)+δ

γ
n εn (θ) ,

so case (c) also follows from the standard analysis since Rn (·) converges uniformly to ρ (·) in probability
(thus it converges weakly in the uniform topology).

3.2 DRO Asymptotics of the Optimal Solutions

As in the ERM development, in addition to Assumptions 2, it is convenient to guarantee that for all n large
enough, Fn(θ ,δn) is differentiable in a neighborhood V of θ ∗ and

∇Fn(θ ,δn) = ∇ fn (θ)+δ
γ
n Dn (θ)+δ

γ
n εn (θ) , (17)

for some γ > 0, where Dn (θ) converges in probability to ∇ρ (θ) uniformly around a closed neighborhood
V̄ of θ ∗. As a consequence, we obtain the following analog of Theorem 1, which follows from the finite
dimensional Delta Theorem. Recall that θ∗(v) is an optimal solution to problem (8) and θ ′

∗(0, ·) is its
directional derivative at v = 0.
Theorem 2 Suppose that: Assumptions 2 and 3 hold, conditions (13) - (14) are satisfied, identity (17)
holds with Dn (·) converging in probability to ∇ρ (·) uniformly around a closed neighborhood V̄ of θ ∗, and
that θ∗(v) is directionally differentiable at v = 0 (in the Hadamard sense). Let Z ∼ N(0,Σ) with covariance
matrix Σ = Cov(∇l(X ,θ ∗)). Then the DRO optimal solutions can have three types of asymptotic behavior:
(A) If δ

γ
n = o

(
n−1/2

)
, then

θ̄n = θn +op

(
n−1/2

)
,

thus
n1/2 (

θ̄n −θ
∗)⇝θ

′
∗ (0,Z) .

(B) If δ
γ
n = n−1/2, then

n1/2 (
θ̄n −θ

∗)⇝θ
′
∗ (0,Z +∇ρ(θ ∗)) .

(C) If o
(
δ

γ
n
)
= n−1/2, then

δ
−γ
n

(
θ̄n −θ

∗)⇝θ
′
∗ (0,∇ρ (θ ∗)) .

4 GENERAL PRINCIPLE IN ACTION: OPTIMAL VALUES

4.1 The Phi-Divergence Case

We recall the definition of the distributional uncertainty set for the phi-divergence case. Consider a convex
lower semi-continuous function φ : R → R+ ∪{+∞} such that φ(1) = 0 and φ(t) = +∞ for t < 0. For
probability measures Q,P ∈P such that Q is absolutely continuous with respect to P with the corresponding
density dQ/dP, the φ -divergence is defined as (cf., (Csiszár 1963),(Morimoto 1963))

Dφ (Q∥P) := EP[φ(dQ/dP)] =
∫

φ(dQ/dP)dP.

In particular, for φ(t) := t log(t)− t +1, t ≥ 0, this becomes the Kullback–Leibler (KL) divergence of Q
from P. The ambiguity set Mδ (P) associated with Dφ (·∥P) is defined as

Mδ (P) := {Q ≪ P : Dφ (Q∥P)≤ δ}.
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By duality arguments the corresponding distributionally robust functional can be written in the form (cf.,
(Bayraksan and Love 2015), (Ben-Tal and Teboulle 1987), (Shapiro 2017))

sup
Q∈Mδ (P)

EQ[Y ] = inf
µ,λ>0

{λδ +µ +λEP[φ
∗((Y −µ)/λ )]} , (18)

where φ ∗(y) = supt∈R{yt −φ(t)} is the convex conjugate of φ . Using this representation, we can obtain
an asymptotic expansion for (18) as a function of δ . This expansion can be helpful to suggest the form of
the expansion in (13) and (17). For this, we need to assume certain regularity properties of φ (t) around
t = 1.
Assumption 4 Assume that φ(t) is two times continuously differentiable in a neighborhood of t = 1 with
κ := 2/φ ′′(1)> 0.

Under this condition, we have the following expansion, which is obtained, in order to simplify our
exposition, under the assumption that the probability measure P has compact support. See also the results
in (Lam 2016), which provide additional correction terms under a fixed P. The uniform feature of the
statement below is helpful in the statistical analysis. Our development here will also be used in the expansion
of optimal solutions.
Proposition 3 Suppose that Assumption 4 holds, that P(|Y | ≤ ν) = 1 for some ν ∈ (0,∞). Then, for any
b0 > 0,

sup
Q∈Mδ (P)

EQ[Y ]−EP(Y )−δ
1/2

κ
1/2

√
VarP[Y ] = o

(
δ

1/2
)
, (19)

uniformly over Borel probability measures P supported on [−ν ,ν ] such that VarP[Y ]≥ b0. Moreover, there
is δ̄ > 0 such that for all δ < δ̄

argmax{EQ[Y ] : Q ∈Mδ (P)}
is unique.

Proof. Note that we can write

sup
Q∈Mδ (P)

EQ[Y ] = sup
EP(Z)=1,EP(φ(Z))≤δ

EP[Y Z],

where the sup is taken over the set of positive random variables Z satisfying the specified moment constraints.
We may assume that EP [Y ] = 0 for simplicity since we can always center the objective function around
EP [Y )]. In turn, by letting ∆̄ = (Z −1)/δ 1/2, the previous optimization problem is equivalent to

δ
1/2 sup

EP(∆̄)=0,∆̄≥−δ−1/2,EP(φ(1+δ 1/2∆̄))≤δ

EP[Y ∆̄]. (20)

Since |Y | ≤ ν and EP [Y ] = 0, then ∆̄ = aY is feasible for any a > 0 provided that aν ≤ δ−1/2 and

EP[φ(1+δ
1/2

∆̄)]≤ δ .

In turn, since φ (t) is two times continuously differentiable at t = 1, we have that

δ
−1

φ(1+δ
1/2ay))→ a2y2

φ
′′ (1)/2

as δ → 0 uniformly in compact sets. Therefore, we conclude that there exists δ0 > 0 such that for any
δ < δ0

sup
EP(∆̄)=0,∆̄≥−δ−1/2,EP(φ(1+δ 1/2∆̄))≤δ

EP[Y ∆̄]

≥ sup
a>0,a2EP(Y 2)/2≤(1−δ0)/φ ′′(1)

EP[aY 2] =
√

κ (1−δ0) ·
√
EP[Y 2].
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Since δ0 > 0 can be chosen to be arbitrarily small, we conclude an asymptotic lower bound which retrieves
(19). For the upper bound, we apply the duality result (18) in the form corresponding to (20), we obtain

sup
EP(∆̄)=0,∆̄≥−δ−1/2,δ−1EP(φ(1+δ 1/2∆̄))≤1

EP[Y ∆̄]

= min
λ̄>0,µ̄

{λ̄ +EP[ sup
∆̄≥−δ−1/2

{(Y + µ̄) ∆̄− λ̄ δ
−1/2

φ(1+δ
1/2

∆̄)}]}

≤ min
λ̄>0

{λ̄ +EP[ sup
∆̄≥−δ−1/2

{Y ∆̄− λ̄ δ
−1/2

φ(1+δ
1/2

∆̄)}]}. (21)

We will plug in

λ̄0 = argmin{λ̄ +κEP[Y 2]/4λ̄ : λ̄ > 0}= 2−1
√

κEP[Y 2]> 0

into (21) to obtain our upper bound. Using that λ̄0 > 0 and that φ is convex with φ ′′ (1)> 0, we have that
the family of (continuous) functions

sδ (y) := sup
∆̄≥−δ−1/2

{y∆̄− λ̄ δ
−1/2

φ(1+δ
1/2

∆̄)}

converges uniformly on compact sets to

s0 (y) = sup
∆̄

{y∆̄− λ̄ ∆̄
2/κ}= κy2

4λ̄
.

Therefore we obtain that

min
λ̄>0

{λ̄ +EP[ sup
∆̄≥−δ−1/2

{Y ∆̄− λ̄ δ
−1/2

φ(1+δ
1/2

∆̄)}]}

≤ λ̄0 +EP[ sup
∆̄≥−δ−1/2

{Y ∆̄− λ̄0δ
−1/2

φ(1+δ
1/2

∆̄)}]→
√

κ ·
√
EP[Y 2].

These estimates, which are uniform given that |Y | ≤ ν , yield the estimate in the proposition. The uniqueness
is standard; it follows from the local strong convexity of φ (·) at the origin.

Recall that σ2(θ) := VarP∗(l(X ,θ)), and that g(·) is a mean zero Gaussian random field. Expansion
(19) immediately yields, at least when supθ∈Θ |l (X ,θ)| is P∗-bounded, that

Fn(θ ,δn) = fn (θ)+δ
1/2
n κ

1/2
σ(θ)+δ

1/2
n εn (θ) . (22)

Consequently, we obtain the following result.
Theorem 3 Suppose that supθ∈Θ |l (X ,θ)| is P∗-essentially bounded, that Assumption 1 and Assumption
4 hold, and that σ2(θ)> 0 for all θ ∈ Θ∗. Then, we have the following types of asymptotic behavior of
the DRO optimal values.
(a-phi) If δn = o

(
n−1

)
, then

n1/2 (
ϑ̄n −ϑ

)
⇝ inf

θ∈Θ∗
g(θ).

(b-phi) If δn = n−1, then
n1/2 (

ϑ̄n −ϑ
)
⇝ inf

θ∈Θ∗

{
g(θ)+κ

1/2
σ(θ)

}
. (23)

(c-phi) If o(δn) = n−1, then
δ
−1/2
n

(
ϑ̄n −ϑ

)
⇝κ

1/2 inf
θ∈Θ∗

σ(θ),

so the bias term induced by the DRO formulation dominates the statistical error.
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Proof. Proof of this theorem follows standard techniques (cf., (Shapiro, Dentcheva, and Ruszczyński
2009, proof of Theorem 5.7)). For the sake of completeness we briefly outline proof of case (b-phi). Note
that our assumptions imply Assumption 1, and hence σ2(θ) is a continuous function of θ . Therefore there
is a compact neighborhood Θ̄ of Θ∗ such that σ2(θ)> 0 for all θ ∈ Θ̄. We can restrict the minimization
to Θ̄ for which the expansion (22) holds.

Consider the space C(Θ̄) of continuous functions g : Θ̄ →R equipped with the sup-norm, and functional
V (g) := infθ∈Θ̄ g(θ), mapping C(Θ̄) into the real line. This functional is directionally differentiable in the
Hadamard sense with the directional derivative at a point µ ∈C(Θ̄) given byV ′(µ,h) = infθ∈Θ̄(µ) h(θ), where
Θ̄(µ) := argminθ∈Θ̄ µ(θ). We have that ϑ̄n = V (Fn) and ϑ = V ( f ), where Fn(·) := Fn(·,δn). By the
functional CLT and (22) it follows that n1/2(Fn− f ) converges in distribution (weakly) to g(θ)+κ1/2σ(θ).
We can apply now the functional Delta Theorem to conclude (23).

Given that φ(·) is only assumed to satisfy Assumption (4), without imposing any growth condition,
situations such as the (c-phi) case require imposing stronger moment conditions than just assuming
VarP∗ [l (X ,θ)]< ∞. This can be seen in the KL-divergence case in which φ (t) = t log(t)− t +1. For fixed
δ > 0, the population version of the DRO problem requires that l (X ,θ) has a finite moment-generating
function in a neighborhood of the origin. Therefore, if δn converges to zero sufficiently slowly and l (X ,θ)

has infinite moments of order 2+ε , an expansion such as (22) may not hold. However, if φ (t) = (t −1)2,
it follows that expansion (22) holds exactly with εn (θ) = 0.

On the other hand, (Duchi et al. 2021, Theorem 2) provides a more general result for the case
(b-phi) since it does not require compact support (although it requires φ to be three times continuously
differentiable). The following example shows that the smoothness of φ (·) is important in deriving the
asymptotics in the previous result with δn = n−1/2.
Example 1 Consider φ(t) := |t−1|, t ≥ 0. In that case (e.g., (Shapiro 2017, Example 3.12)), for δ ∈ (0,2)
and essentially bounded Y ,

sup
Q∈Mδ (P)

EQ[Y ] = (δ/2)esssup(Y )+(1−δ/2)AV@RP,1−δ/2(Y ),

where
AV@RP,α(Y ) := inf

τ∈R

{
τ +α

−1EP[Y − τ]+
}
, α ∈ (0,1].

Note that AV@RP,1(Y ) = EP[Y ] and as α tends to one,∣∣AV@RP,α(Y )−EP[Y ]
∣∣= O(1−α), (24)

provided Y is essentially bounded.
Suppose that l(x,θ) is bounded on S ×Θ, and hence

Fn(θ ,δn) = (δn/2) max
1≤i≤N

l(Xi,θ)+(1−δn/2)AV@RPn,1−δn/2(l(X ,θ)). (25)

Consider δ n = n−1. Then the first term in (25) is of order O(n−1), and by (24) the second term is
EPn [l(X ,θ)]+O

(
n−1

)
. Consequently in that case ϑ̄n = ϑn+op(n−1/2), and hence this corresponds to case

(a) in Theorem 1. This shows that the assumption of smoothness (differentiability) of φ(·) is essential for
deriving the asymptotics of ϑ̄n. Here, some additional terms in the asymptotics of ϑ̄n appear when δn is
of order O(n−1/2), rather than O(n−1). □

4.2 The Wasserstein Distance Case

We use P(S ×S ) to denote the set of Borel probability measures on the product space S ×S . Let
c : S ×S → R+∪{+∞} be a lower semi-continuous function such that c(x,y) = 0 if and only if x = y.
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This function measures the marginal cost of transporting a unit of mass from a source location to a target
location, respectively. The domain of of c(·, ·) is

dom(c) = {(x,y) ∈ S ×S : c(x,y)< ∞}.

The optimal transport cost between P,Q ∈P(S ) is given by

Dc (P,Q) := min{Eπ [c(X ,Y )] : π ∈P(S ×S ) , πX = P, πY = Q},

where Eπ [ · ] is the expectation under a joint distribution π ∈P(S ×S ) and πX and πY denote the marginal
distributions of X and Y , respectively. It turns out that the optimizer is always achieved, thus we write ‘min’
instead of ‘ inf’. Let ∥ · ∥ be a norm in the space Rd . An important special case corresponds to the choice
c(x,y) := ∥x−y∥p for some p > 0, in which case Dc (P,Q)1/p is the so-called p-Wasserstein distance. The
reader is referred to the text of Villani (Villani 2003) for more background on optimal transport.

For any given P ∈P(S ) and δ ≥ 0 we have the following dual result (cf., (Esfahani and Kuhn 2018),
(Blanchet and Murthy 2019), (Gao and Kleywegt 2016)) assuming that h(·) is upper semi-continuous and
h(X) is P-integrable,

sup
Q:Dc(P,Q)≤δ

EQ[h(Y )] = min
λ≥0

{
λδ +EP

[
h̄λ (X)

]}
, (26)

where
h̄λ (x) := sup

y∈S
{h(y)−λc(x,y)}, λ ≥ 0.

Throughout the rest of our discussion, we will choose c(x,y) := ∥x−y∥p for p ∈ (1,∞) and therefore write
Dp (P,Q) for this choice of cost function. Further, we use ∥·∥∗ to denote the dual norm, namely,

∥y∥∗ = sup{xT y : ∥x∥= 1}.

As in the case of phi-divergence, assuming that P is fixed and has compact support, for example, we can
obtain an asymptotic expansion for (26) as a function of δ . By writing E(p−1)/p

P [ · ] we mean (EP[ · ])(p−1)/p.
Proposition 4 Suppose that h(·) is continuously differentiable and the mapping

x 7→ sup{∥∇h(x+∆)−∇h(x)∥/(1+∥∆∥p−1) : ∆ ∈ Rd}

is bounded on compact sets. Then, for any b0 > 0,

sup
Q:Dp(P,Q)≤δ

EQ[h(Y )]−EP[h(X)]−δ
1/pE(p−1)/p

P [∥∇h(X)∥p/(p−1)
∗ ] = o

(
δ

1/p
)
,

uniformly over P ∈P([−ν ,ν ]d) such that EP ∥∇h(Y )∥ ≥ b0.

Proof. The proof of this result is similar to the one given in the phi-divergence case. Therefore, we
only provide a sketch. We start by observing that

sup
Q:Dp(P,Q)≤δ

EQ[h(Y )] = EP[h(X)]+ sup
EP∥∆∥p≤δ

EP[h(X +∆)−h(X)],

where the optimization in the right hand side is taken over random variables ∆. We let δ 1/p∆̄ = ∆ and note
that

sup
EP∥∆∥p≤δ

EP[h(X +∆)−h(X)] = δ
1/p sup

EP∥∆̄∥p≤1
EP[

(
h(X +δ

1/p
∆̄)−h(X)

)
/δ

1/p]

= δ
1/p sup

EP∥∆̄∥p≤1
EP

[∫ 1

0
∇h(X + tδ 1/p

∆̄) · ∆̄dt
]
.
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Next, we can obtain a lower bound by considering a specific form of ∆̄ suggested by the formal asymptotic
limit as δ → 0. Note that

EP[∇h(X) · ∆̄]≤ EP[∥∇h(X)∥∗
∥∥∆̄

∥∥],
and the equality is achieved if we choose any ∆̄∗ which is a constant multiple of

∆̄1 (X) ∈ argmax{∇h(X) · ∆̄ :
∥∥∆̄

∥∥= 1},

(The function ∆̄1 (·) can be selected in a measurable way using the uniformization technique of Jankov-von
Neumann.) Next, if

∥∥∆̄∗∥∥= a∥∇h(X)∥γ

∗, then

EP[∥∇h(X)∥∗
∥∥∆̄

∗∥∥] = aEP[∥∇h(X)∥γ+1
∗ ]

and
EP

(∥∥∆̄
∗∥∥p)

= apEP ∥∇h(X)∥γ p
∗ = 1.

Letting γ p = γ +1 we have that γ = 1/(p−1) and therefore

sup
EP∥∆̄∥p≤1

EP[∇h(X) · ∆̄∗] = E(p−1)/p
P [∥∇h(X)∥p/(p−1)

∗ ],

with
∆̄
∗ (X) = ∆̄1 (X)∥∇h(X)∥1/(p−1)

∗ E−1/p
P ∥∇h(X)∥p/(p−1)

∗ .

The denominator is well defined, since EP ∥∇h(Y )∥ > 0 and the random variable ∆̄∗ (X) is essentially
bounded uniformly over the family P ∈ P([− ν ,ν ]d) and EP ∥∇h(Y )∥ ≥ b0. Since the gradient ∇h(·)
is continuous, then it is uniformly continuous over compact sets and, consequently, uniformly over ∆̄ in
compact sets, ∫ 1

0

∥∥∥∇h(x+ tδ 1/p
∆̄)−∇h(x)

∥∥∥ ∆̄dt = o(1)

as δ → 0. This yields that

sup
EP∥∆̄∥p≤1

EP

[∫ 1

0
∇h(X + tδ 1/p

∆̄) · ∆̄dt]≥ E(p−1)/p
P [∥∇h(X)∥p/(p−1)

∗

]
+o(1)

uniformly over P ∈P([−ν ,ν ]d) and EP ∥∇h(Y )∥ ≥ b0. For the upper bound, we can apply the duality
representation, just as we did in the phi-divergence case. Using duality, we have that

sup
EP∥∆̄∥p≤1

EP

[∫ 1

0
∇h(X + tδ 1/p

∆̄) · ∆̄dt
]
= min

λ̄>0

{
λ̄ +EP

[
sup

∆̄

∫ 1

0
∇h(X + tδ 1/p

∆̄) · ∆̄dt − λ̄
∥∥∆̄

∥∥p

]}
.

Once again, we select a specific choice λ̄0 given by

0 < λ̄0 = argmin

{
λ̄ +EP[sup

∆̄

{∥∇h(X)∥∗ ·
∥∥∆̄

∥∥− λ̄
∥∥∆̄

∥∥p}] : λ̄ ≥ 0

}
.

The fact that λ̄0 > 0 follows because EP ∥∇h(X)∥∗ > 0. We then obtain

sup
EP∥∆̄∥p≤1

EP

[∫ 1

0
∇h(X + tδ 1/p

∆̄) · ∆̄
]

≤ λ̄0 +EP

[
sup

∆̄

{
∫ 1

0
∇h(X + tδ 1/p

∆̄) · ∆̄dt − λ̄0
∥∥∆̄

∥∥p}

]
.

The rest of the proof is similar to the phi-divergence case. We omit the details due to space constraints.
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Similar results have appeared in the literature (cf., (Bartl et al. 2021)). An important difference
which is useful in our analysis is that the above result is uniform over a class P ∈P([−ν ,ν ]d) such that
EP ∥∇h(Y )∥ ≥ b0. In order to write the expansion of Fn(θ ,δn) we clarify that here we use ∇xl (x,θ)
to denote the gradient with respect to x. Under suitable boundedness and smoothness assumptions, the
previous result yields

Fn(θ ,δn) = fn (θ)+δ
1/p
n E(p−1)/p

Pn
[∥∇xl (X ,θ)∥p/(p−1)

∗ ]+δ
1/p
n εn (θ) .

We collect the precise statement of our result next. The proof is similar to that of Theorem 3 and thus
omitted. Related results are given in (Blanchet et al. 2019; Blanchet et al. 2022).
Theorem 4 Suppose l (·,θ) is continuously differentiable, that

(x,θ) 7→ sup{∥∇l (x+∆,θ)−∇l (x,θ)∥/(1+∥∆∥p−1) : ∥∆∥ ≥ 0}

is locally bounded, that P∗ has compact support, l (x, ·) is Lipschitz continuous and

inf
θ∈Θ∗

EP∗ [∥∇xl (X ,θ)∥]> 0.

Then, we have the following types of behavior of optimal values .
(a-W) If δ

1/p
n = o

(
n−1/2

)
, then

n1/2 (
ϑ̄n −ϑ

)
⇝ min

θ∈Θ∗
g(θ).

(b-W) If δ
1/p
n = n−1/2, then

n1/2 (
ϑ̄n −ϑ

)
⇝ min

θ∈Θ∗

{
g(θ)+E(p−1)/p

P∗

[
∥∇xl (X ,θ)∥p/(p−1)

∗
]}

.

(c-W) If o
(

δ
1/p
n

)
= n−1/2, then

δ
−1/p
n

(
ϑ̄n −ϑ

)
⇝ min

θ∈Θ∗
E(p−1)/p

P∗ [∥∇xl (X ,θ)∥p/(p−1)
∗ ].

5 GENERAL PRINCIPLE IN ACTION: OPTIMAL SOLUTIONS

We complete our discussion in this section, considering optimal solutions. Due to space constraints, we
focus only on the phi-divergence case. A key observation is that the uncertainty set is compact in the weak
topology and therefore, if Assumption 3 holds, the function Fn(·,δn) is differentiable and its gradient has
expansion (17). In fact, the derivative can be shown to exist if we are able to argue that, for δ sufficiently
small, the worst-case measure is unique. This is precisely the strategy we will pursue in this section.
Throughout the section, we impose the condition that Θ∗ = {θ ∗}. Recall that σ2(θ) := VarP∗(l(X ,θ)).
Theorem 5 Suppose that Assumptions 2, 3 and 4 hold, that l (x, ·) is essentially bounded under P∗ and
σ2(θ ∗)> 0, and that θ∗(v) is directionally differentiable at v = 0 (in the Hadamard sense). Let Z ∼ N(0,Σ),
where Σ is the covariance matrix of ∇l(X ,θ ∗). Then we have the following.
(A-phi) If δn = o

(
n−1

)
, then

n1/2 (
θ̄n −θ∗

)
⇝θ

′
∗ (0,Z) .

(B-phi) If δn = n−1, then
n1/2 (

θ̄n −θ∗
)
⇝θ

′
∗

(
0,Z +κ

1/2
∇σ(θ ∗)

)
.

(C-phi) If o(δn) = n−1, then

δ
−1/2
n

(
θ̄n −θ∗

)
⇝θ

′
∗

(
0,κ1/2

∇σ(θ ∗)
)
.
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Proof. Applying the centering and scaling used to obtain (20) we obtain

Fn(θ ,δn) = fn (θ)+δ
1/2
n Dn (θ ,δn) ,

where
Dn (θ ,δn) = sup

EPn (∆)=0,∆≥−δ
−1/2
n ,δ

−1/2
n EPn (φ(1+δ

1/2
n ∆))≤1

EPn [ln (X ,θ)∆], (27)

and
l̄n (X ,θ) = l (X ,θ)− fn (θ) .

It suffices to show that
∇Dn (θ ,δn)→ ∇ρ (θ)

uniformly over some region ∥θ −θ∗∥≤ δ0 for some δ0. Note that the optimization region in (27) is compact
in the weak topology and therefore, by Danskin’s Theorem (see (Shapiro et al. 2009, sections 5.1.3 and
7.1.5), Section 7), we have that Dn (·,δn) is directionally differentiable and by the uniqueness of the optimal
∆̄n for δn sufficiently small we have that

∇Dn (θ ,δn) = EPn [∇ln (X ,θ) ∆̄n (θ)].

We can precisely characterize ∆̄n (θ) from Proposition 3 over a region ∥θ −θ∗∥ ≤ δ0 for which we can
guarantee VarPn [l (X ,θ)]> 0. Note that such δ0 > 0 can be found assuming that n > N (for some random but
finite almost surely N because of the Strong Law of Large Numbers and continuity since VarP∗ [l (X ,θ∗)]> 0.
We have, uniformly over ∥θ −θ∗∥ ≤ δ0, for n > N,

∆̄n (θ) =
√

κ
ln (X ,θ)√

φ ′′ (1)VarPn [l (X ,θ)]
+ εn (θ) .

On the other hand, defining
l̄ (X ,θ) = l (X ,θ)− f (θ) ,

we have that
∇ρ (θ) = EP∗ [l̄(X ,θ) · ∆̄(θ)],

where

∆̄(θ) =
√

κ
l̄ (X ,θ)√

φ ′′ (1)VarP∗ [l (X ,θ)]
.

We obtain

∇Dn (θ ,δn)−∇ρ (θ)

= EPn [∇ln (X ,θ) ∆̄n (θ)]−EP∗ [∇l̄(X ,θ) · ∆̄(θ)]

= EPn [
(
∇ln (X ,θ)−∇l̄(X ,θ)

)
∆̄n (θ)]+EPn [∇l̄(X ,θ)(∆̄n (θ)− ∆̄(θ))]

+EPn [∇l̄ (X ,θ) ∆̄(θ)]−EP∗ [∇l̄(X ,θ) · ∆̄(θ)].

It follows that ∆̄n (θ)→ ∆̄(θ) uniformly over ∥θ −θ∗∥ ≤ δ0, and
(
∇ln (X ,θ)−∇l̄(X ,θ)

)
→ 0 uniformly

in probability (in fact almost surely) as n → 0. Uniform convergence in probability over ∥θ −θ∗∥ ≤ δ0
follows from these observations.

ACKNOWLEDGMENTS

J. Blanchet’s research was partially supported by the Air Force Office of Scientific Research (AFOSR),
award FA9550-20-1-0397, with additional from NSF 1915967, 2118199, 2229012, 2312204. The research
of A. Shapiro was partially supported by (AFOSR) Grant FA9550-22-1-0244. We also acknowledge Dr.
Yang Liu’s assistance in proofreading some sections of this paper.

44



Blanchet and Shapiro

REFERENCES
Bartl, D., S. Drapeau, J. Obłój, and J. Wiesel. 2021. “Sensitivity Analysis of Wasserstein Distributionally Robust Optimization

Problems”. Proc. of the Royal Society A. 447:2256.
Bayraksan, G., and D. K. Love. 2015. “Data-Driven Stochastic Programming Using Phi-Divergences”. Tutorials in Operations

Research, INFORMS:1563–1581.
Ben-Tal, A., and M. Teboulle. 1987. “Penalty Functions and Duality in Stochastic Programming via Phi-Divergence Functionals”.

Mathematics of Operations Research 12:224–240.
Blanchet, J., Y. Kang, and K. Murthy. 2019. “Robust Wasserstein Profile Inference and Applications to Machine Learning”.

Journal of Applied Probability 56:830–857.
Blanchet, J., and K. Murthy. 2019. “Quantifying Distributional Model Risk via Optimal Transport”. Mathematics of Operations

Research 44:377–766.
Blanchet, J., K. Murthy, and N. Si. 2022. “Confidence Regions in Wasserstein Distributionally Robust Estimation”.

Biometrika 109:295–315.
Bonnans, J. F., and A. Shapiro. 2000. Perturbation Analysis of Optimization Problems. Springer Series in Operations Research.

Springer.
Csiszár, I. 1963. “Eine Informationstheoretische Ungleichung und Ihre Anwendung auf Den Beweis der Ergodizitat von

Markoffschen Ketten”. Magyar. Tud. Akad. Mat. Kutato Int. Kozls 8:85–108.
Duchi, J. C., P. W. Glynn, and H. Namkoong. 2021. “Statistics of Robust Optimization: A Generalized Empirical Likelihood

Approach”. Mathematics of Operations Research 46(3):946–969.
Esfahani, P. M., and D. Kuhn. 2018. “Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric:

Performance Guarantees and Tractable Reformulations”. Mathematical Programming 171:115–166.
Gao, R., and A. Kleywegt. 2016. “Distributionally Robust Stochastic Optimization with Wasserstein Distance”. arXiv preprint

arXiv:1604.02199.
Lam, H. 2016. “Robust Sensitivity Analysis for Stochastic Systems.”. Math. of Oper. Research 41:1248–1275.
Morimoto, T. 1963. “Markov Processes and the H-Theorem”. J. Phys. Soc. Jap. 18(3):328–333.
Rahimian, H., and S. Mehrotra. 2019. “Distributionally Robust Optimization: A Review”. Arxiv https://arxiv.org/abs/1908.05659.
Shapiro, A. 1991. “Asymptotic Analysis of Stochastic Programs”. Annals of Operations Research 30:169–186.
Shapiro, A. 1993. “Asymptotic Behavior of Optimal Solutions in Stochastic Programming”. Mathematics of Operations

Research 18:829 – 845.
Shapiro, A. 2017. “Distributionally Robust Stochastic Programming”. SIAM J. Optimization 27:2258–2275.
Shapiro, A., D. Dentcheva, and A. Ruszczyński. 2009. Lectures on Stochastic Programming: Modeling and Theory. Philadelphia:

SIAM.
van der Vaart, A. 1998. Asymptotic Statistics. Cambridge: Cambridge University Press.
Villani, C. 2003. Topics in Optimal Transportation. Graduate Studies in Mathematics, Vol. 58: American Mathematical Society.

AUTHOR BIOGRAPHIES
JOSE BLANCHET is a Professor of Management Science and Engineering (MS&E) at Stanford. Prior to joining Stanford,
he was a professor at Columbia (Industrial Engineering and Operations Research, and Statistics, 2008-2017), and before that
he taught at Harvard (Statistics, 2004-2008). Jose is a recipient of the 2010 Erlang Prize and several best publication awards in
areas such as applied probability, simulation, operations management, and revenue management. He also received a Presidential
Early Career Award for Scientists and Engineers in 2010. He is the Area Editor of Stochastic Models in Mathematics of
Operations Research and has served on the editorial board of Advances in Applied Probability, Bernoulli, Extremes, Insurance:
Mathematics and Economics, Journal of Applied Probability, Queueing Systems: Theory and Applications, and Stochastic
Systems, among others. His email address is jose.blanchet@stanford.edu.

ALEXANDER SHAPIRO is the A. Russell Chandler III Chair and Professor in the H. Milton Stewart School of Industrial
and Systems Engineering at Georgia Tech. Dr. Shapiro’s research interests are focused on stochastic programming, risk
analysis, simulation-based optimization, and multivariate statistical analysis. In 2013 he was awarded the Khachiyan Prize of
INFORMS for lifetime achievements in optimization, and in 2018 he was a recipient of the Dantzig Prize awarded by the
Mathematical Optimization Society and the Society for Industrial and Applied Mathematics. In 2020 he was elected to the
National Academy of Engineering. In 2021 he was a recipient of the John von Neumann Theory Prize awarded by the Institute
for Operations Research and the Management Sciences (INFORMS). Dr. Shapiro served on the editorial board of a number
of professional journals. He was an area editor (optimization) of the Operations Research Journal and the editor-in-chief of
the journal Mathematical Programming, Series A. His email address is ashapiro@isye.gatech.edu.

45

mailto://jose.blanchet@stanford.edu
mailto://ashapiro@isye.gatech.edu

	INTRODUCTION
	Statistics of ERM: Review
	Asymptotics of the Optimal Value
	Asymptotics of Optimal Solutions

	Statistics of DRO: General Principles
	DRO Asymptotics of the Optimal Value
	DRO Asymptotics of the Optimal Solutions

	General Principle in Action: Optimal Values
	The Phi-Divergence Case
	The Wasserstein Distance Case

	General Principle in Action: Optimal Solutions

