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ABSTRACT

Many intralogistics systems expose autocorrelated arrival processes with significant influence on the systems’
performance. Unfortunately there are no control strategies available which take this into account. Instead
standard strategies like First Come First Served are applied which lead to systems tending to exhibit long
queues and high volatility, even though these strategies perform well in the case of uncorrelated processes.
So, there is a strong need for control strategies managing autocorrelated arrival processes. Accordingly
this paper introduces HAFI (Highest Autocorrelated First), a new strategy which determines the processes’
priority in accordance to their autocorrelation. The paper focuses on controlling autocorrelated arrival
processes at a merge. The strategies First Come First Served and Longest Queue First will serve as
reference. As a result and in respect to properly designed facilities, HAFI leads to comparatively short
queues and waiting times as well as balanced 95th percentile values of the queue lengths of autocorrelated
input processes.

1 INTRODUCTION AND MOTIVATION

Autocorrelated arrival processes can be found in many domains, e.g. in telecommunications (Taylor 2007,
Ibrahim et al. 2012) or in server-client-systems in the IT-domain (Leland et al. 1994, Baryshnikov et al.
2005, Paul et al. 2011). A discussion of autocorrelated streams in traffic networks and relevant literature
is given by Cheng et al. (2011). Regarding autocorrelation in the field of logistics and intralogistics,
comprehensive literature surveys are provided by Altiok and Melamed (2001), Civelek et al. (2009),
Nielsen (2004), and Rank et al. (2012). Based on a survey the latter states that about 95 % of all input
processes in intralogistics exhibit significant autocorrelation. However, when autocorrelation was found,
the systems’ behavior differed from the case of uncorrelated processes. Usually the performance decreases
which is expressed by e.g. longer queues and cycle times. On a theoretical and analytical basis these
effects are well understood—see for example Runnenburg (1962) or more recently Livny et al. (1993),
Jagerman et al. (2004), Balcioǧlu et al. (2008). From a more practical point of view Pereira et al.
(2012) and Rank et al. (2013) provide case studies indicating and quantifying the remarkable influence
of autocorrelated streams in logistics systems. For example, in case of autocorrelated inter-arrival times
an order picking system consisting of several picking stations, an automated storage and retrieval system,
and some conveyors shows up to 45 % higher cycle times. Additionally, an considerable increase of the
systems’ volatility can be observed. So, the occurrence and influence of autocorrelated streams in queuing
systems seems beyond question. Therefore, there can only be one conclusion: The application of rules
and control strategies, respectively, mitigating the negative effects of correlated arrivals. Unfortunately,
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all of the mentioned sources above concentrate on pointing out the effects but lack of finding or applying
some alternative strategies to First Come First Served (FCFS)—which is in fact not the best choice. So
this paper introduces a novel strategy called HAFI—Highest Autocorrelated First. As the name suggests,
the approach decides about priorities dependent on the processes’ autocorrelation. Even though this idea
can be adopted to other situations and domains, the paper concentrates on intralogistics systems and the
specific case of controlling the priority of autocorrelated streams at a merge. This is because merges are
part of virtually any material handling system and are frequently depicted as bottleneck elements which
noticeably effect facilities’ performance (see e.g. Johnstone et al. 2015). In order to asses and compare
HAFI with alternative strategies, a discrete event simulation study is conducted.

The paper is structured as follows: Section 2 will provide some basics and an overview of related
work. This includes the definition of autocorrelation and the generation of autocorrelated random variates,
a short introduction into relevant control strategies, and a literature review of how autocorrelated arrival
processes are currently handled. Section 3 explains the principle of HAFI and presents the results of a
simulation study evaluating the impact of HAFI. Additionally heuristics to parametrize HAFI are given.
This is followed by a discussion of the results in Section 4. This last section also gives a brief summary
as well as an outlook.

2 BASICS AND RELATED WORK

This section provides a short introduction to autocorrelation and corresponding random number generators
as well as an overview of relevant control strategies in intralogistics systems.

2.1 Autocorrelation and Random Number Generators

For the statistical background, see Box et al. (2008). Autocorrelation is a statistical figure quantifying
the degree of linear dependency a given time series shows with a lagged version of itself. Taking the
observations (xt ,xt+τ) of the time series X with length N and t = 1 . . .N for a lag τ , the sample autocorrelation
coefficients rτ are defined by

rτ =
∑

N−τ

t=1 (xt − x̄)(xt+τ − x̄)

∑
N
t=1 (xt − x̄)2 , x̄ = ∑

i

xi

N
for τ = 0,1,2, . . . ,N−1. (1)

In Section 3 a simulation study is conducted. Corresponding events of the input processes are modeled
on the basis of pseudo random numbers. In this context the generation of autocorrelated variates is
not as straightforward as for uncorrelated ones. The latter usually can be obtained from congruence
generators and the application of transformation techniques like the inverse method (L’Ecuyer 2006, Law
and Kelton 2000). The most common approaches to generate autocorrelated random numbers are Markovian
Arrival Processes (Kriege 2012), Copulae (Nelsen 2006), distortion methods like Transform-Expand-Sample
(Melamed 1991) or Minification and Maxification (Lewis and McKenzie 1991), and autoregressive models
like ARMA introduced in Box et al. (2008). Most of them require iterative user interaction and a high level of
expertise in order to get variates with a desired marginal distribution and autocorrelation function. Therefore
JARTA (Uhlig et al. 2013) was developed. This is a JAVA library and implements ARTA (Autoregressive
To Anything), a generalization of the ARMA approach. JARTA uses an autoregressive base process Zt ,
applies the standard normal cumulative distribution function Φ and the inverse transformation method so
that Yt = F−1

Y [Φ(Zt)] where Y stands for the desired marginal distribution. The numerical search procedure
to determine the correct initial values of Zt is adopted from Cario and Nelson (1996). JARTA requires
no user interaction apart from a definition of the desired target marginal distribution and the variates’
autocorrelation function (for some deeper discussion, see Uhlig et al. 2016).

2959



Rank, Schulze, and Schmidt

2.2 General and Autocorrelation-based Control Strategies

An introduction into control strategies in logistics systems and a taxonomy is given by Gudehus (2012).
Accordingly, there are strategies to accomplish the tasks of dispatching, scheduling, routing and to determine
the right of way. Each category holds a vast number of priority rules which in some cases are specific for
a particular system. Some well known ‘standard’ strategies are e.g. First Come First Served, Last Come
First Served or Random-Order-Of-Service.

In practice a common rule to control priorities at merges is First Come First Served (Furmans et al.
2012). Based upon experience, Arnold et al. (2004) consider FCFS as the best strategy because of its
simplicity, transparency, and fairness to equally allocate the work load. Therefore FCFS will serve as a
reference to HAFI.

To the best of our knowledge there are no publications about approaches to control autocorrelated
input processes at merges. There neither exists literature generally considering the control of autocorrelated
processes in intralogistics systems. We are only aware of Mi et al. (2009) and earlier publications of the
authors. On the fields of informatics they describe algorithms to decide whether server requests should be
delayed or even rejected. The decision is made on the basis of the autocorrelation in service times. Some
similar research can be found in Zhang et al. (2008). However, in the context of this paper the approaches
are not applicable because autocorrelation is assumed to occur at the arrival process in non-closed systems
and, even more importantly, in intralogistics it is hardly possible to delay or reject jobs.

Furthermore, a literature review reveals no publications providing an analytical approach adequately
tracking queuing behavior at merges (nevertheless, the interested reader is referred to Balcioǧlu et al.
2008 who investigate the superposition of Markovian arrival processes or Boon and van der Mei 2011
who provide an excellent literature review about polling models). This holds for uncorrelated as well as
autocorrelated input processes (see also Table 2 in Furmans et al. 2012). So for assessment of the control
strategies a simulation study is conducted (see paragraphs subsequently).

3 HAFI—HIGHEST AUTOCORRELATED FIRST

This section introduces HAFI and evaluates its performance. Prior, remarks and basic thoughts are given.

3.1 Preliminary Remarks

The simulator AutoModTM is applied. A sketch of the model and annotations are shown in Figure 1. The
conveyor is assumed to be an accumulating one. The marginal distribution of the arrivals processes is
exponential with identical mean and variance. The utilization of the merge Λ and its streams’ arrival rate
λd of direction d are denoted as Λ = (λnorth, λsouth, λwest). It holds Λ = ∑d λd < 1. For random number
generation JARTA is applied (see Section 2.1). To conform to most of the sources stated in Section 1, only
the autocorrelation of lag 1 r1,d are specified so that R = (r1,north, r1,south, r1,west) simplifies annotation.

north

λnorth , r1,north

south

λ south
, r1,so

uth

westλwest, r1,west

legend:
— d — : arrival process of direction d

λd : arrival rate of direction d
r1,d : autocorrelation coefficient of lag 1 of direction d

with: d ∈ {north,south,west}

Figure 1: Model of merge with annotations.
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In order to evaluate the performance of a strategy queue lengths and dwelling times are used. Doing
so two different perspectives are covered: Usually an operator cares about cycling times rather than
dimensioning a facility and its buffer spaces as small as possible whereas planners think vice versa. In this
respect it is common to design buffer spaces in accordance to the queue lengths’ expected 95th percentile
of their particular cumulative distribution function (Sunarjo et al. 2007). So, for the following studies a
strategy performs well when it leads to

• small queue lengths,
• small dwelling times (expressed by delay), and
• equal values of the queue lengths’ expected 95th percentile.

The last mentioned item is important because autocorrelated arrivals tend to show longer queues than
uncorrelated ones when FCFS is applied (see Section 1 and subsequent paragraphs). In case the buffer
spaces of the lanes have to be dimensioned equally but their autocorrelation function significantly differ,
it will lead to the issue of deciding to potentially under- or oversize the system in respect to the particular
arrivals processes.

In order to prove and quantify the effect of different queue lengths mentioned above, Table 1 is used.
It shows the queue lengths’ 95th percentile of the streams when the northern arrival process shows varying
autocorrelation. The autocorrelation coefficient is chosen in accordance to earlier studies’ observations
(see sources in Section 1). Each stream of direction d is parametrized with an arrival rate λd = 0.3. The
figures are mean values of about 50 seeds each.

Table 1: 95 % quantile of input processes’ queue lengths when FCFS applies.

direction d autocorrelation of the northern input process—r1,north

0.0 0.2 0.3 0.4 0.5 0.6 0.8

north 8 10 12 15 18 22 50
south 8 8 8 8 8 8 9
west 8 8 8 8 8 8 9

experiments’ parameters:
strategy = FCFS
R = ({0, . . . ,0.8},0,0)
Λ = (0.3,0.3,0.3)

As expected, when autocorrelation gets higher the 95 % quantile of the northern queue length increases
whereas the uncorrelated southern and western stream constantly show a length of 8 and 9 for r1,north = 0.8,
respectively. Even with moderate autocorrelation of r1,north = 0.2, the difference between north and
south/west already amounts to 25 %. Further, approximately from r1,north = 0.4 on, the northern buffer
space has to be designed at least twice as big as the southern and western one.

A first conclusion to get balanced queue lengths would be to give priority to the stream which currently
shows the longest queue. This Longest Queue First (LQF) strategy and its optimality in queuing behavior
is discussed e.g. in Gail et al. (1993). Table 2 shows the results in case same experiments of Table 1 are
done with LQF instead of FCFS.

Table 2: 95 % quantile of input processes’ queue lengths when LQF applies.

direction d autocorrelation of the northern input process—r1,north

0.0 0.2 0.3 0.4 0.5 0.6 0.8

north 7 8 9 10 11 12 21
south 7 8 9 10 11 12 20
west 8 9 9 10 11 12 21

experiments’ parameters:
strategy = LQF
R = ({0, . . . ,0.8},0,0)
Λ = (0.3,0.3,0.3)
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According to Table 2, for autocorrelated input processes LQF indeed leads to perfectly balanced values
of all queue lengths’ 95 % quantiles—apart from some minor differences caused by rounding. However,
this advantage is at the expense of dwelling time in queues. Table 3 allows to compare the mean time a
job is delayed caused by queuing.

Table 3: Mean delay caused by queuing.

strategy autocorrelation of the northern input process—r1,north

0.0 0.2 0.3 0.4 0.5 0.6 0.8

FCFS 22 25 28 31 34 41 74
LQF 34 37 38 41 45 50 83

experiments’ parameters:
strategy = {FCFS, LQF}
R = ({0, . . . ,0.8},0,0)
Λ = (0.3,0.3,0.3)

Taking FCFS as a basis, LQF performs up to 50 % worse in mean delay when no or only minor
(r1,north = 0.2) autocorrelation in the northern input process is observed. The relative difference decreases
from about 35 % to 10 % as the autocorrelation coefficient r1,north increases.

In short: For the task of controlling autocorrelated streams at merges, FCFS leads to different queue
lengths and short dwelling times—for LQF it is vice versa. To resolve the discrepancy, HAFI is suggested
(see subsequent sections).

3.2 Basic Principle of HAFI

The main concept of HAFI intends to give input processes priority in accordance to their (first lag)
autocorrelation. That is because the higher the autocorrelation, the higher is the likelihood of batch arrivals
which results in temporarily long queues when no right of way is given. HAFI bases on FCFS and gets
active if direction-wise a specific queue length is exceeded. The particular threshold td of the direction d
depends on the processes’ autocorrelation. In short, the higher the autocorrelation the lower the threshold
(a more detailed discussion is given in Section 3.3). If more than one queue exceeds its threshold, then
the stream with the highest offset gets priority. As long as no threshold is exceeded, FCFS applies.
Subsequently the vector of the thresholds is denoted as T = (tnorth, tsouth, twest) and corresponding queue
lengths as qnorth, qsouth, qwest.

Suppose T is known then for HAFI following procedure applies. Each time an entity enters a queue
qd its direction d is saved in an ordered list A (remark: lists are subsequently denoted with capital letters
and their indexing starts at 1):

Pseudo Code 1: Keeping order of arrivals.
add d to A at end # chronological order of arrivals depending on their directions

Each time a entity wants to enter the merge zone, following pseudo code applies to decide which
direction gets right of way:

Pseudo Code 2: HAFI algorithm.
# D: list of directions with arrival rate > 0
for each d in D {
set xd = qd - td

if (xd > td){
add xd to X
}
}

if(length(X) > 0){
set X = sortDescending(X)
set p = getDirection(X[1]) # corresp. d of xd
set X = NULL # clear X
}
else{
set p = A[1] # First Come First Served
}

remove p from A at beginning
give p right of way
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It becomes obvious that the goodness of HAFI depends on the determination of T . In this connection,
Figure 2 gives a general impression how the determination of T influences the results. For simplification,
only the northern arrival process shows autocorrelation so that tsouth = twest = ∞ which means the southern
and western stream will never get priority because their queue lengths exceed a specific value (see Pseudo
Code 2). For the experiment it holds Λ = (0.3,0.3,0.3).
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(c) tnorth = 10

Figure 2: The impact of varying thresholds tnorth on mean delay and the cumulative distribution function
of the queue length.

As it can be expected, the lower the HAFI parameter tnorth the higher the prioritization of the northern
stream and vice versa. Both, an underestimation (Figure 2a) as well as an overestimation (Figure 2c) of
tnorth leads to suboptimal results. In either case the 95 % queue length quantiles of the uncorrelated streams
significantly differ from the autocorrelated northern one. In addition, the values of the mean delay are
higher for tnorth = 3 and tnorth = 10 compared to tnorth = 7. With overvaluing tnorth the results start to get
similar with FCFS (compare also to Table 1). Undervaluing (tnorth = 7) leads to bad values at all.

Recapitulating the last paragraphs, the goodness of HAFI essentially hinges on T . Unfortunately we are
currently not able to give a closed solution to exactly determine T . Nevertheless, in subsequent Section 3.3
a heuristic will be given.

3.3 Determination of HAFI’s Parameters and Numerical Results of a Case Study

This sections presents a heuristic to dynamically determine the thresholds in T . This is followed by
numerical results of applying DyDeT for HAFI.

3.3.1 Dynamic Heuristic to Determine Thresholds

The acronym DyDeT stands for Dynamic Heuristic to Determine Thresholds T . The specific thresholds td
are parameters of HAFI. DyDeT is divided into three phases. It holds for the case input processes show
stationarity and there are three input processes as a maximum. Additionally, only positively autocorrelated
arrival processes are considered (see also Section 4). For better explanation of DyDeT, a new rank index
i ∈ {1,2,3} replaces the index d. It refers to the order of the stream’s autocorrelation lag one coefficient
values.

In phase one an initial T is determined. During conducting the simulation study in preparation of this
paper, most of the T have been found by trial and error. When trying to find a connection between T and
the systems’ parameter it turned out that with only minor error the highest autocorrelated stream’s threshold
t1 can be estimated from the median of the aggregated queue length of all streams in case the merge is
controlled by FCFS and LQF, respectively. Table 4 lists optimal t1 got by trial and error and median queue
length values of different model parametrizations. For simplification, r1,2 = r1,3 = 0 is assumed.
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Table 4: Approximate the optimal t1 from the median of the aggregated queue length of all streams.

utilization
of merge

autocorrelation of the highest autocorrelated
input process—r1,1

0.2 0.4 0.6 0.8

t1 | median queue length FCFS | median queue length LQF

0.40 02 | 02 | 02 02 | 02 | 02 02 | 02 | 02 02 | 02 | 02
0.60 02 | 03 | 04 02 | 03 | 04 02 | 03 | 04 02 | 03 | 04
0.80 04 | 05 | 07 04 | 05 | 07 04 | 05 | 07 05 | 06 | 08
0.90 06 | 07 | 10 07 | 08 | 10 09 | 09 | 12 12 | 12 | 15
0.96 15 | 15 | 19 17 | 20 | 22 20 | 23 | 29 30 | 45 | 52

experiments’ parameters:
strategy = {HAFI, FCFS,

LQF}
R = ({0.2, . . . ,0.8},0,0)
Λ = ({0.13, . . . ,0.32},

{0.13, . . . ,0.32},
{0.13, . . . ,0.32})

T = ({2, . . . ,30},∞,∞)

According to Table 4, in the given range of autocorrelation coefficients and for utilization levels ≤ 0.9
the optimal t1 for HAFI differs only by 1 at maximum from the median queue length of a corresponding
model where FCFS is applied. When a merge utilization of 0.96 and autocorrelation coefficients > 0.4 are
observed, this simple approximation starts to get faulty. In that case a reduction of the median value of
about 10 % will lead to acceptable results. For an utilization of 0.96 and r1,1 = 0.8 the correction factor
is 50 %. In a similar manner, reducing the median queue length of LQF by one third also seems to be a
good estimator for the optimal t1.

In order to estimate the initial t1 in practice, the first lag autocorrelation coefficients r1,i and their
ranks i, respectively, as well as the aggregated queue length have to be determined empirically by either
running the system with FCFS or LQF strategy for a certain period of time (for a detailed discussion
how to estimated figures statistically correct, see Law and Kelton 2000, chapter 9—in the present case we
recommend a time series with a minimum length of 5000). The initial thresholds t2 and t3 can be derived
from t1. As already mentioned, if an input process does not show positive autocorrelation, its threshold is
set to infinity and does not change anymore. Pseudo Code 3 summarizes phase one of DyDeT.

Pseudo Code 3: DyDeT phase one.
set t1 = q50%, LQF/1.3 # see table 4

if(r1,3 = r1,1){
for each i in (2, 3) {
set ti = t1
}
}
else if(r1,2 = r1,3){
for each i in (2, 3) {
set ti = t1 * 2
}
}

else if(r1,1 = r1,2){
set t2 = t1
set t3 = t1 * 2
}
else{
set t2 = t1 * 1.5
set t3 = t1 * 2
}

for each i in (1, 2, 3) {
if(r1,i <= 0 )
set ti = ∞

}

Remember, in phase one of DyDeT the merge was controlled via FCFS or LQF in order to set initial
values ti. From phase two on the merge is controlled via HAFI and the adjustment of the correct relationship
between the thresholds t1 and t2 starts. Every period of events—we suggest at least 1000 passes of the
merge—the 95th percentiles of the input processes’ queue lengths qi,95 %, i∈ {1, 2} are checked for equality.
We propose a deviation of 20 % in order to admit inequality (subsequently denoted as � or �). If they
differ, then the corresponding ti will be decremented. This is iteratively done as long as q95 %, 1 ≈ q95 %,2
is found—see Pseudo Code 4.
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Pseudo Code 4: DyDeT phase two.
if(q95%, 1 >> q95%, 2){
decrement t1 by 1
}

else if(q95%, 1 << q95%, 2){
for each i in (2, 3) {
decrement ti by 1
}
}

In phase three, if r1,2 6= r1,3, the thresholds t1 and t2 are stepwise adjusted so that q95 %,1≈ q95 %,2≈ q95 %,3.
For this purpose it is regularly checked if the 95th percentiles of the input processes’ queue lengths equal
each other. Again, we suggest period of at least 1000 passing elements. Pseudo Code 5 shows the algorithm.

Pseudo Code 5: DyDeT phase three.
if(q95%, 1 >> q95%, 3){
for each i in (1, 2) {
decrement ti by 10 %
floor ti # round down
}
}
else if(q95%, 1 << q95%, 3){
for each i in (1, 2) {

set viTmp = ti
increment ti by 10 %
floor ti # round down

# ensure threshold is at least inc. by 1
if(viTmp = ti){
increment ti by 1
}
}
}

After each iteration it is checked whether ti ≥ ti+1, i ∈ {1,2} holds. If so and if the initial ti 6= ti+1 then
ti is decremented by 1 until the mentioned condition is not true any more. This ensures the compliance of
the ranks of the streams’ lag 1 autocorrelation coefficients and their corresponding thresholds. In addition
and eventually it is ensured that t1 lies within an interval ±25% of its initial value by stepwise increasing
or decreasing it—the same amount of increment and decrement, respectively, it is applied to t2 and t3.

As described above, the adjustment steps do only apply if the 95 % queue length quantiles of the
streams differ significantly. In Section 1 it is mentioned that systems with autocorrelated arrival processes
tend to show higher volatility. In order to smoothing this effect and to ensure an adjustment does not
base on a single outlier, ”goodness/badness counters” c1,2 and c1,2,3 are introduced which are checked and
set after each period. c1,2 controls the relationship between q95 %,1 and q95 %,2. So, after each period, if
q95 %,1� q95 %,2 holds, c1,2 is incremented—c1,2 is decremented in the opposite case of q95 %,1� q95 %,2.
Only if c1,2 /∈ [−2,2] then phase two described above is applied and c1,2 is set to 0 as well as c1,2,3 (see
paragraph below) is decremented by 1.

c1,2,3 is used to control the application of the adjustments described in phase three. The counter gets
incremented if q95 %,1 ≈ q95 %,2 ≈ q95 %,3 and decremented in any other case. As soon as c1,2,3 gets below
zero, thresholds are redefined as mentioned and c1,2,3 is set to 0.

The following Figure 3 exemplarily shows the development of the HAFI thresholds in T by applying
the heuristic DyDeT described before. The utilizations are given by λnorth = λsouth = λwest = 0.3 and the
autocorrelation coefficients are r1,north = 0.4, r1,south = 0.2, and r1,west = 0.0. The corresponding optimal
thresholds TTaE were found by trial and error and serve as reference. They are tnorth = 6, tsouth = 9, twest = ∞.

In respect to Figure 3 the given heuristic DyDeT determines and dynamically adjusts the particular
thresholds necessary to apply HAFI quite well. After the initial phase till period 5 the heuristic values only
differ minorly from the optimal ones (compare the dashed with the solid lines). This discrepancy is caused
by temporarily slightly different system parameters in a period and the fact that the thresholds may get
adjusted accordingly. However, when it comes down to a direct comparison of applying TTaE and TDyDeT,
the differences are negligible: The mean delay of HAFITaE is 37.6 and the 95 % queue length quantiles of
the three streams are 12, 12, and 13 whereas HAFIDyDeT leads to a mean delay of 38.6 and queue lengths
of 12, 13, and 12. Further numerical results are given in the next paragraph.

3.3.2 Numerical Results

In the following numerical examples of applying HAFI are given. Table 5 shows results of the same
simulation study as before but applying HAFI and the corresponding dynamic heuristic DyDeT—it is
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Figure 3: Application of DyDeT: Heuristic to dynamically determine and adjust thresholds for HAFI.

denoted as HAFIDyDeT. Furthermore the table lists HAFITaE which is HAFI with the best static thresholds
which could be found by trial and error. For direct comparison with FCFS and LQF, see Table 1, 2 and 3.

Table 5: 95 % quantile of input processes’ queue lengths and mean delay when HAFI applies.

strategy autocorrelation of the northern input process—r1,north

0.0 0.2 0.3 0.4 0.5 0.6 0.8

95 % quantile input processes queue lengths: north | south | west

HAFITaE 8 | 8 | 8 9 | 8 | 8 10 | 9 | 9 11 | 09 | 10 13 | 12 | 11 15 | 13 | 14 24 | 25 | 22
HAFIDyDeT 8 | 8 | 8 9 | 9 | 9 10 | 9 | 9 11 | 10 | 10 12 | 12 | 12 13 | 13 | 14 18 | 21 | 23

mean delay

HAFITaE 22 25 28 31 37 42 75
HAFIDyDeT 22 26 28 31 36 42 68

experiments’ parameters:
strategy = {HAFITaE,

HAFIDyDeT}
R = ({0, . . . ,0.8},0,0)
Λ = (0.3,0.3,0.3)
T = ({7, . . . ,∞},∞,∞)

Obviously, HAFI combines the advantages of LQF and FCFS which results in well balanced 95th

percentile values of the streams’ queue lengths and a mean delay on the level of FCFS. With taking rounding
errors into account, the difference between the 95 % quantile values for the particular autocorrelation levels
is about 10 % at maximum. That is a little higher than observed with LQF (compare Table 5 with Table 2)
even though LQF sometimes also shows some minor differences in 95 % quantile values. The deviations of
the mean delay values between HAFI and FCFS are negligible (compare Table 5 with Table 3). Comparing
HAFITaE with HAFIDyDeT, the results indicate that DyDeT determines the thresholds as good as trial and
error can. From a practical point of view there are only insignificant differences.

HAFI also does a good job when more than one stream shows autocorrelated arrivals. Table 6 shows
the results of three different, randomly chosen sets of R for a given set of utilization Λ = (0.3,0.3,0.3)
when HAFI, FCFS and LQF are applied.

According to Table 6, applying HAFI leads to well balanced 95th percentiles of the input processes’
queue lengths. With only minor discrepancy the values are on the level of LQF. For R = (0.8,0.6,0.2)
HAFI tends to show longer particular queues then LQF. Compared to FCFS, HAFI performs better in any
respect. The mean waiting times of HAFI are on a similar level or even slightly shorter. More in detail,
HAFITaE and its static thresholds shows less inequalities in queue length then HAFIDyDeT. The maximum
discrepancies are 2 and 4 units. On the other hand, HAFIDyDeT performs about 2 time units better in
mean delay. In any case, the survey presented above shows that HAFI leads to remarkable results in order
to control a merge with autocorrelated arrivals. The Highest Autocorrelated First strategy combines the
advantages of FCFS (small delays) and of LQF (balanced queue lengths).
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Table 6: 95 % quantile of input processes’ queue lengths and mean delay.

strategy autocorrelation input processes: (r1,north, r1,south, r1,west)

(0.6,0.4,0.0) (0.8,0.6,0.2) (0.6,0.4,0.4)

95 % quantile input processes queue lengths: north | south | west

HAFITaE 16 | 15 | 16 29 | 31 | 29 18 | 19 | 19
HAFIDyDeT 16 | 16 | 14 27 | 31 | 30 18 | 20 | 19
FCFS 25 | 15 | 09 54 | 29 | 13 26 | 17 | 17
LQF 15 | 15 | 15 26 | 25 | 25 17 | 17 | 17

mean delay

HAFITaE 50 100 62
HAFIDyDeT 48 097 60
FCFS 52 103 62
LQF 61 108 72

experiments’ parameters:
strategy = {HAFITaE,

HAFIDyDeT,
FCFS, LQF}

R = ({0.6,0.8},{0.4,0.6},
{0,0.2,0.4})

Λ = (0.3,0.3,0.3)
T = ({8, . . . ,12},

{10, . . . ,24},
{24, . . . ,∞})

4 SUMMARY, DISCUSSION, AND OUTLOOK

Autocorrelated input processes can be observed in nearly any queuing system and hence in intralogistics as
well. Up to now, for some inexplicable reasons, there have been no strategy to appropriately control these
processes. ‘Traditional’, popular/established control strategies like First Come First Served or Longest
Queue First are rather unable to properly manage autocorrelated input processes which evidently lead to
bad system performance like long queues and delays. So HAFI—Highest Autocorrelated First—and a
corresponding heuristic DyDeT to dynamically determine its parameters were introduced in this work.
The main principle of HAFI intends to determine the input processes’ priority in accordance to their
autocorrelation function. It therefore combines the strengths of First Come First Served and Longest Queue
First which serve as reference strategies. By applying HAFI to control merges, well balanced queue lengths
of the streams and minimal delays can be achieved. This is only true, if direction-wise the thresholds T to
activate HAFI are appropriately chosen. These depend on the system’s utilization and the input processes’
autocorrelation functions which results in some effort determining them. In this regard, if considerably
wrong thresholds are applied the system behavior can even get worse compared to the application of FCFS
or LQF. Unfortunately we currently can not derive T analytically. Nevertheless, we give a heuristic to
determine T . A comprehensive simulation study revealed strong evidence that for each merge system with
a specific utilization and autocorrelated streams there exists a set of thresholds which lead to good/optimal
results.

Furthermore, HAFI and DyDeT have only been tested for stationary processes. Due to an upper
and lower border which hinders our heuristic DyDeT to extensively adjust the thresholds, the algorithm is
restricted to stationary systems. For some facilities in practice this constraint may be too hard because of e.g.
diurnal variations in utilization. However, this procedure helps to spot outliers and deduct HAFI parameters
from empirical time series. Further, if the initial T is supposed to be derived solely from the median queue
length of a system driven by FCFS or LQF the given approximations start to get error-prone for merge
utilization levels close to 1 and autocorrelation coefficients > 0.4. Nevertheless, from our experience this
should not be a big deal for the vast majority of facilities. This also applies for the restriction of DyDeT
to determine the particular thresholds of a merge with three input processes as a maximum.

Additionally, as already mentioned, in the context of HAFI only positively autocorrelated arrival
processes are considered. This is because negatively correlated streams usually do not have an negative
effect on systems’ performance—quite to the contrary, they lead to better performance—and from a
quantitative point of view their influence is low. Future work will concentrate on adopting the main idea of
HAFI—to prioritize autocorrelated processes—to other situations like e.g. dispatching tasks. Additionally
the determination of optimal thresholds will get attention to find something more robust than a heuristic.
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Balcioǧlu, B., D. L. Jagerman, and T. Altiok. 2008. “Merging and Splitting Autocorrelated Arrival Processes
and Impact on Queueing Performance”. 65 (9): 653–669.

Baryshnikov, Y., E. Coffman, G. Pierre, D. Rubenstein, M. Squillante, and T. Yimwadsana. 2005. “Pre-
dictability of Web-Server Traffic Congestion”. In 10th International Workshop on Web Content Caching
and Distribution, 97–103.

Boon, M., and E. van der Mei, R.and Winands. 2011. “Applications of Polling Systems”. 16 (2): 67–82.
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control.

Fourth ed. Hoboken: Wiley.
Cario, M. C., and B. L. Nelson. 1996. “Autoregressive to Anything: Time-Series Input Processes for

Simulation”. Operations Research Letters 19 (2): 51–58.
Cheng, T., J. Haworth, and J. Wang. 2011. “Spatio-temporal Autocorrelation of Road Network Data”.

Journal of Geographical Systems 14 (4): 389–413.
Civelek, I., B. Biller, and A. Scheller-Wolf. 2009. The Impact of Dependence on Queueing Systems. Working

Paper, Carnegie Mellon University, Pittsburgh.
Furmans, K., E. Ozden, J. Stoll, M. Epp, T. Schmidt, I. Meinhardt, and F. Schulze. 2012. “Analysis of

Material Handling Systems Based on Discrete Time Design Modules”. In Proceedings of the 12th
International Material Handling Research Colloquium, 156–174.

Gail, H. R., G. Grover, R. Gurin, S. L. Hantler, Z. Rosberg, and M. Sidi. 1993. “Buffer Size Requirements
under Longest Queue First”. Performance Evaluation 18 (2): 133–140.

Gudehus, T. 2012. Logistik 1: Grundlagen, Verfahren und Strategien. Berlin, Heidelberg: Springer.
Ibrahim, R., N. Regnard, P. L’Ecuyer, and H. Shen. 2012. “On the Modeling and Forecasting of Call

Center Arrivals”. In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, 23:1–23:12. Berlin: Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.
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