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ABSTRACT 

This paper presents a framework for implementing a simulation-based optimization model in a parallel 

computing environment on a single multi-core processor. The behavior of the model with multicore 

architecture is studied. In addition, the impact of multithreading on the performance of simulation-based 

optimization is examined. The framework is implemented using the master/slave paradigm. A case study 

is used to demonstrate the benefits of the proposed framework. 

1 INTRODUCTION 

Multi-objective optimization using metaheuristic algorithms is one of the active research areas in the field 

of construction engineering and management. Among the different metheuristic algorithms, Genetic 

Algorithms (GAs) are the most commonly used (Liao et al. 2011). However, it has been reported repeatedly 

that the use of metahueristic optimization methods, such as GAs, for optimizing large-scale construction 

projects requires long computational time (Feng et al. 2000; Li and Love 1997; Li et al. 1999; Hegazy and 

Petzold 2003; Kandil and El-Rayes 2005).  

Combinations of simulation with metaheuristic optimization methods, known as simulation-based 

optimization, have been used to optimize construction operations (Glover et al., 1996; Alberto et al. 2002; 

Hegazy and Kassab 2003; Cao et al. 2004; Marzouk and Moselhi 2004; Zhang et al. 2006; Marzouk et al. 

2009; Yang et al., 2012; Mawlana and Hammad 2013; Salimi et al., 2014; Alanjari et al. 2015; Salimi et 

al., 2015).  The use of discrete event simulation to evaluate the objective functions adds another dimension 

to the complexity of the optimization problem and as a result, it increases the required computational time. 

If stochastic simulation is used, then a number of replications must be performed for each solution in order 

to obtain a sound estimation of the objective functions. The computation time, for a simple simulation 

mode, will increase almost in a linearly manner as the number of replications performed is increased as 

shown in Figure 1. Although the computational time is very small per solution, this time will increase 

rapidly as more candidate solutions are evaluated. 

 Several researchers, in the field of construction engineering and management, have proposed the use 

of parallel computing in order to reduce the required computation time to solve the optimization problem 

(Kandil and El-Rayes 2006; Kandil et al. 2010; Yang et al. 2012; Salimi et al. 2014; Salimi et al. 2015). 

Couple of works can be found related to the use of parallel computing for simulation-based optimization 

model. Yang et al. (2012) proposed integrating Particle Swarm optimization algorithm with Monte-Carlo 

simulation to plan bridge maintenance. The model was implemented in a parallel computing framework on 

a cluster of computers. Salimi (2014) proposed using Non-dominated Sorting Genetic Algorithm with 

discrete event simulation to optimize bridge construction operations. The model was implemented in a 

parallel computing framework on a server and a cluster of computers.   

While the previous studies have provided efficient solutions for reducing the computation time of 

simulation-based optimization models, they require the use of a cluster of computers or multiprocessor 

server machine.  However, these hardware systems come with a high price tag and they may not available 

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 3246



Mawlana and Hammad 

 

for construction planners. There has been little or no reported research exploring the promising potential of 

parallel computing on a single multi-core processor in optimizing construction planning problems.  

 

Figure 1: Simulation execution time versus the number of replications. 

 The main objective of this paper is to reduce the computation time required for performing a stochastic 

simulation-based multi-objective optimization. This objective is realized by developing a parallel 

computing framework on a single multi-core processor using existing optimization and simulation tools.  

The proposed framework uses the master/slave paradigm (Munawar et al. 2008) and it attempts to answer 

the following research questions: (1) How parallel computing can be implemented using existing 

optimization and simulation tools? (2) How the simultaneous multithreading technology impacts the 

computation time? (3) What is the impact of the size of the Random Access Memory (RAM) on the 

computation time? (4) What is the time saving that can be achieved using this framework? and (5) What is 

the optimum number of cores to be used?  

 Reducing the computation time of optimizing construction operations is highly desirable especially 

when re-planning and re-allocation of resources might be necessary when a deviation from the initial plan 

is detected. Furthermore, in the planning phase, the time saving achieved by the proposed framework can 

be used to increase the confidence in the optimality of the solutions by increasing the number of evaluated 

candidate solutions, which results in covering a larger portion of the search space of the optimization 

problem. 

2 PROPOSED FRAMEWORK 

This paper presents a framework for implementing the simulation-based optimization model in a parallel 

computing environment on a single multi-core processor. Previous research have used parallel computing 

in simulation and optimization. However, the behavior of running discrete event simulation-based 

optimization on a single system with multicore processor (i.e. laptops and desktops) has not been studied. 

Therefore, it is of interest to examine the impact of multi-core and multithreading on the performance of 

simulation-based optimization.  

 The proposed parallel simulation-based optimization framework (Figure 2) can be used by decision 

makers to improve the efficiency of the current practice of decision-making in construction projects. The 

process starts by generating an initial population of size E by the master core (core 1) as shown in line 2 in 

Figure 3. Then, the master core subdivides the population among the number of slave cores assigned to the 

optimization process as shown in lines 4 to 18 in Figure 3. Core 1 acts as a master during the generation 
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and the fitness evaluation of the population. During the evaluation process, the master core could become 

a slave core if the optimization algorithm is set to perform the execution on: (1) one core, or (2) a number 

of cores that is larger than the total number of available cores. For example, in a computer with four cores, 

the master core will become a slave core if the optimization is set to perform the execution on 5 cores or 

higher. Each slave core, thereafter, evaluates the performance measure indices of the assigned candidate 

solutions using discrete event simulation. Once all the slaves evaluate all the generated candidate solutions, 

the master core evaluates the fitness of the population. If the termination criterion is met, the optimization 

process ends and the Pareto solutions are presented. Otherwise, the master core will sort the current 

population and generate a new population by performing cut-splice and mutation. The new population will 

go through the same steps again.  

  

3 PERFORMANCE METRICS 

Three performance metrics are used to measure the performance of the proposed parallel computing 

framework. The elapsed time metric is used the measure the time required to solve the optimization 

problem. The required time is measured from the beginning of the simulation-based optimization to its 

termination. Using this metric, the time saving that is achieved using the proposed framework can be 

measured. In addition, the impact of the simultaneous multithreading technology can be examined.  

 The parallel speedup metric measures the amount of time saved by executing the optimization problem 

in parallel (Cantú-Paz 2000). In addition, it is used to study the impact of the number of cores on the 

framework performance. It is calculated by dividing the required time to solve the optimization problem 

using sequential computing (traditional method) by the required time to solve the optimization problem 

using parallel computing as shown in (1).  

𝑆𝑈 =  
𝑇𝑠𝑒𝑞

𝑇𝑝𝑎𝑟
 (1) 

where SU is the achieved speedup; Tseq is the required time using sequential computing; and Tpar is the 

required time using parallel computing.  

 The third metric is the parallel efficiency of executing the optimization problem in parallel, which 

measures the portion of the processor power used to solve the optimization problem. The other portion of 

the processor power is typically consumed by synchronization and communication overhead (Fox et al. 

1988). This metric is calculated by dividing the achieved speedup by the number of cores used as shown in 

(2). 

𝐸𝐹 =  
𝑆𝑈

𝑁𝐶
 (2) 

where EF is the efficiency of executing the program in parallel; and NC is the number of cores used.  
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Figure 2: Parallel simulation-based optimization flowchart. 
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1 // Repeat for all generations  

2 FOR l = 1 TO L 

3 // Repeat for all solutions in the population 

4    FOR e = 1 TO E 

5       IF rank = 1 

6          Evaluate e using Core 1 

7          RETURN 𝐷𝑒
̅̅ ̅ and 𝐶𝑒

̅̅ ̅ 

8       ELSE IF rank = 2 

9          Evaluate e using Core 2 

10          RETURN 𝐷𝑒
̅̅ ̅ and 𝐶𝑒

̅̅ ̅ 

11       ELSE IF rank = 3 

12          Evaluate e using Core 3 

13          RETURN 𝐷𝑒
̅̅ ̅ and 𝐶𝑒

̅̅ ̅ 

14       ELSE IF rank = 4 

15          Evaluate e using Core 4 

16          RETURN 𝐷𝑒
̅̅ ̅ and 𝐶𝑒

̅̅ ̅ 

17       END IF 

18    END FOR 

19 END FOR 

Figure 3: Algorithm for distributing the population among the cores. 

4 FRAMEWORK IMPLEMENTATION 

The simulation model of the construction operation is implemented in STROBOSCOPE (Martínez 1996). 

On the other hand, Darwin optimization framework (Wu et al. 2012), which utilizes an fmGA and equipped 

with parallel computing capabilities, is used to solve the optimization problem. The implementation of the 

integration between these two tools was done in Microsoft Visual C# (Microsoft Corporation 2015). 

STROBOSCOPE was embedded in Darwin optimization framework to evaluate each candidate solution 

generated by the optimization through simulation.  

 In order to enable the integration between the optimization framework and STROBOSCOPE, the latter 

is defined as an object as shown in Figure 4. In other words, STROBOSCOPE was embedded in Darwin 

optimization framework to evaluate each candidate solution generated by the optimization through 

simulation. The first two lines define STROBOSCOPE as an object called StropApp. The third line 

represents the name of the function which will be called to start STROBOSCOPE. Lines 4 and 6 to 8 will 

try to create an instance of STROBOSCOPE if it is not created yet. Since STROBOSCOPE was not 

designed to be executed in parallel on a multi-core single processor, several problems were encountered 

during the implementation. When the optimization framework is run in parallel, it creates multiple instances 

of the user defined objective function. The number of instances is equal to the number of cores. Since the 

objective functions defined in this research utilizes STROBOSCOPE, multiple instances of STROBSCOPE 

are created at the same time. Doing so will force STROBSCOPE to crash. In order to overcome this 

problem, two steps are necessary. The first step is defining an object for each STROBOSCOPE’s instance. 

For example, if the number of the cores is four, four objects of STROBOSCOPE must be defined as shown 

in Figure 4. Each STROBOSCOPE instance has a unique object name.  The second step is inserting a delay 

function between the creations of the instances. This is shown in line 5 of Figure 4. The gap between the 
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creations is set to 3,500 milliseconds. This delay period was chosen by trial and error and it is the shortest 

possible delay period to avoid crashing.  

 

1 public static object StroboApp; 

2 public static System.Type objDocType; 

3 static object GetStrobo() { 

4    Try  {if (StroboApp == null) { 

5       Thread.Sleep(3500); 

6       objDocType = System.Type.GetTypeFromProgID("Stroboscope.Document"); 

7       StroboApp = System.Activator.CreateInstance(objDocType);} } 

8    catch (Exception ex) { MessageBox.Show("Program error: " + ex.Message, "Error1"); 

9       StroboApp = null;} 

10 return StroboAp }; 

Figure 4: Defining STROBOSCOPE as an object. 

 To this point, the optimization framework will be able to create multiple instances of STROBOSCOPE 

without any problem. However, the candidate solutions will only be sent to the first instance since the 

optimization framework is unaware of other objects. Therefore, the second problem is the synchronization 

between the optimization framework and STROBSCOPE. This synchronization is necessary to subdivide 

and distribute the candidate solutions of the population to the correct core based on its rank as early 

described in Figure 3. This implementation is shown in Figure 5.  Similar IF statements are defined for 

every STROBOSCOPE instance.  Line 2 checks the rank of the candidate solution. For example, if the rank 

is equal to 1, then the optimization framework will call the STROBOSCOPE instance assigned to core 1. 

Line 3 will pass the decision variables (i.e., x1 to x13) to STROBOSCOPE and return the values of the 

objective functions.  

 So far, the parallel computing implementation works without any errors. For each candidate solution, 

a new STROBOSCOPE instance will be created and the simulation model will run for that candidate 

solution. At the end of the simulation, that STROBOSCOPE instance will be terminated. The process of 

creating and terminating each STROBOSCOPE instance takes on average 4 seconds. In the case of 

evaluating 100,000 candidate solutions, the simulation-based optimization would take 111 hours just to 

create and terminate a STROBOSCOPE instance. However, by taking advantage of the ability of 

STROBOSCOPE to run multiple simulation models in a single instance, there is no need to create an 

instance for each candidate solution.  A number of STROBOSCOPE instances equal to the number of cores 

used for the parallel computing are created at the beginning of the optimization process. Each 

STROBOSCOPE instance is only created once and all the corresponding candidate solutions are evaluated 

in those instances. This is done by creating a new simulation model for each candidate solution within a 

STROBOSCOPE instance. Running too many models in one instance will slow down the speed of the 

simulation engine and will lead it to crash approximately after running 1,600 simulation models. In addition, 

the simulation will start to slow down dramatically after running 200 simulation models. To overcome this 

problem, each STROBOSCOPE instance will close all the simulation models when they reach 200 models. 

This implementation is shown in lines 4 to 8in Figure 5. In addition, a delay function of 900 milliseconds 

is inserted before closing the models to prevent STROBOSCOPE from crashing. 

5 CASE STUDY 

The performance metrics of the simulation-based optimization using stochastic simulation is compared 

across three different desktop computers to demonstrate the benefits of the proposed framework. The three 

computers are equipped with Intel Core i7, 3.4 GHz Quad-core processor. Each of these computers is 

equipped with different RAM size. Computers 1, 2, and 3 have a RAM of 8 GB, 12GB, and 16GB, 

respectively. The architecture of a processor is shown in Figure 6. The processor has four physical cores 
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where each physical core has two hardware threads. These hardware threads are also called logical cores. 

Each physical core can execute two threads at the same time, which is known as simultaneous 

multithreading (Hillar, 2010).   

 

1 i = 0 

2 if (rank == 1) { 

3    total = temp.testStroboRun(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13); 

4    i = i + 1; 

5    if (i == 200) { 

6       Thread.Sleep(900); 

7       strob.objDocType.InvokeMember("CloseAllOutputs"); 

8       i = 0;}} 

Figure 5: Directing the candidate solutions towards their corresponding core. 

 

 

Figure 6: Architecture of Intel i7 Quad-core processor (Hillar, 2010). 

 The case study is about constructing a precast full span box girder bridge using launching gantry 

method. The bridge consists of 35 identical spans of length 25 m. The simulation model and the durations 

of the tasks used in this model can be found in (Mawlana, 2015).  

 The stochastic simulation-based multi-objective model was run for two eras, where each era has 500 

generations and each generation has a population size of 100. The model was set to be executed with the 

number of cores from 1 to 9 cores (including the master). In the case of 9 cores, one of the cores will be 

used both as a master and a slave as explained in Section 2. This is done to study the impact of the 

simultaneous multithreading on the performance metrics of the proposed framework. Figure 7 shows the 

required time to solve the optimization problem for this case study. Table 1 shows the achieved speedup, 

efficiency, and the time saving between the three computers, which can be attributed to the difference in 
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the size of the RAM. All the computers achieved the highest speedup when 4 cores are used. This can be 

because using more cores results in more time consumed by the algorithm for synchronization and 

communication overhead. The three computers reduced the computation time by around 37% when 4 cores 

are used compared to using 1 core. It can be noticed that the efficiency of the three computers are decreasing 

as the number of cores is increased. Among the three computers, Computer 3 has the highest speedup and 

the shortest time required. Using Computer 3 resulted in an average time saving of 24% and 22% over 

Computers 1 and 2, respectively. On the other hand, Computer 2 achieved an average saving of 3% over 

Computer 1. 

 

 

Figure 7: Required time to solve the optimization problem for the Case Study. 

 

Table 1: Achieved speedup, efficiency, and time saving for the Case Study. 

Core T1 (h) T2  (h) T3  (h) SU1 SU2 SU3 EF1 EF2 EF3 T1-2 (%) T1-3 (%) T2-3 (%) 

1 8.95 8.75 7.2 1.00 1.00 1.00 1.00 1.00 1.00 2.23 19.55 17.71 

2 8.67 8.47 7.27 1.03 1.03 0.99 0.52 0.52 0.50 2.31 16.15 14.17 

3 6.17 6.08 4.98 1.45 1.44 1.45 0.48 0.48 0.48 1.46 19.29 18.09 

4 5.68 5.5 4.43 1.58 1.59 1.63 0.39 0.40 0.41 3.17 22.01 19.45 

5 6.03 5.76 4.52 1.48 1.52 1.59 0.30 0.30 0.32 4.48 25.04 21.53 

6 6.45 6.18 4.78 1.39 1.42 1.51 0.23 0.24 0.25 4.19 25.89 22.65 

7 6.81 6.68 4.87 1.31 1.31 1.48 0.19 0.19 0.21 1.91 28.49 27.10 

8 7.05 6.9 4.9 1.27 1.27 1.47 0.16 0.16 0.18 2.13 30.50 28.99 

9 7.19 6.98 5.12 1.24 1.25 1.41 0.14 0.14 0.16 2.92 28.79 26.65 
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6 CONCLUSIONS AND FUTURE WORK 

This paper presented a framework for implementing the simulation-based optimization model in a parallel 

computing environment on a single multi-core processor using the master/slave paradigm. This paper: (1) 

described the proposed framework; (2) implemented the framework and demonstrated its effectiveness. As 

demonstrated by the case study in this paper, the proposed framework was able to achieve substantial time 

savings. On average, it saved 37% of the time required to solve the optimization problem. It was found that 

4 cores give the optimum computation time reduction.  

The limitations of this work are: (1) the parallel computing was done from the GA perspective only; 

and (2) the fmGA algorithm used in the case studies is designed to work on multiple computers, and as a 

result, it uses Message Passing Interface (MPI) which is not optimal for multi-core processor.   Future work 

of this research includes: (1) implementing the GA algorithm using Open Multi-Processors (OpenMP) 

which is best suited for multi-core processors; (2) applying the parallel computing for both the GA and the 

simulation calculations; (3) studying the impact of the operating system and the processor model on the 

computation time; and (4) evaluating the performance of the proposed framework using sensitivity analysis. 
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