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ABSTRACT 

Described herein is a general-purpose software engineering architecture for autonomous, computer 
controlled opponent implementation in modern maneuver warfare simulation and training. The 
implementation has been developed, refined, and tested in the user crucible for several years. The 
approach represents a hybrid application of various well-known AI techniques, including domain 
modeling, agent modeling, and object-oriented programming. Inspired by computer chess approaches, the 
methodology combines this theoretical foundation with a hybrid and scalable portfolio of additional 
techniques. The result remains simple enough to be maintainable and comprehensible for the code writers 
as well as the end-users, and robust enough to handle a wide spectrum of possible mission scenarios and 
circumstances without modification. 

1 INTRODUCTION 

"There is no substitute for a human opponent." — Vincent "T.J." Taijeron, USMA Warfighting Simulation 
Center, West Point, NY. When one is lacking, however, we attempt to offer a usable substitute. In this 
paper we describe an architecture and a methodology for software engineering a Computer Opponent 
Artificial Intelligence (COAI) for professional military training. Ideally, such an architecture should meet 
the design goals of being frugal and efficient in code, easily maintainable, and produce an acceptable 
level of realism and flexibility for military training personnel and administrators. A truly low-overhead 
and low-impact solution to the vexing "AI" problem for professional military training at echelons below 
division and corps level is desired. At the current time, a paucity of software exists, either commercial 
off-the-shelf computer games or DoD produced and acquired software, for low-cost training in this 
regard. 
 Army simulation training has typically used extremely complex, sophisticated, and costly software 
that necessitates set-up time and planning, large staffs, large budgets, training, and Herculean scenario 
design efforts. Recently, there has been a shifting of emphasis to what is called low-overhead/low-impact 
computerized training that lower-level echelons, which traditionally did not have access to large-scale 
simulation support, can utilize effectively and efficiently. The offerings in this area are slim, and typically 
commercial computer wargames are wholly inadequate for many reasons. In particular, realistic and 
useful computer opponent "AI's" are virtually completely lacking. Tasking organization staff to "play the 
part" of opposing forces is a plausible solution, but necessarily involves a huge commitment of resources 
when theoretically the CPU can be doing the same thing at little to no cost. Architecting and 
implementing a targeted solution to the "AI" problem at the appropriate level of simulation and modeling 
fidelity has been a persistent issue for more than a decade (Lane et al. 2005, Johnston et al. 2015). 
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 The military simulation community has been working on similar proposed solutions for decades. A 
whole simulation conference series addressed issues relevant to this paper: the Computer Generated 
Forces/Human Behavior Representation (CGF/HBR) series, later renamed in Behavior Representation 
and Implementation M&S (BRIMS). A NATO Technical Report on Computer Generated Forces 
Forces/Human Behavior Representation (CGF/HBR) series, later renamed in Behavior Representation 
and Implementation M&S (BRIMS). A NATO Technical Report on Computer Generated Forces 
Technology (NATO Document Nr: RTO-TR-11 AC/323(SAS)TP/8) described similar solutions as 
desirable objectives in 1999. A chapter by Bharathy, Yilmaz, & Tolk (2012) on "Agent directed 
simulation for combat modeling and distributed simulation," in Engineering Principles of Combat 
Modeling and Distributed Simulation, gives several related examples and points to related research. 
Previous related Winter Simulation Conference papers include Cioppa et. al. (2004), Middleton (2010), 
Kuramoto & Furuichi (2013), Løvlid et. al. (2013), and one of the early papers presented at WSC which 
was revolutionary at the time is Karr & Franceschini (1994). The present paper is embedded into a rich 
WSC and SISO history acknowledged here. 
 Large-scale simulation exercises are frequently conducted at the higher levels of the Army command 
structure. These include division, corps, and army echelon levels. Lower-level training has largely been 
restricted to manual map exercises, or expensive field training and wargames (U. S. Army 2003). 
Software tools at the company, battalion, and brigade training levels have been sparse. One frequently 
utilized piece of software is the VBS simulation, which is commercially marketed as "Arma". This is a 
first-person shooter type game that has been utilized for squad and platoon level infantry type training. 
However, at the next higher echelons software training tools are largely nonexistent. Even the widely 
utilized VBS platform has a woefully inadequate AI — cooks and mechanics are routinely tasked to drive 
trucks, fly planes and helicopters, and play civilians, as part of the simulation exercise. 
 Despite 50 years of advancements in computer technology, computer chess AI still relies on a largely 
brute force approach. Using the Min-Max algorithm, transposition tables, and other optimizations, the 
chess AI scans through the game tree, analyzing millions of potential moves, before producing the highest 
scored next move (Shannon 1950, Newborn 2012). Thankfully for chess, there are only 64 squares and a 
maximum of 32 pieces. In a professional military simulation, a map may consist of millions of individual 
100 meter sized grid squares, thousands of units, and a completely unpredictable terrain and mission. In 
other words, searching through the game tree of all possible actions is tens of magnitudes more difficult. 
The chess modeling approach is not scalable, not nearly so. The chess analogy AI cannot be made to fit, 
yet we can adopt some of the lessons learned from computer chess. This includes dividing the session into 
phases: opening, middle-game, and endgame. Scoring the value of different pieces (maneuver unit 
groups), and evaluating final desired states, and how to get there, have proven to be extremely useful 
concepts. 
 The approach we have implemented and described in this paper could be considered as a hybrid AI 
approach. Relying on the chess analogy and metaphor, particularly the game phase concept, we add on an 
expert system that models and abstracts the actual units in decision-making processes wherever possible. 
For example, the AI groups subunits into their actual mission structure, including companies and 
battalions. These are controlled as in the military force structure chain of command. For the creation of 
plans, it is possible to adopt the actual military staff procedure and adapt this into a software planning 
sequence. Further, lower-level planning details such as route determination can be supplemented by the 
ubiquitous A* Algorithm. 

2 METHODOLOGY 

A realistic AI useful for professional training purposes should both model and mimic the military 
decision-making process at various echelons. In that light, as a robust foundation the AI goes straight to 
the U.S. Army field manuals for guidance. Fortuitously, more than 100 years of modern warfighting 
experience has distilled down Army planning doctrine to a few formulaic processes in the Military 
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Decision-Making Procedures (MDMP). These include TLP, METT-TC, and OCOKA (see next page for 
descriptions). These processes can and have been modeled almost directly in code.  
 U.S. Army Field Manual 101–5, Staff Organization and Operations, explains in detail the Army 
MDMP (U.S. Army 1997). "The MDMP is an adaptation of the Army’s analytical approach to problem 
solving. The MDMP is a tool that assists commanders and staff in developing estimates and plans. The 
full MDMP is a detailed, deliberate, sequential, and staff-intensive process used when adequate planning 
time and sufficient staff support are available to thoroughly examine numerous friendly and enemy 
courses of action (COAs). This staff effort has one objective—to collectively integrate information with 
sound doctrine and technical competence to assist the commander (in our case the COAI "commander") 
in decisions, leading ultimately to effective plans. The analytical aspects of the MDMP continues at all 
levels during operations." 
 The COAI is presented a military mission that is contained within scenario and AI option 
specification files. The files include information on task organization, friendly forces, and a timeline. 
Objectives are also specified with points values for various objective type such as occupying a location, 
clearing an area of enemy forces, moving friendly forces past a certain demarcation zone, or searching for 
a hidden target. 
 Where possible the military decision-making process (MDMP) is then followed both in modeling and 
implementation. The COAI is designed to follow a process similar to what is recommended doctrine in 
the Army field manuals. Likewise, parallel modeling and decision-making takes place at each of the 
important unit echelon levels: platoon, company, battalion or task-force, and support. The following 
further outlines MDMP aspects: 
 TLP (Troop Leading Procedures) consist of the following steps: 1. receive the mission and conduct 
METT-TC and OCOKA, 2. prepare for the mission and issue preliminary orders, 3. make a tentative plan: 
identify goals, gather information, generate/analyze/compare possible solutions, and implement the best 
tentative plan, 4. start movement, 5. conduct reconnaissance, and 6. follow through with execution of the 
final plan. 
 METT-TC is: Mission analysis, Enemy analysis, Terrain analysis, Troops analysis, Time limit 
analysis, Civilian impact analysis. OCOKA is conducted as part of terrain analysis. 
 OCOKA stands for Observation and fields of fire, Cover and concealment, Obstacles, Key terrain, and 
Avenues of approach. This constitutes a more detailed terrain analysis. Obstacles can include man-made 
and urban terrain obstacles, natural terrain obstacles, and water obstacles. Key terrain may involve, for 
example, high elevation or easily traversed terrain near objectives. Avenues of approach include roads 
and otherwise clear areas. Trafficability can be evaluated both for vehicle and troop movement in regard 
to slowing, diverting, or stopping movement. 
 

   
Figure 1: TLP, MDMP, METT-TC, and OCOKA depictions (U. S. Army 1997). 
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 The Course of Action (COA) for the COAI that is produced is a result of the analysis of the above 
factors and constraints. Reducing all considerations to a quantitative scoring allows a brute force solution, 
that randomly generates various plans and each plan can be scored for its suitability and feasibility. The 
highest scoring feasible plan is selected as the best COA. Since plans are randomly generated, differing 
and unique plans are generated during each new instance of the same scenario mission design. This is 
important for replay value. 
 Execution requires close supervision and monitoring, as well as continuous analysis, the updating of 
intelligence, and refinement of the COA plan. In certain cases, the plan must be discarded and regenerated 
completely. 
 The COAI has certain unit groups assigned to it in the scenario and mission design. This allows the 
possibility of multiple instances of the AI, each controlling its own respective force grouping. Likewise, 
human participants would each be controlling various force groupings. 
 Scenario design inputs to the COAI for information analysis include: time limit constraints, enemy 
order-of-battle (OOB), friendly OOB, quantified scenario objectives, along with AI options and settings. 
Five major phases are accomplished during a preliminary mission analysis:  
 

1. Analysis and calculation of the goal state to satisfy objectives. Often times this will involve the 
ideal placement of forces by the scenario end time, such as the occupation of objective locations. 

2. Analysis and calculation of known enemy dispositions and force allocations. Here relative points 
values are calculated relying on "combat power" summations for known enemy unit types in a 
catalog database of unit types. Friendly unit group combat power totals are likewise analyzed to 
create favorable force match ups. In general, a ≥ 3:1 points total advantage will be necessary for 
successfully taking the occupation of locational objective from a defender (U. S. Army 2002). 

3. Analysis and calculation of a tentative plan to reach the goal end state. This is accomplished by 
using a brute force approach similar to the solving of the Traveling Sales Person problem (Russell 
and Norvig, 2009). Several thousand likely plans are randomly generated and scored. Top scoring 
plans are then further evaluated and selected. 

4. Surplus time and resources are evaluated. If the plan can be accomplished before the scenario 
mission end time, further refinements and optimizations can be preliminarily executed. This can 
include actions such as further intelligence gathering and reconnaissance, softening up of target 
locations through preliminary bombardments and airstrikes, and conducting feign attacks or deep 
pincer movements. 

5. Finally, initial tentative movements and actions for the first game phase are calculated, however 
these may change when the final COA is adopted. 

 

 
Figure 2: Scenario and mission specifications and analysis. 

 As part of the mission analysis and execution, map zones are segmented and demarcated. Map zones 
are segmented based on the center mass coordinates of friendly forces, and known or likely center mass 
coordinates of enemy forces. With these two points fixed in space, a relative "mapping" of center, left and 
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right flanks, and depth can take place. If portions of these areas are off the given terrain area, they are 
ignored and become notional. Areas which are untrafficable (for vehicular and/or foot units respectively) 
are also ignored for deployment or movements. The point halfway between friendly center mass and 
enemy center mass becomes the Forward Edge of the Battle Area (FEBA) anchor. Ten discrete zones are 
then demarcated from this mapping: forward screen left, left, center, right, screen right, and 
corresponding rear areas respectively. Reconnaissance missions will be routed into the far side of the 
FEBA, and missions will be allocated to specific zones. Combat group deployments take place generally 
in the left, center, and right, with screening units assigned to screen left and screen right areas. Supporting 
units, including headquarters, artillery, and logistics, are routed toward the rear areas. Spacing between 
units is calculated by the frontage span of the respective maps zone. Reserves are held in the rear area as 
well. Thus, any map size from 5 km × 5 km up to 500 km × 500 km can be automatically mapped into a 
convenient "scenario" mission and planning space, based on the map size, force size, and initial 
deployments. 
 As part of the mission analysis, a detailed terrain analysis is conducted and the results are stored in a 
map database of grid squares. Each map grid square is assigned a weighted and then normalized score 
value for specific characteristics. These include the following as shown in Table 1. 

Table 1: Static and Dynamic Map Terrain Analyses. 

• Objectives – value and proximity to objective locations. 
• Water – water obstructions to ground movement — note this may have an important lack of effect on 
the many amphibious vehicles in operation. 
• Elevations – in many circumstances higher elevation locations are seen as more valuable to occupy. 
• Grades – steep uphill and downhill grade serve as 
detriments to mobility. 
• LOS – line-of-sight to nearby grid squares; some locations can observe much more of the surrounding 
terrain. 
• Blocks – blocks can include highly dense vegetation, urban locations, as well as man-made obstacles. 
• Cover – cover provides shelter from blast effects and observation. 
• Avenues – key avenues for movement, central locations networks to objectives are preferred. 
• Concealment – concealment has low line of sight visibility as well as good cover. 
• Defense – combination of effects from above for defensibility. 
• Survivability – cover, concealment, and defensibility modified for survivability aspects. 
• Ambush – areas with good visibility/survivability, nearby to key avenues of movement. 
• Countermobility – places where the enemy's movement can be stopped efficiently. 
• Valuable Areas – avenues, high elevations, nearby to objectives, etc.  
• Friendly Proximity – weighted/normalized value for staying close to friendly concentrations. 
• Enemy Proximity – weighted/normalized value for known/updated enemy concentrations. 
 
 The COAI user interface produces shaded map graphics depicting weighted and normalized values 
for each of the terrain analyses based on grid square location. The last three terrain analyses are 
dynamically updated as the simulation progresses, and reflect new and current information. 
 As a consequence of the COAI not considering individual unit entities at the lowest level (platoon and 
section sized entities), the COAI is only aware of the unit groupings, relative combat power, and the 
group types. Using these characteristics, OOB analysis is capable of assigning various groups to specific 
objective missions. For example, an armor company may only include 14 tanks but have triple the combat 
power of a 90 soldier infantry company. The combat power is based on points totals from the unit 
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catalogs. As part of the COA production, the COAI analyzes the most optimal assignment of groups to 
objectives using its limited knowledge. With regards to enemy forces — given adequate knowledge, OOB 
analysis will endeavor to produce adequate match ups, specifically the greater than 3 to 1 advantage of an 
attacker over a defender in terms of combat power. 
 The COAI must keep track of known and likely enemy force locations. Initially, the training scenario 
designer can choose to reveal as much or as little about enemy force locations as desired. This can be 
loaded into an initial enemy spot table at scenario start, and be used for COAI planning. After that the 
COAI is on its own gleaning, updating, and aging information as it comes in. It keeps track of this in a 
dynamic spot table that contains coordinates, unit type and points value, and most recent spot time. As 
spots are aged they are reduced in weighting importance for relevance and accuracy. The simulation 
produces a listing of current force enemy spots and hands it off to the COAI, which collates and posts the 
information in the spot table. 
 As previously mentioned, planning the force allocations of groups to objectives involves a brute force 
planning approach. For each of several thousand plan iterations, groups are randomly assigned to 
objectives. Then, based on the group data, objective data, and enemy locations, a special function 
calculates the feasibility of each allocation. Time to reach the objective, attack or defense ratio, and other 
factors, are able to cull out infeasible assignments. Of the remaining feasible plans, these are scored based 
on minimum cost in terms of movement time, and attractiveness of force match ups (desired minimum 
3:1 on offense) and other factors. A final "minimum time to complete the plan" duration is calculated, and 
from this any surplus time available for further measures, such as reconnaissance or softening up of 
targets, is then known. Force allocation intrinsically calculates the end-game phase plan. Since each 
scenario objective is assigned a relative points value, scoring of plans takes into consideration the 
satisfaction of more valuable objectives, as well as the distance from each respective group to its assigned 
objective. For further information on brute force planning using this approach, traveling salesperson 
solutions are a good starting point (see Russell and Norvig, 2009). 
 Once final endgame force allocations have been favorably calculated, if sufficient surplus time and 
resources exist, a middle-game "playbook" COA can be adopted by the COAI to further shift the 
favorable odds preliminary to the endgame phase. In the case of a defensive posture this can include 
securing objectives, static defense, or in-depth defense (U. S. Army 2001). For attack postures, broad 
front attacks, counterattacks, or deep attack "playbooks" can be adopted. A reserve force can possibly be 
selected. The playbook selected is not optimal, but suitable for the given situation and circumstances. This 
is analogous to the football play: a running play may not be any better than a deep pass, but it keeps the 
other team guessing. Seemingly random intelligent plans and actions in terms of time and execution are 
an important part of a realistic and engaging COAI with suitable replay value. 
 Once the COA has been finalized execution will be transitioned through a series of major game 
phases, relying on the chess motif. These include the opening, middle-game, and endgame. Assuming 
little slack time exists for achieving the mission objectives — the execution phase will be shifted 
immediately to "endgame". Endgame can be considered the all-out effort to achieve the objectives 
immediately. Otherwise, if slack time exists, perhaps an opening and middle-game phase will be adopted 
as part of the execution.  
 The execution phases are analogous to the very important military precept of the OODA loop (Boyd 
1976). The opening is comparable to the Observing phase. Here, advantages are to be acquired in terms of 
additional intelligence and other measures, such as occupation of key terrain. Middle-game is analogous 
to Orienting — the major reorienting of friendly forces to further tip the balance for further movements 
and attacks. Endgame is the Decide and Act portion, where commitment to a decisive outcome is adopted. 
Final actions are wagered here. Replanning is necessitated between the opening phase and the middle-
game phase, as well as between the middle-game and endgame phase. 
 Transitions between the major game phases are based on the characteristics of what should be taking 
place generally in each phase — once again relying on the chess metaphor. The opening takes place 

3127



Pelosi and Brown 
 

between the scenario start and first enemy contact, first weapons fire, and/or first friendly casualties. 
Transition to the end-game occurs after the middle-game when the previously calculated time deadline for 
accomplishing the mission objectives is reached. This also includes a time safety factor built-in. In other 
words, final execution is committed to when there is still enough time to safely accomplish the objectives. 
That said, in order to preserve verisimilitude, there exists the possibility of a "lightning battle" COA 
adoption where the COAI will skip the opening and/or middle-game phases and progress directly to an 
endgame phase. This is analogous to a surprise execution, which forces the training audience to consider 
all possibilities. Skipping phases is easily incorporated into the COAI options as probability factors for 
skipping middle-game, and skipping opening and middle-game. At the juncture of each major game 
phase, replanning takes place based on the phase goals described further below. 
 The opening phase is largely characterized by observing the enemy's respective force deployments 
and dispositions. Goals here include grouping and further deploying friendly forces, exploiting terrain 
based on mission analysis terrain calculations, execution of reconnaissance and counter reconnaissance 
missions, and the seizing of any easy objectives closer than the enemy. 
 The middle-game is characterized by major force movements to orient deployment for final attacks 
and/or defense. Seizing of key intermediate terrain is conducted. Harassment missions are perhaps 
selected, these would include randomized probes or artillery fire missions. Allocation of resources to the 
endgame is recalculated. Further, most COAs will hold a major reserve and/or counterattack force for 
unforeseen events. Counterattacks can also take place. Attacks use as a basis the "4F's" for planning and 
execution: find – fix – flank – finish (U.S. Army 1997). 
 The endgame embarks on achieving the final scenario objectives. A regrouping of scattered forces 
may be necessary for the execution of the final plan. Final attacks are enacted, if necessary, and objectives 
are occupied. The plan is irretrievably executed at this point — for either final success or failure. Ideally, 
the opening and middle-game phases have set up the COAI for uncontested victory at this point through 
incremental and methodical gaining of advantage. As mentioned, the endgame is analogous to the Decide 
and Act portions of the OODA loop, and opening and middle-game phases only take place if surplus time 
and resources exist for the satisfaction of the mission goals. Otherwise, the COAI would need to embark 
on an endgame plan immediately at the scenario start. 
 

 
Figure 3: COAI execution phases and major aspects of each phase. 

 Analogous to the IOS (International Organization for Standardization, 1989) model for computer 
networking (and its inherent division of responsibilities and functionality), there are at least six layers and 
levels of modeling that are used in the COAI architecture. Most of these parallel a corresponding layer in 
the military decision-making process and unit echelon structure, in real world military forces. This 
leverages the concept of object modeling for real-world abstractions, and also organizes and simplifies the 
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architecture software code. At the lowest level are the simulation entities, nominally platoon down to 
section sized organic units. The simulation in usage models each of these uniquely as a C++ class entity. 
Typically, these are grouped into company to battalion sized units, each consisting of 4 to 10 subunits. It 
is these groups that constitute the "unit groups" that are under direct control of a scripting engine layer. 
The scripting engine layer is responsible for issuing the entire group order directives discussed in more 
detail below. Above the scripting layer is mission control, more directly controlled by the COAI. Once 
the group has been assigned to a mission, the mission instance is responsible for autonomous control over 
the group through the scripting engine. Mission sequences are, in turn, controlled by the overall COA 
class plan that is being implemented. And finally, the COA class is planned in response to the overall 
scenario objectives, available resources, game phase, terrain map, and options. 

Table 2: Modeling Layers of Abstraction, Planning, and Control. 

1. Execution Phase: Open, Middle, Endgame -> Determines strategic approach/goals. 
2. Course of Action (COA) -> Self-contained master plan for phase, controls Layer 3. 
3. AI Mission Sequence Collection -> Insertion, deletion, reordering possible. 
4. AI Independent Mission Control Agent -> An autonomous OOP class, with reports. 
5. Group Scripting Engine -> Programmed Sequences of Events/Actions/Responses. 
6. Unit Entity Grouping -> Company/Battalion/Task Force, abstracts Layer 7. 
7. Simulation Entity -> Platoon/Section/Section/Battery/Vehicle. Hi-fidelity modeling. 

 
 Section to platoon entities are the lowest level of fidelity in the simulation in usage. The COAI does 
not control this echelon directly. The group and scripting engine issues direct orders and commands to 
entities at this level. In summary, sections and platoons are characterized by locations, ammunition and 
fuel levels, strengths and casualty levels, current orders and status, among other data in a cornucopia of 
minutiae. Accurately modeling this spectrum of characteristics is an extremely labor-intensive task that 
requires copious research and data entry. Accounting for hundreds of data items into COAI considerations 
is architecturally untenable, hence the abstraction to larger unit groupings is necessary to accomplish the 
goal of a robust and usable AI with a frugal amount of code. Codewise, these entities are modeled as 
classes. 
 Scenario design creates company and task force level unit groupings that normally model individual 
combat companies or battalions, artillery batteries, helicopter flights, and other unit groupings that would 
normally be controlled by a battalion or brigade level task force organization. Unit groups are modeled as 
a class and are the owner of combinations of the platoon and lower level entity grouping. 
 Group orders and tasks are relatively straightforward and implemented easily by the controlling 
mission class. The controlling mission class merely instructs the scripting engine to calculate and 
implement the command order. Group orders contain such simplistic directives as: move n meters, change 
facing, set speed, dismount infantry, improve position, camouflage, discharge smoke, or set formation. 
Set formation automatically orients the group in, among others, line, column, box, diamond, forward 
wage, reverse wedge, and echelon formations. Company and battalion sized formations will typically 
orient themselves in one of the aforementioned formations to advantageously engage likely targets. The 
scripting engine handles the details, while the COAI concentrates on decision making at the next echelon 
above. Lower level units are responsible for handling their own engagement of targets of opportunity. 
Standard Operating Procedure (SOP) allows independent decision-making for units in regards to firing 
smoke or vehicle engine exhaust smoke systems for defense, reversing on enemy sightings, or 
aggressively attacking new contacts. 
 Group order scripting consists of a collection of sequential orders. As mentioned earlier, movements, 
formation changes, camouflage orders, orders to "dig-in", etc., can be added to a scripting sequence. The 
scripting engine automatically executes the orders serially until completion. The COAI process 
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communicates into the simulation the desired scripting sequence and parameters through active mission 
classes. Scripting can be manually controlled as desired, and saved to file. 
 The COAI enters a control main loop after completing the mission analysis and creating a preliminary 
COA. Each time the loop executes, more information is extracted from the simulation, this is processed, 
and the COAI may modify directives or give additional orders to the group scripting engine. Groups with 
scripting orders pending can have those sequences cleared if necessary. The main loop continues until the 
scenario end time is reached and objective condition scores calculated. 
 COAs are modeled as a class and store their own data and update themselves inherently. Additionally, 
given certain circumstances, they are capable of canceling themselves which will necessitate and involve 
an automatic regeneration of a COA. This can optionally be done at random, or in the case of catastrophic 
goal failure. COAs contain enough information to be considered a high-level plan, with very little 
implementation details. 
 In satisfaction of the current COA, unit groups are assigned sequences of missions that fall into 
various categories. Each of the missions is defined in a C++ class, and the sequences of missions are 
collections of missions. The unit group conducts the next mission listed in its respectively assigned 
mission collection, until each one is completed. If necessary, a new mission can be spawned and inserted 
at the top of the collection, at which time the unit grouping will embark on the new mission, and resume 
the second mission once the newly spawned mission has been completed. For example, a grouping on a 
movement mission toward an objective can be assigned a newly spawned mission to attack a target of 
opportunity. Once this attack mission has been completed, the movement toward the objective mission 
will be resumed. Further, since missions are modeled as autonomous agents, they can spawn their own 
new missions as necessary which may supersede the current mission. The hierarchical breakdown of 
various COAI mission classes developed totals over 40 at the present time. 
 As mentioned, missions are modeled as classes and have a decoupled implementation. Each mission 
has a pair of classes closely related: a planner class and an implementer class. The planner class plans the 
mission and hands over the implementation details to the implementer class. If the implementer class runs 
into problems, it will call the planner class to once again reinitialize and replan the mission. Once a 
mission is spawned, it is initialized with several goal variables and the mission class code itself calculates 
how to correctly carry out the mission. During each iteration update (periodically calculated based on an 
AI update time step), the mission updates itself and the commands to the mission unit grouping as 
necessary.  Upon mission completion, the mission class instance is removed from the mission sequence 
collection and ceases to exist. Some of the major mission taxonomy types, which rely on C++ class 
inheritance from the mission base class, include movement missions (which activate A* pathfinding), 
attack, defense, recon, and support missions. Missions are queryable for public properties such as mission 
start time, estimated completion time, status codes, and other information. As a result, it is 
straightforward to keep the user interface updated with graphical status for users.  
 Movement missions are generally tactical movement or road movement missions. Tactical movement 
will move in a tactical formation using advantageous routes to the goal endpoint. Road movement will 
simply travel by the most trafficable route to the goal location. Generally, movement missions will 
respond to React To Contact (RTC) events using an SOP, which may include attack, evade, stop 
movement, or retreat doctrines. Recon missions are similar but will move to advantageous locations for 
observation based on the terrain analysis, among other doctrinal differences.  
 Pathfinding to mission waypoints along a movement route is calculated using a modified version of 
the A* Algorithm (Hart, Nilsson, and Raphael 1968). The implementation considers multiple goals, for 
example the cost function can include factors for avoiding or approaching the enemy, attractiveness for 
traveling on roads, moving through high line-of-sight grid squares, or maintaining terrain cover. For 
example, if one of the mission goals is concealment during movement, lower movement cost can be 
assigned for terrain covered by forested areas or buildings. Pathfinder estimated time of arrival results are 
based on the speed over terrain of the slowest unit in the group. 
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 An important consideration to note is that pathfinding algorithm code must take place in its own CPU 
thread. As a result, when a mission needs a pathfinding route, it sends desired goal coordinates as well as 
group data and route preference to a collection of pathfinder processes executing on the machine. The 
pathfinding request is queued and the mission class waits until a result is returned. Pathfinding is by far 
the most computationally intensive element of the entire COAI architecture, other than initial scenario 
and terrain analysis. Route movement of mission groups is 80% of what the COAI does. The importance 
of this cannot be under-stressed: a brick-house architecture for planning and implementing movement has 
been essential. 
 Various type of attack missions are implemented based on group composition; vehicular, foot, 
aircraft, etc. Generally for attack missions an endpoint location is assigned as well as a casualty threshold. 
The group will generally conduct tactical movement toward the objective, execute the attack several times 
as necessary, and regroup between attacks. During movement react-to-contact standard operating 
procedure is enacted. 
 Generally attacks are coded to take place using the well-established military metaphor for success 
which elaborates on the "4F's": find 'em, fix 'em, flank 'em, and finish 'em (U. S. Army 2007). Therefore, 
planned attacks would normally involve coordinated movements and attacks by two or more unit 
groupings, comprising at least a ≥ 3:1 combat power points advantage. Surprisingly, attacks are tractable 
to plan with acceptable realism once an enemy defender has been located. The fixing force approaches 
directly within weapons distance and begins firing. Meanwhile, the flanking force(s) conduct flanking 
movements around the left, right, or rear, and engage the enemy from those directions. The finishing force 
can be either the flanking force or another available group, which will move in for a final clobbering. A 
casualty loss threshold is established preliminarily, and if it is reached the attack will be broken off as 
unsuccessful and the forces reallocated.  Isolated group defend missions are more simple and will merely 
move to the endpoint location and prepare a defense, normally by "digging in". If a casualty threshold is 
met the group will withdraw to a safer location.   Support missions include being held in reserve, artillery 
fire support, logistics and supply, and headquarters missions. Forces allocated to support missions, in 
addition to conducting their primary mission, will relocate periodically to maintain a relative position 
behind the FEBA. Most support missions will also periodically relocate based on their proximity to the 
enemy. Headquarters units, for example, will maintain a safe distance between themselves and the nearest 
enemy, or advance to maintain a general distance to the FEBA. Artillery monitors the current spot table 
and fires on lucrative targets of opportunity, or fires in support of attacking or defending units when 
advantageous. 
 In the special cases of artillery and attack aviation support missions, available direct fire artillery as 
well as available attack aviation assets are placed in pools. Group missions can request fire or aviation 
support based on their circumstances, in which case it is added to a request listing. Artillery and aviation 
assets periodically evaluate the listing and prioritize their response based on likely effectiveness and 
proximity. Once satisfied or determined infeasible, requests are removed from the queue listing. 
 Missions are assigned based on unit group type, which is known from the scenario design 
specification. In general, most unit groupings can be categorized into one of the following major groups: 
armor, mechanized, mechanized with dismounts, infantry, artillery, recon, screening, aviation 
(attack/transport/recon), refueling support, ammunition support, or headquarters. The sum of the combat 
power points for various units is used for calculation of overall combat power and force match up ratios. 
Periodically, groups may find themselves unassigned to any particular mission. In this case the COA class 
will score and produce their next best mission assignment. 
 As mentioned, COAs are implemented as a class object, and they own mission sequence collections 
of mission classes. Each unit group has its own mission sequence collection. The current mission is the 
mission on the first position in the mission sequence collection. This mission class is responsible for 
controlling its assigned mission group. It passes high-level scripting orders to the simulation scripting 
interface. The scripting interface controls sequences of orders which include items such as move to 
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waypoint, change formation, change facing, move at speed, and weapons tight or weapons free, among 
others. 
 When the COAI process is initialized with data, it begins scenario analysis, terrain analysis, and OOB 
analysis. Typically, this process can take several minutes. When preliminary analysis is completed, an 
endgame COA is produced as well as the group maneuver plan. Assuming surplus time and resources 
exist, an opening and/or middle-game COA may be implemented instead. At this point the COA is 
formally implemented, missions are spawned (which are responsible for planning their own independent 
execution, and updating themselves, or spawning new missions as replacements). Missions are then 
implemented. Current missions are posted to a Gantt chart in the user interface which includes each unit 
grouping. The Gantt chart depicts the mission stack for each group, as well as an estimated completion 
time for respective missions. The COA is then controlled until the next game phase is reached. The 
scenario ends at the scenario end time and the victor is calculated based on objective points totals. 
 It is important to give the training audience and training administrators a detailed window into the 
internal workings of the COAI; this is both so that they can understand it as well as appreciate the realism 
inherent in the modeling. Further, they can more intelligently tweak the COAI settings and options and 
locate defects and probable improvements. The COAI has its own process independent UI running in 
parallel with simulation code. Some of the available graphical interfaces include an event log, static 
terrain map, updated maps with group locations, objective table listing, COAI options, and scenario 
options windows. 
 Is important to note that the AI solution to the scenario problem does not have to be optimal in order 
to be realistic and acceptable as a computer opponent. It is well known that human opponents are far from 
optimal. However, they can be counted on for a unique solution to most specific problems that will vary 
significantly between occurrences. If optimal mission solutions were calculated, this would result in a 
decreased training benefit and replay value for the AI implementation. Using randomness, crucially, also 
greatly simplifies the coding and modeling requirement necessary. Missions can be randomly specified 
within certain acceptable limits; in type, time, and space.  

3 RESULTS AND CONCLUSIONS 

The model described in this paper constitutes a computer opponent AI system conceived for the 
conducting of professional military training. Although many approaches exist, it is important that the 
envisioned solution be capable of a low-overhead implementation in usage. In other words, a large 
stimulation staff and large budget must not be required for end-users to conduct their own training. No 
special hardware, facilities, or preparation must be required. Bringing low-cost computer-assisted training 
to the echelon targeted (company, battalion, and brigade level training) requires this characteristic. 
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