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ABSTRACT

Probabilistic Bisection Algorithms (PBA) pinpoint an unknown quantity by applying Bayesian updating to
knowledge acquired from noisy oracle replies. We consider the generalized PBA setting (G-PBA) where
the statistical distribution of the oracle is unknown and location-dependent, so that model inference and
knowledge updating must be performed simultaneously. To this end, we propose to blend spatial modeling
of oracle properties (namely regressing batched oracle responses on sampling locations) with the existing
PBA information-directed sampling. The resulting sampling strategies account for the trade-off between
inferring the latent oracle distribution versus reducing the uncertainty about the unknown point to be learned.
We demonstrate that spatial modeling improves the original G-PBA schemes by applying our approach to
root-finding of monotone noisy responses.

1 GENERALIZED PROBABILISTIC BISECTION

Introduction. Probabilistic Bisection Algorithms (PBA) sequentially learn about an unknown quantity
X∗ ∈ [0,1] by querying an oracle Y (xn)∈ {−1,+1} as to whether X∗ lies rightwards or leftwards of location
xn. Due to statistical noise in the oracle responses, the oracle answers truthfully with probability p(xn).
Starting with prior density g0, and a history of sampling locations/responses (x,y)1:n−1, the PBA builds a
posterior distribution regarding X∗, gn(·) := pX∗(·|y1:n−1,x1:n−1). Towards the goal of generating efficient
sampling strategies, Waeber et al. 2011 showed that when p(x) is a known, x-independent constant, sampling
at the posterior median is an optimal sampling policy which minimizes the expected posterior entropy of
gn. These conclusions no longer hold in the general and more realistic case when the distribution of oracle
responses is unknown and spatially varying. Our goal is to develop generalized PBA sampling strategies
that simultaneously learn p(·) and update a (surrogate) knowledge state fn about X∗.

Approximating Knowledge States. In analogy to the PBA, knowledge updating is based on the
Bayesian transition function:

ϕk( fn(u),x,Bk(x); p(x)) ∝

⎧⎨
⎩

[
p(x)Bk(x)(1− p(x))k−Bk(x)

] · fn(u) if 0 ≤ x < u ≤ 1,

[
(1− p(x))Bk(x)p(x)k−Bk(x)

] · fn(u) if 0 ≤ u ≤ x ≤ 1;

(1)

where k ≥ 1 is the batch size of querying the oracle k-times at the same x, and Bk(x) := ∑k
j=11{y j(x) = 1}.

To implement (1), we seek an estimator for p(x). In Rodriguez and Ludkovski (2016) this was achieved
by aggregating the batched queries at x, for example through the empirical majority proportion p̄k(x) :=
max{Bk(x)/k,1−Bk(x)/k}, and then plugging p̄k(x) into (1).

Surrogate Gaussian Process Model for p(·). Although the above approach works well, it disregards
information from previous queries at older design points. Consequently, we introduce a spatial model
for p(·) that is constructed using the meta-responses P1:n−1(k) := ( p̄k(x1), . . . , p̄k(xn−1)) conditional on
x1:n−1. Namely, we propose a GP regression model to estimate p(·) so that P1:n−1(k)|x1:n−1 ∼ GP(000,κ(·, ·));
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where κ is a suitable covariance kernel (e.g., squared-exponential). Given the predictive posterior mean
p̂n(x) := E[p̄k(x)|P1:n−1(k),x1:n−1,x], the surrogate x �→ p̂n(x) is then used for updating fn via (1) at any x.

Sampling Policies. Under the G-PBA paradigm, the problem of how to select new samples may
be addressed via two orthogonal approaches: statistical emulation (choose points to maximize learning of
p(·), then infer X∗ as the solution (in fact global minimum) of p(X∗) = 1/2) or pure-PBA (learning X∗ by
modeling its posterior distribution). We propose to blend these two schemes so as to focus on posterior of
X∗ while taking advantage of the spatial structure. Note that a key issue is not to sample too close to X∗
whereby information gain goes to zero.

Our basic proposal given a total budget of N queries, is to start with an exploration-focused G-PBA
as in Rodriguez and Ludkovski (2016) and then switch to more aggressive information-directed sampling
(IDS) based on the GP surrogate p̂(·). Specifically, during the first n = 1, . . .M−1 macro-steps sampling
is done systematically via xn+1 = F−1

n (q j) where j = (n mod m)+ 1 and q1:m ∈ [0,1] are pre-specified
quantiles to be sampled. Queries at each x are k-batched, and knowledge updating (1) uses the empirical
proportion estimator p̄k(xn+1): fn+k = ϕk( fn,xn+1,Bk(xn+1); p̄k(xn+1)). After the first stage, a GP p̂ is fit
over (x,P)1:M−1(k). For the second stage n = M, . . . ,N−1, xn+1 is chosen as the Information Gain criterion
maximizer xn+1 = argmaxx∈[0,1] In(x, fn; p̂M(x)), based on the GP posterior mean p̂M(x). Further proposals
use the GP posterior variance to adaptively switch between the above stages as data is acquired.

2 ROOT-FINDING OF MONOTONE NOISY RESPONSES
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Figure 1: Surrogate spatial modeling of p(·) for G-PBA and scheme comparison wrt other G-PBAs.

Our motivation for G-PBA is based on stochastic root-finding. As a synthetic example, we consider
a simulator of the form Y (x) := sign Z(x) with the latent function Z(x) = g(x) + ε(x), where g(x) =
1/9− x2,x ∈ [0,1], and ε(x)∼ N(0,0.04). Thus, x∗ = 1/3 and p(x) = Φ(5|1/9− x2|). Figure 1 shows the
surrogate GP fit after M = 20 macro-iterations and batch size k = 450. Starting with f0 ∼ Unif[0,1], the
second panel shows that fn quickly concentrates around x∗. At N = 520 (equivalent to T = 9,500 function
evaluations) we have the point estimate median( fN)∼= 0.333096 and IQR( fN) = 0.006, indicating minimal
posterior uncertainty. Finally, Figure 1 also demonstrates that the PBA with spatial modeling performs
significantly better than other heuristics as in Rodriguez and Ludkovski (2016): root estimates have low
average error and minimal uncertainty (as measured by the fN inter-quartile range).

REFERENCES

Rodriguez, S., and M. Ludkovski. 2016. “Generalized Probabilistic Bisection for Root-Finding of Monotone
Noisy Responses”. University of California, Santa Barbara, Working Paper.

Waeber, R., P. I. Frazier, and S. G. Henderson. 2011. “A Bayesian approach to stochastic root finding”. In
Proceedings of the 2011 Winter Simulation Conference (WSC), 4033–4045. IEEE.

3665


