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ABSTRACT

When an optimization via simulation (OvS) procedure designed for known input distributions is applied to
a problem with input uncertainty (IU), it typically does not provide the target statistical guarantee. In this
paper, we focus on a discrete OvS problem where all systems share the same input distribution estimated
from the common input data (CID). We define the CID effect as the joint impact of IU on the outputs
of the systems caused by common input distributions. Our input-output uncertainty comparison (IOU-C)
procedure leverages the CID effect to provide the joint confidence intervals (CIs) for the difference between
each system’s mean performance and the best of the rest incorporating both input and output uncertainty.
Under mild conditions, IOU comparisons provide the target statistical guarantee as the input sample size
and the simulation effort increase.

1 INTRODUCTION

In many simulation applications, real-world input distributions are estimated based on a limited number
of observations, which is the source of IU. As the simulation output is a functional of the estimated input
distribution, a discrete OvS procedure designed to choose the system with the largest (or smallest) output
mean with a target probability guarantee given the true input distributions may not guarantee the same under
IU. However, even in the presence of IU we may still be able to provide the target probability guarantee,
if the systems in consideration are affected similarly by IU. Moreover, clearly inferior solutions may still
be excluded.

We focus on the case when all systems are simulated with the same input models estimated from the
same data. By estimating the joint distribution of the CID effect for all systems’ simulation outputs, we
create the IOU-C procedure that provides simultaneous CIs for the difference between each system’s mean
and the best of the rest under both input and stochastic uncertainty with asymptotic probability guarantee as
the real-world sample size and the simulation effort increase. This is an extension of multiple comparisons
with the best (MCB) procedures to the case with IU. IOU-C procedure also provides a subset of systems
likely to be the best with the given probability guarantee. Good empirical performance of IOU-C procedure
shows that comparisons under IU may be easier than estimating the actual effect of IU.

2 FRAMEWORK

Our focus is on the case where the real-world input distributions have known distribution families with
unknown parameters, which are estimated by maximum-likelihood estimators (MLEs). All k systems in
contention share the same real-world input distribution F(· | θ c)with distribution family F and true parameter
vector θ

c, and θ̂ is the MLE of θ
c based on m real-world observations. Under some regularity conditions,

√
m(θ̂ −θ

c)
D−→ N(0|θ c|,Σ(θ

c)) as m→ ∞, where Σ(θ c) is the asymptotic variance-covariance matrix of
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θ̂ . Output from system i simulated using F(· | θ̂) is Yi(θ̂) = ηi(θ̂)+ εi(θ̂), where ηi(θ̂)≡ E[Yi(θ̂)|θ̂ ] and
εi(θ̂) is distributed with mean 0 and variance σ2

i (θ̂).
When θ

c is known, Chang and Hsu (1992) show that we can obtain 1−α MCB CIs by finding
wi`, i 6= `, such that Pr{Ȳi(θ

c)−Ȳ`(θ c)− (ηi(θ
c)−η`(θ

c))≥−wi`,∀` 6= i} ≥ 1−α for 1≤ i≤ k. The joint
distribution of {εi(θ

c)}k
i=1 is the key to find such wi`, i 6= `. However, when θ̂ 6= θ

c, we also need the joint
distribution of {ηi(θ̂)−η`(θ̂)}i 6=`. IOU-C procedure splits wi` into two parts, i.e., wi` = w(1)

i` +w(2)
i` , where

Pr{ηi(θ̂)−η`(θ̂)− (ηi(θ
c)−η`(θ

c))≥−w(1)
i` ,∀` 6= i} ≥ 1−α1 and Pr{ε̄i(θ̂)− ε̄`(θ̂)≥−w(2)

i` ,∀` 6= i} ≥
1−α2 for 1≤ i≤ k, and 1−α = (1−α1)(1−α2). Finding w(2)

i` , i 6= `, is the same as in a traditional MCB
procedure that assumes only stochastic uncertainty exists. Finding the interval lengths due to CID effects,
w(1)

i` , i 6= `, is the main contribution of IOU-C.

3 INTERVAL LENGTHS DUE TO CID EFFECTS

Assuming ηi(·) is a smooth function of θ̂ , the first-order Taylor series approximation gives ηi(θ̂) ≈
ηi(θ

c) + β>i (θ̂ − θ
c), where βi = ∇ηi(θ

c). Hence, β>i (θ̂ − θ
c) captures the CID effect on system i.

Similarly, {(βi−β`)
>(θ̂ −θ

c)} 6̀=i captures the difference in the CID effects on the output of systems i and
` 6= i, which is asymptotically normally distributed with mean 0k−1, and Var((βi−β`)

>(θ̂ −θ
c)) = (βi−

β`)
>Σ(θ c)(βi−β`)/m and Cov((βi−β`)

>(θ̂ − θ
c),(βi−β`′)

>(θ̂ − θ
c)) = (βi−β`)

>Σ(θ c)(βi−β`′)/m.
Therefore, estimating the joint distribution of {ηi(θ̂)−η`(θ̂)} 6̀=i reduces to estimating βi,∀i, and Σ(θ c).
The latter can be approximated by Σ(θ̂).

IOU-C procedure estimates βi as follows: i) bootstrap θ̂
(1)
, θ̂

(2)
, . . . , θ̂

(B)
from N(θ̂ ,Σ(θ̂)/m); ii)

simulate Yi(θ̂
(b)
) using F(· | θ̂

(b)
) for 1≤ b≤ B; iii) compute β̂i by fitting a linear regression of Yi(θ̂

(b)
)

on θ̂
(b)
− θ̂ for 1≤ b≤ B. Unfortunately, E[β̂i] 6= βi in general, unless ηi is a linear function of θ̂ . Under

some smoothness conditions on ηi, however, β̂i
p−→ βi as m→ ∞ and B = mγ ,1 < γ < 2. The condition on

B is to achieve consistency by balancing the variance and the bias of β̂i as m→ ∞.
Plugging β̂1, β̂2, . . . , β̂k into the distribution of {(βi−β`)

>(θ̂−θ
c)} 6̀=i, we can obtain w(1)

i` , ` 6= i. IOU-C
finds w(1)

i` , ` 6= i that still provides 1−α1 asymptotic probability guarantee incorporating the estimation
error in the regression by solving the following optimization problem for each (i, `), i 6= `:

li` = min (βi−β`)
>(θ̂ −θ

c)

subject to Bi ∈ CR1(1−α11),

(θ̂ −θ
c) ∈ CR2(1−α12),

whereB>i = {(βi−β1)
>,(βi−β2)

>, . . . ,(βi−βi−1)
>,(βi−βi+1)

>, . . . ,(βi−βk)
>}, CR1(1−α11)⊂Rp(k−1)

is a 1−α11 confidence region of Bi obtained from the regressions, and CR2(1−α12)⊂Rp includes θ̂−θ c

with probability 1−α12, which can be obtained from the estimated asymptotic distribution of θ̂ . Choosing
α11 and α12 such that (1−α11)(1−α12) = 1−α1, w(1)

i` = −li`, i 6= `, provide the interval lengths due to
CID effects with the desired 1−α1 asymptotic probability guarantee.

Empirical results show that IOU-C provides a probability guarantee> 1−α , whereas an MCB procedure
that assumes θ̂ = θ c fails to. Also, the true best system is included in the subset of best systems with
probability > 1−α , whereas the MCB procedure excludes it from the subset with probability � α .
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