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ABSTRACT

To accurately estimate the reliability of highly reliable rail systems and comply with contractual obligations,
rail system suppliers such as ALSTOM require efficient reliability estimation techniques. Standard Monte-
Carlo methods in their crude form are inefficient in estimating static network reliability of highly reliable
systems. Importance Sampling techniques are an advanced class of variance reduction techniques used for
rare-event analysis. In static network reliability estimation, the graph models often deal with failing links.
In this paper, we propose an adaptation of an approximate Zero-Variance Importance Sampling method
to evaluate the reliability of real transport systems where nodes are the failing components. This is more
representative of railway telecommunication system behavior. Robustness measures of the accuracy of the
estimates, bounded or vanishing relative error properties, are discussed and results from a real network
(Data Communication System used in automated train control system) showing bounded relative error
property, are presented.

1 INTRODUCTION

From a reliability point of view, passenger rail systems are large scale systems made up of heterogeneous
highly reliable components. Redundancy at different hierarchical levels is used to ensure achievement
of system availability requirements (Dersin and Valenzuela 2012). One of the main functions necessary
for nominal operation is the communication of different signals between centrally localized computers
and trackside/ onboard equipment. In Alstom’s urban metro solution the subsystem whose objective is
to perform this communication function is called the data communication system (DCS). The DCS uses
a dual-ring topology to communicate equipment located in different stations (or the track) with centrally
located computers. It is configured so that all end-communication equipment has a preferred ring through
which it sends its messages (but is able to use the other ring if needed) and all messages are simultaneously
transmitted on each ring separately. The availability of the DCS is the probability that all messages between
all end-communication devices are successfully transmitted. The model is illustrated in Section 5.3.
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Methods like Reliability Block Diagrams (RBD) and Fault Tree Analysis (FTA) are often used for
evaluation of reliability or availability of passenger rail systems. For example, Conradie et al. (2015)
discuss the use of RBD method for calculation of reliability or availability for non-repairable and repairable
systems, respectively. A comparison between RBD and FTA methods is discussed by Bourouni (2013),
where it is shown that RBD method is more appropriate than FTA method for availability assessment.
Another approach to predict the availability of systems also involves the creation of a Markov model
which characterizes the different failure paths of the network. Typically up to third-order failure paths are
included. The selection of which paths to model is made by reliability modeling experts. Resulting models
are hard to validate both by other experts and the end-user. Furthermore, it is not clear whether there exist
relevant failure paths that have not been modeled. Modeling the communication network as a graph with
communication equipment as nodes and communication paths as links overcomes both shortcomings: first,
the model can be easily validated by the design expert and the client; and second, by defining successful
communication as the existence of a path between the communicating devices, no modeling of failure paths
is needed because path finding algorithms can be used to establish connectivity.

The static network reliability problem deals with the estimation of the probability that a given set of
nodes in a graph model are connected when each individual component (link or node) is in an UP/ DOWN
(working/ failed) state according to their respective probabilities. The case where links are the failing
elements is essential in many applications and has been extensively studied (Cancela, Khadiri, and Rubino
2009). However, there is a wide range of applications where nodes are the failing components such as the
DCS, e.g., models of network survivability (Gertsbakh, Shpungin, and Vaisman 2014). This requires an
adaptation of the existing methods to the case of node failures. Formally, a node failure means that the node
becomes nonfunctional and its associated links useless. In the 2-terminal or source-to-terminal reliability
problem, two nodes of the graph are fixed and the reliability of the network is defined as the probability
of having a path between those two nodes. In such analysis, a node failure causes a higher number of s-t
paths to become nonfunctional as compared to a link failure (depending on the node’s degree). Thus, the
reliability of a network would be affected more severely in the case of node failures.

Computing the unreliability of highly reliable systems (e.g., the DCS) requires efficient simulation
techniques. For large graphs, an exact computation of the unreliability u becomes an NP-hard problem
that is impractical to be solved analytically (L’Ecuyer et al. 2011). Monte Carlo methods can estimate u
in its crude form (CMC) sampling n stochastically independent realizations of the graph and computing
the proportion of these n realizations for which the s-t are not connected (L’Ecuyer et al. 2011). For rare
events, when u << 1, the accuracy of the simulation process is captured by the relative error RE (ratio
of standard deviation and mean value) which is inversely proportional to the event probability u and the
number of realizations n (L’Ecuyer et al. 2011, Rubino and Tuffin 2009). Thus, as u −→ 0, for a fixed
RE, we need excessively large values of n. This increases the computational effort and the cost.

Importance Sampling (IS) is an advanced class of variance reduction techniques for rare-event estimation
problems based on the change of the sampling probabilities of the components (i.e., nodes in our case) so
that the system failure occurs more frequently. The biasedness of the estimator is removed by multiplying
the original estimator with an appropriate likelihood ratio (ratio of the original probability and the new
sampling probability) and the estimator is the average over n (Rubino and Tuffin 2009).

This is the general basic framework of IS method. Finding this change of measure is the main difficulty
in IS, because if the sampling probabilities which lead to frequent failure are not properly selected, the
likelihood ratio may have a huge variance resulting in a bad estimation, even if the failure event is not rare
anymore (L’Ecuyer, Mandjes, and Tuffin 2009). The robustness of the estimators in such cases is based on
the behavior of the RE properties, like bounded relative error (BRE) or vanishing relative error (VRE),
as described by L’Ecuyer et al. (2011). If the relative width of the confidence interval (CI) on u based on
the central-limit theorem (CLT) for a fixed n steadies when u−→ 0, the BRE property is valid, and VRE
is valid if it tends to zero (L’Ecuyer et al. 2011, L’Ecuyer et al. 2010).
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The aim of this paper is to propose and adapt the dynamic importance sampling method based on
Monte Carlo simulations as described by L’Ecuyer et al. (2011), considering node failures, and to prove
its application on an existing example of a communication network (DCS). We propose an approximation
of the zero-variance IS method based on minimal cuts having relatively high failure probability in the
subgraph that remains after removing the nonfunctional nodes and their associated links (irrespective of
being functional or not, if one of the associated node is failed), while enforcing the states of the nodes
which are functional, at each step of a Markov chain (L’Ecuyer et al. 2011). These cuts approximate
the u conditional on the current state, at each step. The networks are analysed as a graph model and the
Ford-Fulkerson maxflow-mincut algorithm (Sedgewick and Schidlowsky 2003) is adapted for considering
flow through nodes. Our estimators show BRE property in general as node reliability increases, and VRE
property under additional conditions as proved by L’Ecuyer et al. (2011) for link failure case. The usefulness
of the proposed scheme is proved using a quantified measure of work normalized variance (varwn).

The paper is organized as follows: in Section 2, the mathematical model for considering node failures
is explained. In Section 3, the inefficiency of crude Monte Carlo (CMC) methods is explained with respect
to rare event analysis. In Section 4, the basic idea of Importance Sampling (IS), approximate Zero-Variance
IS method and the BRE & VRE robustness properties of estimators are described. In Section 5, we
explain the adaptation of the Ford-Fulkerson maxflow-mincut algorithm and the approximate zero-variance
IS method based on mincuts for considering node failures is explained. The analysis of the method on
various networks, including a case study on existing network of DCS and its results showing BRE or VRE
properties are illustrated. Conclusions of the whole study are drawn in Section 6.

2 MATHEMATICAL MODEL

Let us consider an undirected connected graph G = (N ,L), where N = {1, ...,m} is the set of nodes, and
L is the set of links. The model is static, that is, time is not considered. Links are assumed to always
work, but the nodes are subject to (independent) failures. Node i ∈ N fails with a probability qi, where
0 < qi < 1. A configuration of the graph (Rubino 1998) is given by the random vector X = (X1, ...,Xm),
where for all i ∈N , Xi = 1 or 0 representing the working or failed state of a node i, respectively. Retaining
only the functional nodes N ′, we obtain a random partial graph G′ = (N ′,L) of G.

To estimate the probability u that two nodes named s and t (for source and terminal respectively) are
not connected in the random graph G, we define the structure function ψ(X) equal to 1 if s and t are not
connected in G′ (or equivalently the configuration X), else as 0 (L’Ecuyer et al. 2011). The expectation
u = E[ψ(X)] or the s-t unreliability is given by (L’Ecuyer et al. 2011):

u = E[ψ(X)] = ∑
x∈{0,1}m

ψ(x)P[X = x] = ∑
x∈{0,1}m

ψ(x)
m

∏
i=1

(qi(1− xi)+(1−qi)xi)

where x = (x1, ...,xm), P is the original probability law of the network and E is the expectation under P.
The state space having 2m possible configurations will require an exponentially increasing time to

calculate the u from the above formula. The exact evaluation is an NP-hard problem in general (Ball 1986),
so approximation techniques like Monte Carlo (MC) are required in such cases. We study the performance
of our methodology by parameterizing qi (under the condition qi −→ 0) as a polynomial function of a rarity
parameter ε � 1. As explained in L’Ecuyer et al. (2011), for each i ∈N , there are independent constants
ai > 0 and bi ≥ 0 such that qi = aiε

bi . The overall u is a finite sum of products of such possibilities. It is
then a polynomial in ε and

u = u(ε) = Θ(εc) (1)

for a constant c ≥ 0 and Θ is a mathematical notation, such that, f (ε) = Θ(g(ε)), if f (ε) = O(εd) and
f (ε) = O(εd). Also, the O notation is such that f (ε) = O(g(ε)) if | f (ε)| ≥ c2g(ε) for some constant
c2 > 0 for all ε sufficiently small. The O notation in an asymptotic analysis is such that f (ε) = O(g(ε))
if | f (ε)| ≤ c1g(ε) for some constant c1 > 0 for all ε sufficiently small.
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3 MONTE CARLO SIMULATION

In CMC method, independent samples of X are generated to estimate the unknown u by an unbiased

estimator for which the s and t is disconnected by (L’Ecuyer et al. 2011): U (n)
MC = 1

n

n
∑

i=1
ψ(X (i)

i ).

The precision of the estimator U (n)
MC is measured by its empirical variance (lower value means better

precision) (S(n)MC)
2 =U (n)

MC(1−U (n)
MC)n/(n−1), and the confidence interval on the estimation of u is given

by
U (n)

MC− cαS(n)MC/
√

n, U (n)
MC + cαS(n)MC/

√
n. (2)

The relative half-width cα

((S(n)MC)
2/n)1/2

E[ψ(X)] = cα

(1−u
un

)1/2 of the confidence-interval for a confidence level α

increases to ∞ when u−→ 0 (i.e., rare-event) for a fixed n (L’Ecuyer et al. 2011, Rubino and Tuffin 2009).
For a fixed RE, the number of realizations n is inversely proportional to u and the required n would increase
exponentially as u−→ 0 (Rubino and Tuffin 2009). Thus, we require more efficient techniques than CMC
method for rare-event analysis.

4 IMPORTANCE SAMPLING

Importance Sampling (IS) is an advanced class of variance reduction techniques used for rare event analysis.
The generic idea and the approximate zero-variance scheme are explained in the following sections.

4.1 General Description

The original probabilities P of the 2m possible configurations of X are replaced by a new probability P̃
which gives

u = E[ψ(X)] = ∑
x∈{0,1}m

ψ(x)P[X = x] = ∑
x∈{0,1}m

ψ(x)L(x)P̃[X = x]

where the likelihood ratio L(x) = P[X = x]/P̃[X = x]. The condition P̃[X = x]> 0, when P[X = x]> 0 must
be met when ψ(x)> 0.

The unreliability is now u = Ẽ[ψ(X)L(X)] and the unbiased estimator obtained from importance

sampling takes the form U (n)
IS = 1

n

n
∑
j=1

ψ(X ( j))L(X ( j)), where X (1), ...,X (n) are s-independent copies of X

distributed according to P̃. The confidence interval over u under the new probability law P̃ can be obtained
from (2), by replacing the sample mean U (n)

MC with U (n)
IS , and the variance (S(n)MC)

2 with the sample variance
(S(n)IS )2 of ψ(X ( j))L(X ( j)). As explained by L’Ecuyer et al. (2011), if P̃ is the optimal probability for which
the variance is reduced to zero (i.e., ideal zero-variance estimator), all the probabilities are inflated by a
factor proportional to ψ(x) and P̃[X = x] = ψ(x)P[X = x]/u for all the configurations of x ∈ {0,1}m. This
equation means that, for the realizations for which the system does not fail (i.e., P[X = x]), the sampling
P̃[X = x] = 0, while for the other realizations where system fails (i.e., u > 0), the original P is to be divided
by u to obtain the optimal P̃. However, this method is impractical because it requires the knowledge of u,
the value we precisely want to compute.

4.2 Zero-Variance Importance Sampling Approximation

Under the zero-variance IS method, as described by L’Ecuyer et al. (2011), but considering the sampling
of nodes instead of links, node states are sampled sequentially given the state of previously sampled
nodes. Formally, if qi = P[Xi = 0] = 1−P[Xi = 1] under P, then qi is changed at each step depending
on the previously generated values X1, ...,Xi−1. The unreliability of the graph G′, conditional on the
already sampled nodes 1 to i−1 is given by ui(x1, ...,xi−1) = E[ψ(X)|X1 = x1, ...,Xi−1 = xi−1], which also
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means ui(x1, ...,xi−1) = qiui+1(x1, ...,xi−1,0) + (1− qi)ui+1(x1, ...,xi−1,1), and the overall unconditional
unreliability of the graph can be written as u = u1( /0) (L’Ecuyer et al. 2011).

If for i = (1, ...,m), qi is replaced by

q̃i
def
= P̃[Xi = 0|X1 = x1, ...,Xi−1 = xi−1] = qi

ui+1(x1, ...,xi−1,0)
ui(x1, ...,xi−1)

, (3)

as shown by L’Ecuyer et al. (2011), following the same arguments for the proof, this sequential IS gives
a zero-variance estimator. However, it (again) requires the exact knowledge of all the functions of ui and
specifically u1( /0) = u, which is not practical.

Following L’Ecuyer et al. (2011), we propose to replace ui(.) in (3) by an approximation ûi(.), which
gives

q̃i = P̃[Xi = 0] =
qiûi+1(x1, ...,xi−1,0)

qiûi+1(x1, ...,xi−1,0)+(1−qi)ûi+1(x1, ...,xi−1,1)
. (4)

If ûi+1(.) is not too far from ui+1(.) for each i, then the variance would be reduced by a large factor.
It is important to note that the network unreliability u will not change according to the order in which the
nodes (or vertices) are numbered in the graph but the change of measure would depend on the ordering
in the proposed algorithm. In our analysis, we found out that certain enumeration of nodes does vary the
estimated unreliability û by a very small factor and so does the value of RE. However, we do not have
yet a robust heuristic to choose the ordering of the nodes which could evaluate the optimum unreliability
estimate û possible, or a correlation between the estimation or RE with the ordering.

Using this IS scheme, we can prove in an asymptotic regime where ε −→ 0, while the graph topology
is fixed, that some condition on the approximation ûi(.) guarantees that BRE or even VRE are satisfied.
Recall that BRE means the standard deviation of the estimator divided by the mean value σ/u is kept
bounded as ε → 0; in other words the sample size to get a predefined RE is independent of the rarity
parameter ε . VRE means that σ/u tends to zero with ε −→ 0: asymptotically the estimator is perfect.
The conditions are the same as in L’Ecuyer et al. (2011), with nodes considered instead of links but again
the arguments are exactly the same. The impact of considering nodes is more in the computation of the
chosen approximation that will be described later.

Let us suppose that for each i and (x1, ...,xi) ∈ {0,1}i,1 ≤ i ≤ m, there is a constant ai+1(x1, ...,xi)
independent of ε such that

ûi+1(x1, ...,xi) = ai+1(x1, ...,xi)ui+1(x1, ...,xi)+o(ui+1(x1, ...,xi)).

If this condition is satisfied, then BRE holds.
Let us define S1 = {x ∈ {0,1}m : ψ(x) = 1 and P̃[X = x] = Θ(1)}, and S0 = {x ∈ {0,1}m : ψ(x) =

1 and P̃[X = x] = o(1)}. The union S0∪S1 is the set of possible configurations where the system fails.
The configurations in S1 are not rare under IS, while the ones in S0 are still rare. The required additional
condition for VRE involves x ∈ S1 only. Assuming the assumptions defined for BRE hold, VRE property
holds if at least one of the following three conditions is satisfied ∀x = (x1, ...,xm) ∈ S1 and for each i:

ûi+1(x1, ...xi−1,1)
ui+1(x1, ...,xi−1,1)

=
û(x1, ...,xi−1,0)

ui+1(x1, ...,xi−1,0)
+o(1), (5)

xi = 0, ai+1(x1, ...,xi) = 1, and (1−qi)ûi+1(x1, ...,xi−1,1) = o(qiûi+1(x1, ...,xi−1,0)), (6)

xi = 1, ai+1(x1, ...,xi) = 1, and qiûi+1(x1, ...,xi−1,0) = o((1−qi)ûi+1(x1, ...,xi−1,1)). (7)
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5 APPLICATION AND RESULTS

In this section we illustrate the various topologies considered in our analysis along with the DCS structure.
Also, we show the results obtained from the application of the approximate zero-variance IS method
based on mincuts. For the purpose of our study, we modified the maxflow-mincut algorithm proposed by
Ford-Fulkerson (Sedgewick and Schidlowsky 2003) for considering flow through nodes. The algorithm
used thereafter is explained in Section 5.1, where the computation based on node failures is presented.

5.1 Approximation Based on Mincuts Computed From Ford-Fulkerson Maxflow-Mincut Algorithm

The proposed approximation of ûi is to consider the probability of a mincut with a maximal probability
where nodes (and associated links) sampled as failed are removed from the graph, and nodes sampled
operational are compacted. Recall that a cut of a graph is defined as the partition of nodes of the graph
into two disjoint subsets of G while a mincut γ is a cut whose capacity is minimum over all the cuts of G.
A mincut with a maximal probability is a mincut whose probability that all nodes are failed, is computed
as the product of the failure probabilities of those nodes. With such an approximation, the condition for
BRE are always satisfied (similarly to L’Ecuyer et al. (2011)), and VRE can be satisfied in some cases.

The question is now, how to compute such an approximation in the case of nodes? As explained in
Section 2 by (1), we parameterize the system unreliability in an asymptotic regime with respect to a rarity
parameter ε −→ 0 such that qi→ 0 ∀i. Define ε = maxi qi such that ∀i,

qi = ε
ci (8)

with ci =
logqi
logε
≥ 1. Calling ci the capacity of node i, and c the capacity of the graph obtained from

maxflow-mincut algorithm proposed by Ford- Fulkerson based on links, we get c = ∑i∈C ci for C, a mincut
with a maximal probability, and the corresponding probability is qC = εc = ∏i∈C εci = ∏i∈C qi. The trick
is to use the log to switch from the sum of capacities to the product of probabilities.

The Ford-Fulkerson algorithm (Sedgewick and Schidlowsky 2003) adapted for nodes differs from the
case of links such that: if a node i fails (i.e., xi = 0), all its associated links are useless and removed, and
if a node i is considered working (i.e., xi = 1) then it is removed from the graph model and its associated
nodes are mutually linked to each other. This makes the algorithm for the node failure case more complex
compared to link failure where a failed link can be just removed and the connecting nodes of a perfectly
working link are merged. The Algorithm 1 proposed illustrates the adapted Ford-Fulkerson algorithm.

Algorithm 1 Adapted Ford-Fulkerson Maxflow-Mincut Algorithm
1: use nodelist (list) to store node names of any random graph G′ or G
2: for i = 1 to size.nodelist() do
3: assign capacity ci to node i using (8)
4: end for
5: initialize cap; initialize apath (array) and flow (array) for all nodes i
6: use Breadth First Search (BFS) to find a path apath between s and t passing apath and flow argument

Ensure: BFS finds path only where flow can be assigned and return a value P > 0 if found a path
7: while P > 0 do
8: find node with minimum ci (mincap) in apath

Ensure: remaining capacity in all the nodes in apath is greater than mincap
9: assign flow equal to the mincap to all nodes in apath

10: cap+= mincap
11: initialize apath and use BFS to find another path where flow can be assigned and return P > 0
12: end while
13: return cap

3206



Rai, Valenzuela, Tuffin, Rubino, and Dersin

The mincut with maximal probability problem is Θ(u) as explained by L’Ecuyer et al. (2011) and as a
consequence the BRE property is satisfied in the case of node failures too. With more stricter conditions
(one of the (5) or (6) or (7)) satisfied, the VRE property is also observed as illustrated by L’Ecuyer et al.
(2011) for link failures. The overall procedure is illustrated by Algorithm 2.

Algorithm 2 Approximate Zero-Variance IS using Ford-Fulkerson adapted algorithm
1: L←− 1; Starting with original graph G
2: for i = 1 to m until s are directly connected or completely disconnected i.e., BFS find direct path or no path
3: Compress node i corresponding to G(x1, ...,xi−1,1) of Step 2 and mutually connect its neighbors in G′
4: find cap (mincut of maximal probability in the set Ci) using Algorithm 1
5: ûi+1(x1, ...,xi−1,1)←− P[E(cap)];
6: Erase node i corresponding to G(x1, ...,xi−1,1) of Step 2 and remove it everywhere in G′
7: find cap (mincut of maximal probability in the set Ci) using Algorithm 1 again
8: ûi+1(x1, ...,xi−1,0)←− P[E(cap)];
9: compute q̃i via (4)

10: generate Ui a random variate over (0,1);
11: if Ui < q̃i then
12: xi←− 0; Li←− qi/q̃i;
13: else
14: xi←− 1; Li←− (1−qi)/(1− q̃i);
15: end if
16: L←− L×Li;
17: end for
18: return Y = ψ(x1, ...,xm)×L

5.2 Numerical Results

We considered four topologies for illustrating the mincut-maxprob approximation. In all the studied
topologies, the nodes are sampled by order of their numbers from s to t. The nodes are homogeneous with
unreliability qi = ε for i = 1,2,3, ...,m, where ε ∈ R. The metric of interest is the probability that s and t
are disconnected in the following networks.

Example 1: First we consider a graph with 21 nodes and 36 links as shown in Figure 1. Computing
recursively, its exact solution of the unreliability is: u = 1− (1−ε)7[(1−ε)3−3(1−ε)2+3−2ε]4, where
qi = ε homogeneously assigned and u is the exact unreliability of the graph.

Figure 1: 21 nodes graph.

The IS scheme adapted for the case of node failures suggest that the BRE property holds while we
also obtain a tight confidence interval over the estimation of u as ε −→ 0, as shown in Table 1. The exact
analytical solution is also bounded in the 95% confidence interval we obtain from the simulations, thus
proving the precision of the adapted IS scheme. Also, comparing it with CMC method (see Table 2), for the
same topology the proposed IS scheme average simulation time was 1.4628×10−4 seconds per iteration
while for the CMC method it was 4.94×10−6 seconds per iteration. However, the CMC method didn’t
record any failure event for ε < 10−6. Also, the work normalized variance (varwn) (variance multiplied
by the expected computing time per iteration) in the IS scheme is much lower and reduces much rapidly
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as ε −→ 0 for any value of ε as compared to the one obtained from MC simulations. For example, for a
rare event ε = 10−7, (S(n)MC)

2 = û(1− û) and CMC method’s varwn is 1.48×10−12. But with zero-variance
approximation based on mincuts, varwn for same case is 1.46×10−18 which is much lower.

Table 1: Empirical results from the IS scheme for the graph with 21 nodes and n = 106.

ε Exact Soln Estimate 95 % CI STD R.E. Time (s)
10−3 3.0010×10−3 3.0005×10−3 (2.9986×10−3,3.0025×10−3) 1.01×10−3 0.34 147
10−5 3.0000×10−5 2.9995×10−5 (2.9975×10−5,3.0015×10−5) 1.00×10−5 0.33 147
10−7 3.0000×10−7 2.9995×10−7 (2.9975×10−7,3.0014×10−7) 1.00×10−7 0.33 145
10−9 3.0000×10−9 2.9995×10−9 (2.9975×10−9,3.0014×10−9) 1.00×10−9 0.33 144

Table 2: Empirical results from CMC method for the graph with 21 nodes and n = 106.

ε Estimate 95 % CI STD R.E. Time (s)
10−3 2.9720×10−3 (2.8653×10−3,3.0787×10−3) 5.44×10−2 18.32 4.87
10−5 2.9000×10−5 (1.8445×10−5,3.9555×10−5) 5.39×10−3 185.69 5.00
10−7 0.0 (0.0,0.0) 0.0 − 4.96

Example 2: We now take a Dodecahedron topology having 20 nodes and 30 links, as shown in Figure
2, which is often used as a benchmark for network reliability estimation techniques (Cancela et al. 2009).

Figure 2: Dodecahedron.

We considered different ways of ordering of nodes in our analysis. In all the cases the VRE property
was observed, as shown in Table 3 for one example. Comparing the results with CMC method, the average
per unit computation time for the proposed IS scheme was 2.69×10−4 seconds, while CMC method took
approximately 4.70× 10−6 seconds per iteration failing to record a single failure event (for ε < 10−2),
hence yielding a useless (0,0) empirical confidence interval. From the estimated û, for example for a rare
event ε = 10−7, varwn obtained from CMC method is 9.40×10−27 and with the proposed IS scheme is
much lower (1.08× 10−59). As ε −→ 0, varwn of the IS scheme decreases much faster than the CMC
method.

Example 3: The third network considered is a much larger network (L’Ecuyer et al. 2011) where three
dodecahedrons of Figure 2 are juxtaposed in a parallel configuration as shown in Figure 3. The source s
and terminal t of Figure 2 are merged and represented by a single node, s and t respectively. The topology
has 56 nodes and 90 links. We consider a homogeneous case, qi = ε for all nodes, and the goal is to
compute the unreliability that the s and t are not connected. The unreliability obtained here is a cube of the
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Table 3: Empirical results from the IS scheme for a single dodecahedron and n = 106.

ε Estimate 95 % CI STD R.E. Time (s)
10−3 2.0061×10−9 (2.0058×10−9,2.0064×10−9) 1.50×10−10 7.45×10−2 269
10−5 2.0001×10−15 (2.0000×10−15,2.0001×10−15) 1.31×10−17 6.56×10−3 270
10−7 2.0000×10−21 (2.0000×10−21,2.0000×10−21) 2.00×10−28 1.00×10−7 270
10−9 2.0000×10−27 (2.0000×10−27,2.0000×10−27) 2.00×10−36 1.00×10−9 268

Figure 3: Three dodecahedrons connected in parallel.

unreliability of a single dodecahedron for the case of node failures (L’Ecuyer et al. 2011). It is observable
that the unreliability estimates in the case of node failures, as shown in Table 4 are of the same order of
magnitude for both Example 2 (single dodecahedron) and Example 3 (three parallel dodecahedrons) as
it is for the case of link failures obtained by L’Ecuyer et al. (2011). The empirical results from Table
4 show that the VRE property holds. The CMC method again failed to record any failure event for all
ε ≤ 10−1. Comparing with CMC method, for example for ε = 10−7 rare event, varwn for CMC method is
1.18×10−67 (average per run computation time = 1.47×10−5 seconds). For the same case, with the IS
scheme varwn is 3.53×10−133 (average per run computation time = 5.5×10−3 seconds). The varwn for
IS scheme decreases (as ε −→ 0) much rapidly compared to the one that is obtained from CMC method.

Table 4: Empirical results for three dodecahedrons connected in parallel and n = 106.

ε Estimate 95 % CI STD R.E. Time (s)
10−3 8.0739×10−27 (8.0714×10−27,8.0764×10−27) 1.27×10−27 1.57×10−1 5406
10−5 8.0005×10−45 (8.0003×10−45,8.0007×10−45) 1.03×10−46 1.28×10−2 5572
10−7 8.0000×10−63 (8.0000×10−63,8.0000×10−63) 8.00×10−66 1.00×10−3 5585
10−9 8.0000×10−81 (8.0000×10−81,8.0000×10−81) 1.39×10−89 1.73×10−9 5492

5.3 Practical Case Study: Data Communication System

We now consider a real Data Communication System (DCS), a part of a large scale passenger rail system
Communication Based Train Control (CBTC). The role of a DCS is to carry without hindrance the data
between various other rail systems ensuring end-to-end communication. It consists of reliable and redundant
communication paths, as shown by RED and BLUE in Figure 4. In Figure 4, the links represent wired or
wireless communication channels between ground-to-ground or ground-to-rolling stock (train), respectively.
The nodes represent ethernet or electrical switches, routers, servers, radio equipment, modems, etc. The
red and blue components (links and nodes) are in pairs, and are in UP state all the time such that there
is no switching of functioning if one of them fails. This also adds a complexity of undetected failure.
However, the redundancy of red and blue makes certain that there are two independent communication
paths available all the time. In Figure 4, the train is considered as the source s (outermost node) and the
Zone Controller server is considered as the terminal t (innermost node). The circular topology is for the
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purpose of simplicity for the readers. In the DCS, the outer circle of nodes represent the trackside equipment
which communicates directly with the train through overlapping wireless radio access points’ coverage. A
failure of more than three consecutive pairs of red and blue nodes will make the s and t disconnected.
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Figure 4: The DCS structure with the outermost and the innermost node representing the train (source)
and the Zone Controller (terminal) respectively.

In our analysis, for simplicity, there is only one train and it is considered to be at a fixed position as
shown in Figure 4. Practically there are more than one train present (i.e., multiple sources s) along the
outer circle. Also, we consider the network as a homogeneous network where all the nodes have the same
unreliability ε . There are 164 nodes and 169 links in the graph model. The empirical results from the
Table 5, show that the BRE property holds when ε −→ 0, and we obtain tight bounds over the estimated
û. The results from this static model give the steady-state availability of the system. From the estimated
û, for example when ε = 10−7, the varwn for CMC method is 5.64×10−18 (average per run computation
time being 3.53× 10−5 seconds, see Table 6). For the proposed IS scheme, the varwn is 8.44× 10−28

(average per run computation time being 7.39×10−3 seconds), which is much lower and also decreases
much rapidly as ε −→ 0.

Table 5: Empirical results for the DCS topology from the IS scheme (n = 106).

ε Estimate 95 % CI STD R.E. Time (s)
10−3 1.5954×10−5 (1.5888×10−5,1.6020×10−5) 3.38×10−5 2.12 7327
10−5 1.5968×10−9 (1.5902×10−9,1.6034×10−9) 3.38×10−9 2.11 7417
10−7 1.5968×10−13 (1.5902×10−13,1.6034×10−13) 3.38×10−13 2.11 7433
10−9 1.5968×10−17 (1.5902×10−17,1.6034×10−17) 3.38×10−17 2.11 7378

Table 6: Empirical results for the DCS topology from CMC method (n = 106).

ε Estimate 95 % CI STD R.E. Time (s)
10−3 7.0000×10−6 (1.8143×10−6,1.2186×10−5) 2.65×10−3 377.96 35.64
10−5 0.0 (0.0,0.0) 0.0 − 34.96

3210



Rai, Valenzuela, Tuffin, Rubino, and Dersin

The above analysis is done on a MacBook with a 1.8 GHz Intel Core i5 processor with Java imple-
mentation. The zero-variance IS scheme is more computationally burdensome compared to CMC methods,
as it needs to find two mincuts with maximal probability at each step of the sampling process (L’Ecuyer
et al. 2011) using a Ford-Fulkerson adapted algorithm. However, the method estimates the unreliability u
with a higher accuracy (variance reduction) at the expense of increased computation time. This is a trade
off between choosing a more precise estimate or a faster estimate with huge variance. With respect to
rare event analysis, if we quantify the gain in terms of work normalized variance varwn, which gives the
estimate of variance reduction with respect to the cost (i.e., time), the proposed zero-variance IS scheme
is highly efficient compared to the CMC method.

6 CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

We describe in the paper an adapted zero-variance approximate IS methodology for considering node
failures for the purpose of static network reliability estimation. The sequential sampling of nodes, as done
by L’Ecuyer et al. (2011), reduces the variance by a large factor. We prove that the methodology explained
here and by L’Ecuyer et al. (2011), works for the case of node failures also and illustrate its efficiency on
a real network, a Data Communication System used in urban train control.

As mentioned, we do not have yet a possible robust heuristic for enumerating the nodes for sampling
in the IS scheme that gives optimum unreliability estimate or co-relates RE with the ordering. This could
be a possibility for future work. Graph reduction techniques could also be used to save on computational
effort. An important future objective is to extend the method for application on repairable dynamic systems.
In such systems, components could be in several possible states (i.e., working, failed, detected/undetected
failure, half capacity, etc). Modeling a repairable system would itself need to include logistics. This could
prove the usefulness of such methodologies for problems posed by Dersin and Valenzuela (2012).
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