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ABSTRACT

We consider the problem of making accession and promotion decisions in the United States Air Force
officer sustainment system. Accession decisions determine how many officers should be hired into the
system at the lowest grade for each career specialty. Promotion decisions determine how many officers
should be promoted to the next highest grade. We formulate a Markov decision process model to examine
this military workforce planning problem. The large size of the problem instance motivating this research
suggests that classical exact dynamic programming methods are inappropriate. As such, we develop and test
approximate dynamic programming (ADP) algorithms to determine high-quality personnel policies relative
to current practice. Our best ADP algorithm attains a statistically significant 2.8 percent improvement over
the sustainment line policy currently employed by the USAF which serves as the benchmark policy.

1 INTRODUCTION

“The basic manpower problem is the following: Determine the number of personnel and
their skills that best meets the future operational requirements of an enterprise.” (Gass 1991)

The United States Air Force (USAF) is comprised of approximately 317,000 personnel who enhance
national security by providing the distinctive capabilities of air and space superiority, global attack, rapid
global mobility, precision engagement, information superiority, and agile combat support to the Department
of Defense (DoD). The USAF, like the other branches of the military, is comprised of commissioned officers as
well as the enlisted force. These two groups exhibit significantly different behaviors in regards to retention,
promotion, and cross-flow between career fields. This research investigates and attempts to discover
improved policies regarding management of the commissioned officer corps.

The USAF must recruit, train, and develop its personnel using limited resources. Over the last several
years, the draw down from Operations Enduring Freedom and Iraqi Freedom as well as shifting domestic
priorities have resulted in significant cuts to current and future outlays for acquisitions, operations, and
personnel budgets. Difficult fiscal conditions emphasize the importance of having the correct mix of
personnel to field a ready force. The USAF must balance the needs for officers of varying levels of
experience within 90 career fields ranging from personnel officers to fighter pilots. Each of these career
fields is labeled with an Air Force Specialty Code (AFSC). The USAF has a known set of requirements
(i.e., demand) and a known Congressionally-mandated force size constraint.

Officer grades range from O-1 to O-10, with the grades O-7, O-8, O-9, and O-10 corresponding to
the ranks of general officers. Our proposed model only considers grades from O-1 to O-6, representing
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the vast majority of officers comprising the officer sustainment problem. Current USAF promotion policy
includes a nearly 100% promotion rate from O-1 to O-2 and from O-2 to O-3. This policy is primarily due
to long training times and a limited performance record with which to differentiate junior officers at these
grades. Moreover, officers at the grades of O-1 and O-2 frequently fill O-3 requirements. A complicating
feature of the manpower planning problem faced by the USAF is the fact that senior officers are developed
from junior officers only, with every recruited officer starting at the grade of O-1.

Due to these characteristics, poor personnel management decisions can have far-reaching impacts and
corrective actions can take a substantial amount of time to take effect. Economic factors and changes within
the military environment such as operations tempo, salary, and benefits such as health care and combat
pay can significantly impact retention rates (Asch, Hosek, Mattock, and Panis 2008, Murray 2004). This
can result in a significant level of deviation in retention rates over time, resulting in a uncertain supply of
officers to meet USAF personnel requirements. These factors can make predicting how a force structure
will develop and progress quite difficult.

The current USAF personnel system determines the number of requirements for each AFSC and
grade combination. Additionally, ten years of historical data are used to calculate retention rates for each
combination of AFSC and number of commissioned years of service (CYOS). This information informs the
development of a retention line. This retention line assumes a deterministic retention based on historical
observations and no future deviation. The current mathematical model utilized to determine accessions
smooths the total requirements for each AFSC over the projected retention line. Promotion decisions are
made independently, so the accession decisions and promotion decisions are not tied together by means of
a holistic policy. By examining only accession decisions, such policies are unable to address any deviations
from expected outcomes over the 30 year window. Over time, these deviations can become large, which
has historically resulted in the application of expensive measures to boost or lower retention such as paying
bonuses to retain people (Lakhani 1988, Simon and Warner 2009) or reductions in force (RIFs) to decrease
the size of the force. Deviations compounded by changes in the desired force structure during times of
build-up or downsizing can exacerbate the level of correction needed.

We formulate a Markov decision process (MDP) model to examine the Air Force’s officer sustainment
problem. MDPs have several features that make them particularly suitable for this sort of workforce
planning problem. An MDP can provide policies that are state-dependent, which allows for a workforce
system to dynamically adjust personnel levels over time to attain target personnel levels. State transitions
can be modeled stochastically, allowing the MDP model to address the uncertainty inherent in the personnel
system.

The state of the system for this problem is found by aggregating individual officers by class descriptors.
The three class descriptors for the USAF officer sustainment system are career field (AFSC), commis-
sioned years of service (CYOS), and grade (i.e., rank). The state represents the current total stock of
officers, categorized by each possible combination of class descriptors. In each time period, individuals
deterministically maintain their career field, stochastically transition either out of the system or to the next
CYOS according to a retention parameter, and stochastically transition either to the next grade or remain
in their current grade according to promotion rate decisions made within the model. The model provides
a policy π that indicates the number of officers to recruit for each career field (i.e., accessions) as well as
the percentage of officers within specified promotion windows to be promoted, given the current state of
the personnel system. A group of 54 AFSCs (i.e., a single Line of the Air Force competitive category) is
examined, so promotion policies apply to officers in a specified promotion window across all career fields
within the model. The contribution function imposes a cost for shortages of officers by career field and
grade as well as a cost for exceeding the maximum number of allowable officers. These costs are weighted
to reflect the criticality of certain AFSC and grade combinations.

The state space of the motivating problem of interest has 9,720 dimensions representing the full 54 Line
of the Air Force AFSCs, 30 CYOS groups, and six grades. This level of dimensionality combined with the
stochastic nature of the state transitions makes determining a stationary policy computationally intractable.
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The size of the problem suggests that development of an exact dynamic programming algorithm to obtain
a solution is inappropriate.

To address the large size of the problem, two approximate dynamic programming (ADP) algorithms
are developed to obtain sub-optimal but high-quality solutions. The first proposed algorithm uses least
squares temporal differences (LSTD) (Bradtke and Barto 1996) with Bellman error minimization in an
approximate policy iteration framework to obtain policies. As part of the process, we simulate potential
post-decision states and observe the value of a possible outcome of being in that state. After a batch of
these observations is simulated, a regression is performed to minimize Bellman error. This algorithm uses
a set of basis functions to approximate the value of the post-decision state. The approximation scheme
allows the formulation of a non-linear mixed-integer program to solve the inner minimization problem,
obtaining optimal actions based on the current approximation. Algorithm variants utilizing instrumental
variables regression and Latin hypercube sampling are also examined.

We also implement a variant of the Concave, Adaptive Value Estimation (CAVE) algorithm (Godfrey
and Powell 2002) to develop separable, piecewise linear value function approximations that represent the
‘cost to go’ function for a finite-horizon formulation of the problem. This algorithm simulates potential
outcomes of a given policy and uses the outcomes to update the estimate of the gradient of the value
function approximation. The algorithm takes advantage of known problem structure to efficiently update
the value function approximation for large numbers of policies simultaneously.

2 MDP FORMULATION

In this section, we present the MDP model of the USAF officer sustainment problem. The set of decision
epochs is denoted as:

T = {1,2, ...,T} , T ≤ ∞. (1)
The state of each officer in the system is defined by an attribute tuple a, composed of three numerical

attributes. These attributes are numerical indices representing AFSC, grade, and CYOS. Due to the Air
Force officer grade structure, this model consolidates the three initial officer grades (i.e., company grade
officers with grades of O-1, O-2, and O-3) into one index of the grade class descriptor, leaving four grades
that are explicitly modeled. Additionally, the AFSCs are limited to the Line of the Air Force competitive
category. This group consists of 54 AFSCs and contains approximately 80% of the officers in the USAF.
The excluded AFSCs include the medical, dental, legal, and chaplain career fields, whose behavior and
constraints are sufficiently different to warrant a separate model.

Let the attribute tuple a denote a specified combination of these three attributes, denoted as a1, a2, and
a3:

a =

a1
a2
a3

=

AFSC
Grade
CYOS

 . (2)

The individual sets containing all elements of a single attribute h are annotated as:

Ah = set of all possible officer attributes ah. (3)

The full attribute set A = A1×A2×A3 contains the full range of possible combinations of m AFSCs, n
grades, and q CYOS. For the full problem examined, these parameter values are 54, 4, and 30, respectively.

A = set of all possible officer attribute vectors a, where |A |= mnq (4)

The state of the USAF personnel system is defined by the number of resources (i.e., officers) of each
attribute tuple, a ∈A . Let

Sta ≡ St,a1,a2,a3 = number of officers at time t ∈T possessing attributes defined by the (5)

attribute tuple a = (a1,a2,a3) ∈A . (6)
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The pre-decision state of the system is a tuple of size |A |:

St = (Sta)a∈A ≡ (St,1,1,1,St,1,1,2, . . . ,St,1,1,q,St,1,2,1, . . . ,St,1,n,q,St,2,1,1, . . . ,St,m,n,q) . (7)

There are m+ n− 1 decisions made annually, defined by the set D . Decisions {1,2, . . . ,m} are the
accession decisions for each AFSC, determining how many people to commission into the Air Force as
junior officers. Decisions {m+1,m+2, . . . ,m+n−1} determine the ratio of eligible officers to promote.
For the full problem instance of interest in this paper, m = 54 and n = 4. The action selected is defined by:

xt = (xtd)d∈D , ∀t ∈T . (8)

There are upper bounds, βd , and lower bounds, ζd , for each decision, as specified by the decision
maker. For the accession decisions, these bounds arise out of pipeline considerations, such as training
constraints or minimum training levels to sustain facilities. For the promotion decisions, extremely high
or low values can have significant secondary effects on the quality of the force.

βd ≤ xtd ≤ ζd ∀d ∈D , t ∈T (9)

A deterministic transition is made from pre-decision St to post-decision state Sx
t with each non-promotion

eligible officer moving to the next CYOS index or exiting the system (i.e., separating or retiring). Accessions
fill the first year group (i.e., CYOS) index for each AFSC and promotion decisions are appended to the end
of the pre-decision state, increasing the size of Sx

t by n−1 elements (as compared to St). The promotion
decisions are included in the post-decision state because such decisions determine the next transition. The
states with the CYOS index associated with the first year of a potential grade (i.e., new promotions) are
set to zero, since these will be determined by the stochastic promotion transitions. The post-decision state
tuple is then defined by:

Sx
t =(xt1,St,1,1,1,St,1,1,2, . . . ,St,1,1,q−1,0,St,1,2,1, . . . ,St,1,n,q−1,xt2,

. . . ,St,m,n,q−1,xt,m+1, . . . ,xt,m+n−1), ∀t ∈T . (10)

The cost function C(S) is defined by the total sum of the shortages by grade and AFSC, and the overages
above the maximum number of personnel allowed in the system (i.e., the Congressionally-authorized end
strength). To distinguish between the criticality of shortages for various AFSCs, an AFSC criticality
coefficient, (ba1)a1∈A1 is used to scale the shortage cost for each AFSC. Requirements by AFSC (a1)
and grade (a2) are annotated as (Ra1,a2)(a1,a2)∈A1×A2 for all combinations of a1 and a2. Let F denote the
maximum end strength and let f denote the end strength criticality coefficient. The end strength criticality
coefficient allows weighting the relative importance of end strength and shortages using decision maker
preferences. Air Staff personnel at Headquarters Air Force, in accordance with senior leader preferences,
would determine the criticality coefficients. Let CH and CE denote the cost due to shortage and end strength,
respectively. Then,

CH(S) =
m

∑
a1=1

n

∑
a2=1

ba1

(
Ra1,a2−

q

∑
a3=1

Sa

)+

, (11)

and

CE(S) = f

((
m

∑
a1=1

n

∑
a2=1

q

∑
a3=1

Sa

)
−F

)+

. (12)

Let C(S) denote the total cost associated with a given state, which is simply the sum of the two partial
costs, CH and CE :

C(S) =
m

∑
a1=1

n

∑
a2=1

ba1

(
Ra1,a2−

q

∑
a3=1

Sa

)+

+ f

((
m

∑
a1=1

n

∑
a2=1

q

∑
a3=1

Sa

)
−F

)+

. (13)
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Promotion and retention transitions are modeled utilizing discrete stochastic functions, each following a
binomial distribution. The probability an eligible officer transitions to the next highest grade is determined
by the promotion decisions xd for d ∈ {m+1,m+2, ...,m+n−1}:

P(Sx
t,a1,a2+1,a3

= j) =
(

Sx
ta

j

)
(xd)

j(1− xd)
Sx

ta− j. (14)

Those who are not selected for promotion remain in their current grade. After all promotion transitions
are complete, the probability of any individual transitioning to the next year group (CYOS) within the
individual’s current grade and AFSC is defined by the retention parameter, ρa, that can be derived from
historical data and an environmental parameter. This additional environmental parameter can be used to
scale historical retention rates to reflect beliefs about changing conditions in the future, such as the impact
of macroeconomic trends and operations tempo on force retention. The probability that j officers with
attribute tuple a remain in the system at time t +1 given there are Sx

ta officers in the system at time t and
decision xt is made is expressed as:

P(St+1,a1,a2,a3+1 = j) =
(

Sx
ta

j

)
(ρa)

j(1−ρa)
Sx

ta− j. (15)

The objective function is comprised of the cost of the current state as well as the expected future cost
of states resulting from a combination of the current state and chosen actions. The actions selected are
the accession and promotion decisions, so the cost associated with the combination of the current state
and action, typically defined as C(S,x), is not effected in the present by the action x. Thus, the current
contribution is defined by C(S), and the consequence of a given decision is captured by the expected value
of future states. The objective is to minimize expected total discounted cost:

min
π∈Π

(
Eπ

[
T

∑
t=0

γ
tC(St)

])
, (16)

where γ is the discount factor, π is a policy, and Π is the set of all possible personnel policies. To determine
the optimal policy, we must find a solution to the Bellman equations

Vt(St) = min
x

(C(St)+ γE [Vt+1(St+1)|St ,x]) , (17)

where Vt(St) is the value of the personnel system being in state St at time t.

3 APPROXIMATE DYNAMIC PROGRAMMING ALGORITHMS

Having formulated the MDP model of the USAF officer sustainment problem, we proceed by describing
our two ADP approaches. In our first approach, an approximate policy iteration (API) algorithmic strategy
is utilized to construct high-quality personnel policies based on value function approximations. The value
function approximation scheme employs a linear architecture and utilizes a least squares temporal differences
updating technique. In our second approach, an approximate value iteration (AVI) algorithmic strategy is
adopted. In our AVI algorithm, we construct high-quality personnel policies based again on value function
approximations. However, in our AVI approach the value function approximation scheme uses piecewise
linear value function approximations. The CAVE algorithm of Godfrey and Powell (2002) is used to update
our approximations.

3.1 Approximate Policy Iteration (API): Least Squares Temporal Differences (LSTD)

In our API-LSTD algorithm, we seek to estimate the parameter vector θ using observations that are
created from a set of basis functions φ f (S), f ∈F . The set F of basis functions allows us to reduce the
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dimensionality of the state variable to a selected number of features, |F |. Using the post-decision state,
we can write our value function approximation in a form similar to a standard linear regression model

V̄ x
t (S

x
t ) = ∑

f∈F
θ f φ f (Sx

t ). (18)

The steps of our API-LSTD algorithm are shown in Algorithm 1. The policy improvement loop of
the algorithm begins once N temporal difference sample realizations have been collected. We compactly
denote basis function matrices and cost vectors as follows. Let

Φt−1 ,

φ(Sx
t−1,1)

>

...
φ(Sx

t−1,N)
>

 , Φt ,

φ(Sx
t,1)
>

...
φ(Sx

t,N)
>

 , Ct ,

C(St,1)
...

C(St,N)

 ,
where matrices Φt−1 and Φt contain rows of basis function evaluations of the sampled post-decision states,
and Ct is the cost vector.

Algorithm 1 API-LSTD Algorithm
1: Initialize θ as a vector of zeros.
2: for j = 1 to M (Policy Improvement Loop)
3: Update α = (M− j+1)/(5M)
4: for i = 1 to N (Policy Evaluation Loop)
5: Simulate a random post-decision state Sx

t−1,i
6: Simulate the transition to the pre-decision state St,i

7: Solve MINLP for optimal decision Xπ(St |θ) = argminx[C(St)+ γθ T φ(Sx
t )]

8: Record C(St,i), φ(Sx
t−1,i), and φ(Sx

t,i)

9: End
10: Compute θ̂ = [(Φt−1− γΦt)

T (Φt−1− γΦt)]
−1(Φt−1− γΦt)

TCt

11: Update θ = (α)θ̂ +(1−α)θ

12: End

At each iteration, θ is smoothed according to a step size, α . Experimentation revealed that a decreasing
stepsize significantly outperforms a static stepsize. This allowed rapid updates early in the algorithm while
benefiting from a more refined estimation as the algorithm converged to a solution.

The selected basis functions (i.e., features) are the interactions between decisions taken to some power
ψ and the sums of the states Sa for various combinations of attributes. This selection helps the algorithm
relate current states to potential actions and keeps the problem decomposable. For any given pre-decision
state, the inner minimization problem becomes:

min
x

Z1x1 +Z2x2
1 + ...+Zψxψ

1 +Zψ+1x2 + ...+Zψ(m+n−1)x
ψ

m+n−1, (19)

subject to any pre-defined bounds on decisions, βd and ζd . Each coefficient Zg is determined by a number of
current states and the parameter θ . The inner minimization problem is a large, decomposable mixed-integer
nonlinear program (MINLP) with integer decisions (xtd) for all d ≤ m and continuous decisions xtd for
all d > m. Decomposability allows separation into m small integer nonlinear programs and n− 1 small
continuous nonlinear programs. Each of these problems is solved easily.

Instrumental variables have been demonstrated to significantly improve regression performance for a
subset of problems. We consider an adaptation to the API-LSTD algorithm with ordinary least squares
regression by changing Step 9 in Algorithm 1 to reflect an alternative regression equation that utilizes
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Algorithm 2 API-LSTD Algorithm with Instrumental Variables (API-LSTD-IV)
1: Initialize θ as a vector of zeros.
2: for j = 1 to M (Policy Improvement Loop)
3: Update α = (M− j+1)/(5M)
4: for i = 1 to N (Policy Evaluation Loop)
5: Simulate a random post-decision state Sx

t−1,i
6: Simulate the transition to the pre-decision state St,i

7: Solve MINLP for optimal decision Xπ(St |θ) = argminx[C(St)+ γθ T φ(Sx
t )]

8: Record C(St,i), φ(Sx
t−1,i), and φ(Sx

t,i)

9: End
10: Compute θ̂ = [(Φt−1)

T (Φt−1− γΦt)]
−1(Φt−1)

TCt

11: Update θ = (α)θ̂ +(1−α)θ

12: End

instrumental variables. The interested reader is directed to Scott, Powell, and Moazehi (2013) for further
information. The modified algorithm is presented as Algorithm 2:

Many approximate policy iteration algorithm implementations utilize uniform random sampling of
possible post-decision states in Step 4. To improve the ability of the parametric regression to separate
the effects of each basis function (i.e., feature) on the value function, Algorithm 3 uses Latin Hypercube
Sampling (LHS) to generate an improved set of post-decision states. LHS designs help ensure uniform
sampling across all possible dimensions thereby improving the ability of the regression to identify which
regressors are significantly affecting the cost function (McKay, Beckman, and Conover 1979). The adapted
algorithm with both instrumental variables and LHS is shown in Algorithm 3.

Algorithm 3 API-LSTD-IV Algorithm with Latin Hypercube Sampling
1: Initialize θ as a vector of zeros.
2: for j = 1 to M (Policy Improvement Loop)
3: Construct an LHS design of N post-decision states, [Sx

t−1,1,S
x
t−1,2, ...,S

x
t−1,N ]

4: Update α = (M− j+1)/(5M)
5: for i = 1 to N (Policy Evaluation Loop)
6: Identify the pre-defined post-decision state Sx

t−1,i
7: Simulate the transition to the pre-decision state St,i

8: Solve MINLP for optimal decision Xπ(St |θ) = argminx[C(St)+ γθ T φ(Sx
t )]

9: Record C(St,i), φ(Sx
t−1,i), and φ(Sx

t,i)

10: End
11: Compute θ̂ = [(Φt−1)

T (Φt−1− γΦt)]
−1(Φt−1)

TCt

12: Update θ = (α)θ̂ +(1−α)θ

13: End

3.2 Approximate Value Iteration (AVI): Concave Adaptive Value Estimation (CAVE)

A finite horizon formulation of the problem is solved using a version of the general CAVE algorithm
proposed by Godfrey and Powell (2002). Godfrey & Powell use this algorithm to develop a piecewise
linear value function approximation V̄ (s) when the system is in state s. We adapt this convention to develop
a value function approximation for each decision, xtd , which is equivalent to the corresponding portion of
the post-decision state, Sx

t,a1,1,1, for dt = a1 as well as the promotion decisions.
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This algorithm uses a series of breakpoints indexed by kdt , where kdt ∈Kdt , and Kdt = {0,1, ...,kmax}.
The parameter kmax represents the maximum number of allowable breakpoints. These breakpoints are
annotated (νkdt ,ukdt ), where νkdt describes the slope of a linear segment projected from ukdt .

The breakpoints ukdt are ordered such that u1≡ 0 and each consecutive point is monotonically increasing:

u0 < u1 < ... < ukmax . (20)

The presence of concavity in the problem structure indicates that the slopes are also monotonically decreasing:

ν
0 > ν

1 > ... > ν
kmax . (21)

CAVE uses sampling of the gradients for each decision to improve its estimate of the slope for that
approximation. This sampling is accomplished by a single simulation forward in time, calculating the
sample gradients ∆

−
dt
(Xdt ) and ∆

+
dt
(Xdt ) for the segments being evaluated, k−dt

and k+dt
.

A smoothing interval, Qdt for each dt is initially set based on upper and lower interval size parameters,
ε
−
dt

and ε
+
dt

. This update interval is then expanded to correct any concavity violations. If necessary, new
breakpoints are inserted at the ends of the update interval.

After all of these steps are accomplished, the minimum update interval parameters, ε
−
dt

, ε
+
dt

can be
decreased to allow the algorithm to create a more granular approximation at the next time step. The step
size α can also be decreased as iterations are completed to improve value approximation convergence.
The CAVE algorithm as adapted from Godfrey and Powell (2001) to our multiple decision, multiple time
period problem is shown in Algorithm 4.

4 RESULTS AND ANALYSIS

4.1 Defining Model Inputs and Measures

Four performance measures provide an overview of each algorithm’s level of success for each of two
problem instances examined. For these problem instances, percentages for the ADP algorithms are reported
in terms of percentage improvement (i.e., decrease in cost) over the benchmark policy. We perform 50
simulations of 50 years each, with each simulation beginning at an optimal state (i.e., no shortages or
overages). Half-widths are reported at the 95% confidence level to establish statistical significance. Percent
reduction in shortages (RIS), percent reduction in overages (RIO), percent reduction in cost (RIC), and
percent reduction in total squared deviation (RSD) are reported. RIC is a direct comparison of performance
regarding the objective function.

For implementations of the LSTD algorithm, the inner and outer loop parameters are M = 30 and
N = 10000. The discount factor, γ , is set at 0.95. For each of the models, the end strength criticality
coefficient, f , and AFSC criticality coefficients, (ba1)a1∈A1 , are set to one. The benchmark policy is
the sustainment line method currently practiced by Headquarters Air Force, Air Staff (A1 - Manpower,
Personnel, and Services).

For the CAVE algorithm, T is set to twice as large as the maximum career length. This helps correctly
assess the overages and shortages at the end of the career for the decisions being made. For the decisions
at a time epoch to be reasonably representative of the decisions that will actually be made in the future, the
impacts of those decisions are measured over a large number of epochs. The decisions made at the end of
a finite time horizon model will be biased, since the model’s reality is that only a short number of years are
relevant, while the USAF has an enduring requirement for officers. Thus, T must be substantially larger
than the maximum career length in order to obtain accurate and unbiased stochastic gradient samples.

4.2 Small Problem Instance Definition & Results

A small problem instance with four AFSCs (m = 4), three grades (n = 3), 15 CYOSs (q = 15), and a upper
accession limit of 50 accessions, (ζd = 50 for d ≤ 4), was constructed. With multiple grades, promotion
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Algorithm 4 CAVE Algorithm
Step 1: Initialization

1: For each dt , let Kdt = 0, where νdt = 0, udt = 0.
2: Initialize parameters ε

−
dt

, ε
+
dt

, and α .

3: for j = 1 to M
Step 2: Collect Gradient Information

4: For each dt , identify the policy specified by the current value function
approximation, Xdt ≥ 0.

5: For all decisions simultaneously, sample the gradients ∆
−
dt
(Xdt ,ω) and

∆
+
dt
(Xdt ,ω) over a finite time horizon with random outcome ω ∈Ω

Step 3: Define Smoothing Interval
6: Let k−dt

= min{kdt ∈Kdt : ν
kdt
dt
≤ (1−α)ν

kdt +1
dt

+α∆
−
dt
(Xdt )}.

7: Let k+dt
= max{kdt ∈Kdt : (1−α)ν

kdt−1
dt

+α∆
+
dt
(Xdt )≤ ν

kdt
dt
}.

8: Define the smoothing interval Qdt =

[
min{Xdt − ε

−
dt
,u

k−dt
dt
},max{Xdt + ε

+
dt
,u

k+dt
+1

dt
}
)

.

If u
(k+dt

+1)
dt

is undefined, then set u
(k+dt

+1)
dt

= ∞

9: Create new breakpoints at Xdt and the endpoints of Qdt as needed. Since a
new breakpoint always divides an existing segment, the segment slopes on
both sides of the new breakpoint are the same initially.

Step 4: Perform Smoothing
10: For each segment in the interval Qdt , update the slope according to

νk
dt ,new = α∆dt +(1−α)νk

dt ,old , where ∆dt = ∆
−
dt
(Xdt ) if uk

dt
< Xdt and

∆dt = ∆
+
dt
(Xdt ) otherwise.

11: Adjust ε
−
dt

, ε
+
dt

, α according to step size rules.

12: End

decisions were assessed to determine transition rates from one grade to another. We examined T = 30 time
epochs when implementing the CAVE algorithm.

As this problem instance was examined, repetitions of all variants of the LSTD algorithm produced
substantially different θ vectors, with significantly different solution qualities. For each of the ten runs,
the produced policy was simulated to examine solution quality, and the algorithm that performed the best
in terms of the objective function was selected. The best LSTD algorithm results for each combination of
sampling technique, regression technique, and set of basis functions are shown in Table 1.

Table 1: LSTD Percentage Improvement from Benchmark (Small Problem Instance).

Random Sampling Latin Hypercube Sampling
Ordinary Least Squares Instrumental Variables Instrumental Variables

Basis Functions RIC RSD RIC RSD RIC RSD
4th Order -32.86 -5.39 -11.31 -65.21 8.29 17.61
3rd Order -12.44 -12.05 -12.77 5.44 -8.97 -46.37
2nd Order -12.94 11.59 -11.51 4.83 5.74 21.88
1st Order -102.42 -1025.4 -90.53 -867.5 -277.51 -4769.85

As expected, the use of instrumental variables improved solution quality significantly. Latin hypercube
sampling improved the solution qualities for all sets of basis functions, but improved the solution quality of
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complex sets of basis functions by a more significant margin than those with simpler sets. The algorithm
implementations with LHS, instrumental variables, and either second or fourth order basis functions are the
only LSTD algorithm implementations that are able to provide policies that improve total cost, although
several other implementations show improvements in squared deviation.

When observing the policies generated by the algorithms, it becomes apparent that the LSTD algorithm
simplifies the problem by generating solutions that are only pseudo-dynamic. In effect, at least one of the
decision policies remains static, while the other decision policies are adjusted higher or lower based on the
levels of shortages or overages observed. This limitation is likely due to the value function being unable
to project onto the span of the basis functions.

Table 2: ADP Percentage Improvement from Benchmark (Small Problem Instance).
Algorithm RIC Half-Width RIS Half-Width RIO Half-Width RSD Half-Width

LSTD
Ordinary Least Squares -12.44 1.6 -23.14 3.08 20.93 7.86 -12.05 5.76

Instrumental Variables -12.77 1.3 -23.84 2.48 21.98 6.88 5.44 4.98
Instrumental Variables LHS 8.29 1.16 8.86 2.19 0.65 9.2 17.61 4.2

CAVE Accessions 5.7 1.05 -5.52 2.19 48.96 4.79 35.24 2.86
Accessions & Promotions 0.0 1.81 55.9 1.69 -190.47 20.1 -68.53 11.66

Two implementations of CAVE were examined. The first utilizes m = 4 accession decisions and
n− 1 = 2 promotion decisions; the second implementation only models the m = 4 accessions decisions.
The accessions-only implementation of the CAVE algorithm utilizes the benchmark policies for the n−1= 2
promotion decisions. The results using these two algorithms are shown in Table 2. Allowing the promotion
rates to vary from the benchmark is a relaxation of a problem constraint. Although the relaxation of
a constraint indicates that the variant with promotion decisions should be able to outperform the more
constrained accessions-only model, the reverse is observed. This can be attributed to a high level of
interaction between the promotion and accession decisions that inhibits CAVE’s ability to converge to
a high-quality solution. This result is a weakness given that non-linear interactions also exist between
accession decisions.

For this small problem instance, the LSTD algorithm with fourth order basis functions, instrumental
variables Bellman error minimization, and Latin hypercube sampling outperformed all other algorithms
tested. This variant showed a statistically significant decrease in shortages and a statistically insignificant
decrease in overages, meaning that the improvement was accomplished due to the dynamic nature of
the solution without detrimentally impacting overages or shortages. The CAVE algorithm with accession
decisions only also outperformed the benchmark policy by a statistically significant margin, with performance
comparable to the LSTD algorithm with second order basis functions, instrumental variables, and Latin
hypercube sampling.

4.3 Line of the Air Force, Large Problem Instance - Parameterization & Results

For the large problem instance, the most promising algorithm implementations (i.e., LSTD with 2nd and
4th order basis functions and CAVE with accessions only) were applied to a problem of identical size to the
Line of the Air Force problem. This problem is formulated with 54 AFSCs (m = 54), four grades (n = 4),
and 30 CYOSs (q = 30). For the CAVE algorithm, we let T = 60 due to the maximum 30 year career length.
Three behavioral profiles were generated to represent significant differences among observed behaviors of
different AFSCs, including a high retention profile, a low retention profile, and a standard profile. These
profiles represent the varying levels of demand for the skill sets of different career fields within the USAF.
Each AFSC was assigned to one of these profiles, then randomly increased or decreased in size (in terms
of the number of officers currently in the AFSC) according to a uniform random distribution. Uniformly
distributed unbiased noise was then introduced to the retention rates of the AFSC’s behavioral profile to
generate career fields that are similar, but not identical. This procedure created a heterogeneous mix of
AFSCs with different sizes and retention rates.
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Table 3: ADP Percentage Improvement from Benchmark (Large Problem Instance).

Algorithm RIC Half-Width RIS Half-Width RIO Half-Width RSD Half-Width

LSTD 2nd Order -49.89 0.79 -49.8 0.8 -2837 3791.96 -41.93 1.5
4th Order -61.47 0.87 -30.3 0.71 -63228 8651.6 -779 35.99

CAVE Accessions 2.82 0.9 -32.68 2.88 95.53 3.21 1.97 1.09

As shown in Table 3, none of the LSTD algorithms tested improved upon the benchmark solution. In
addition to the LSTD algorithm failing to generate policies that outperform the benchmark, the subjective
quality of the solutions were low. Many observed policies were stationary over the simulated time, indicating
that the algorithm was unable to map the value function closely enough to modify the policy dynamically,
given the number of observations. This reinforces the earlier observation that the value function does not
appear to project onto the span of the basis functions selected. Selection of alternate basis functions may
improve this solution quality.

The CAVE algorithm demonstrates a statistically significant improvement over the benchmark policy.
For this large problem instance, the total overages were reduced by decreasing the number of accessions
for a small number of accessions by one or two. Overages above maximum allowable end strength were
nearly eliminated, although shortages increased significantly. Further analysis with alternative algorithm
parameter-values should demonstrate potential shortage and overage trade-offs by adjusting the end strength
criticality coefficient and the AFSC criticality coefficients.

5 CONCLUSIONS

This paper presents preliminary research concerning the USAF officer sustainment problem. The intent
of the research is to determine personnel policies (e.g., officer accession and promotion decisions as a
function of current force levels) that decrease the cost of sustaining the officer corps within the USAF in
the long term. We constructed an MDP model of the problem and designed, developed, and tested multiple
ADP algorithms to obtain high-quality personnel policies relative to a benchmark policy based on current
practice at Headquarters, Air Force. While the LSTD algorithm performed well for the small problem
instance we examined, it performed poorly for the larger, full problem instance of interest to the USAF.
Conversely, the CAVE algorithm performed well for smaller problem instances and the larger problem
instance of interest. The CAVE algorithm attained a statistically significant 2.8% improvement in total
discounted cost over the benchmark policy in the large problem instance. In future work, we plan to revisit
the problem formulation and incorporate more elements of the real-world problem. With respect to solution
methodology, we will develop alternative sets of basis functions to further improve the performance of the
LSTD algorithm. Concerning CAVE, we plan to examine different state sampling strategies and examine
the manner in which we change the smoothing interval in an effort to improve performance. Finally, we will
leverage historical data to verify and validate the simulation models that capture the aggregrate behavior
of the USAF officer corps and underlie ADP research efforts such as this one.
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