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ABSTRACT 

Pipe spool fabrication is the most vital process to the successful delivery of industrial construction project. 
Due to the various combinations of pipe attributes in terms of Nominal Pipe Size (NPS), Pipe Schedule, 
and material, it is hard for practitioners to estimate the pipe welding quality performance based on the 
available historical data. This paper aims to develop a Bayesian Inference based simulation approach to 
assist making good estimates of welds fraction nonconforming for proposing a new project to clients. In 
this proposed approach, the pipe welding inspection process is first modeled as a Bernoulli process. 
Utilizing the tracked historical inspection data, Jeffreys Intervals are estimated for determining the 
distributions of welds fraction nonconforming. These distributions can serve as the inputs for Monte 
Carlo Simulation to incorporate uncertainties for fabricators’ decision-making process. The simulation 
results demonstrate good reliability and accuracy compared to the actual project welds repair rates.    

1 INTRODUCTION 

ISO 9000, as a series of quality management standard, has been implemented to obtain improvements in 
construction quality management all over the world (Chini and Valdez 2003). In ISO 9000, quality is 
defined as the degree to which a set of inherent characteristics fulfill requirements (Hoyle 2001). For 
construction contractors, poor quality performance always leads to penalties, increased rework cost and 
time, and productivity loss (Battikha 2002). Consequently, poor quality performance will negatively 
impact the companies’ reputation and competitiveness in the market (Yates and Aniftos 1997; Jaafari 
2000). 

Over the past few decades, the industrial construction method has been widely implemented in lieu of 
the conventional stick-built construction in the Alberta oil sands region. Not only can it minimize the time 
and cost of onsite construction in northern Alberta’s harsh weather conditions, it can also improve the 
safety and quality performance of the project. Industrial construction has been described as a method of 
construction involving the large-scale use of offsite prefabrication and preassembly for industrial facilities, 
such as petroleum refineries, petrochemical plants, nuclear power plants, and oil/gas production facilities 
(Barrie and Paulson 1992). Pipe spool fabrication is an early process of industrial construction projects 
and is vital to the success of entire project delivery (Wang et al. 2009). Pipe spools are typically built in a 
fabrication shop through cutting, fitting, welding, quality inspection, and other processes according to the 
engineering designs (Song et al. 2006). Welding, as the main operation within pipe spool fabrication, 
needs to be sampled and inspected to fulfill the quality requirements. Nondestructive examination (NDE) 
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is a basic requirement in fabrication quality control process and is commonly used to detect 
discontinuities in welds without causing any damage to the pipe (ASME 2005). 

Many of computer-based quality management systems have been developed for quality management 
purposes. For example, Battikha (2002) proposed a general construction quality management decision 
system named QUALICON derived from the ISO 9001 standard. In practice, industrial fabricators 
sometimes implement customized quality management systems to track inspection results, such as 
AcuTrack (AbouRizk 2006). With the help of those systems, the companies using them have collected 
huge amounts of weld inspection data during the fabrication process over the past few years. However, 
practitioners have not made good use of the collected data to extract useful information for understanding 
and forecasting their welding quality performance.  

Construction simulation is defined as “the science of developing and experimenting with computer-
based representations of construction systems to understand their underlying behavior” (AbouRizk 2010). 
As the processes of construction projects are complex and uncertain, it is important to have physically 
accurate inputs from actual operation processes. The data tracked by the quality management system 
provides an opportunity to perform better simulation in terms of reliability and accuracy. The overall 
purpose of this research is to develop a data-driven simulation method to help fabricators better 
understand and estimate pipe welding quality performance, quantitatively. The detailed objectives are 1) 
to establish an analytical model for modeling the weld inspection process and inferring fraction 
nonconforming for a specified type of weld; 2) to develop a data-driven simulation model for estimating 
the fraction nonconforming (i.e., repair rate) based on a given number of welds, and welds attributes (e.g., 
NPS, Pipe Schedule, and material); and 3) to create sound simulation results in format of visualized 
statistical summary to reduce the interpretation load on practitioners.  

The remainder of the paper is organized as follows. In the next section, a three-step Bayesian 
Inference based simulation model is developed to illustrate the inspection process, infer the historical 
fraction nonconforming, and simulate the fraction nonconforming. In the subsequent section, a case study 
is presented in a detailed manner to demonstrate and validate the outcomes from the proposed Bayesian 
Inference based simulation approach. Finally, benefits and challenges of the proposed approach are 
discussed.   

2 METHODOLOGY 

To achieve the research objective, a hybrid model is needed to incorporate 1) inspection process modeling; 
2) Bayesian Inference for fraction nonconforming; and 3) fraction nonconforming estimate. Figure 1 
illustrates the hybrid Bayesian Inference based simulation model, in which three steps are included. The 
modeling steps, inputs, and outputs are shown in Figure 1. Detailed introduction of each step is discussed 
as follows.  
 

Step 1. Inspection Process Modeling Step 2. Bayesian Inference for Fraction 
Nonconforming 

Step 3. Fraction Nonconforming 
Estimate

Bernoulli Process Monte Carlo Simulation

Bayesian 
Statistics

Real-time 
Inspection Data

Posterior 
Distribution

Jeffreys Interval Estimation

Binomial 
Proportion p

Random 
Sampling

PDF, 
CDF

Decision 
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Figure 1: Workflow of the Bayesian Inference based simulation model. 

2936



Ji and AbouRizk 
 

2.1 Inspection Process Modeling  

In the pipe welds inspection process, the desired outcome is usually called “success,” and the other 
outcome is often called “failure.” When one weld fails the inspection, it needs to be repaired and 
inspected until passing the inspection. The inspection outcome 𝑋𝑋 can be treated as a Bernoulli random 
variable with probability function. 
 

𝑃𝑃(𝑋𝑋) = �
𝑝𝑝

(1 − 𝑝𝑝) = 𝑞𝑞       𝑥𝑥 = 1
𝑥𝑥 = 0 (1) 

 
Variable 𝑋𝑋 takes on the value 1 with probability 𝑝𝑝 and the value 0 with probability(1 − 𝑝𝑝) = 𝑞𝑞. A 

realization of this random variable is called a Bernoulli trial. The sequence of Bernoulli trials is a 
Bernoulli process. The number of failed inspections 𝐷𝐷 has a binomial distribution 𝐵𝐵(𝑛𝑛, 𝑝𝑝). 

The fraction nonconforming of pipe welds is defined as the ratio of the number 𝐷𝐷 of nonconforming 
welds in the sample to the sample size 𝑛𝑛 as shown in Eq. (2). 

 

�̂�𝑝 =
𝐷𝐷
𝑛𝑛

 (2) 

 
�̂�𝑝 is an estimate of the true, unknown value of the binomial variable 𝑝𝑝, which represents the fraction 

nonconforming of the sampled pipe welds. The probability distribution of  �̂�𝑝  is obtained from the 
binomial distribution. 

 

𝑃𝑃{�̂�𝑝 ≤ 𝑎𝑎} =  𝑃𝑃 �
𝐷𝐷
𝑛𝑛
≤ 𝑎𝑎� = 𝑃𝑃{𝐷𝐷 ≤ 𝑎𝑎𝑛𝑛} = ��𝑛𝑛𝑘𝑘�

⌊𝑎𝑎𝑎𝑎⌋

𝑘𝑘=0

𝑝𝑝𝑘𝑘(1− 𝑝𝑝)𝑎𝑎−𝑘𝑘 (3) 

 
Furthermore, the mean and variance of  �̂�𝑝 can be calculated as Eq. (4) and Eq. (5). 
 

𝜇𝜇𝑝𝑝� = 𝑝𝑝 (4) 
  

𝜎𝜎𝑝𝑝�2 =
𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛
 (5) 

 

2.2 Bayesian Inference for Fraction Nonconforming  

For inferring the fraction nonconforming, it is necessary to obtain a range of values that covers the true 
fraction nonconforming (Nicholson 1985). Confidence intervals are the most common options to estimate 
the margin of sampling error. The Wald’s interval, Wilson interval, and Agresti-Coull Interval are the 
classical methods for setting confidence interval of Binomial distribution (Brown et al. 2001). However, 
the authors claim that credible interval is superior to the conventional confidence interval. The detailed 
comparison is discussed as follows.  

2.2.1 Confidence Interval versus Credible Interval 

In statistics, both confidence and credible intervals can be defined for a variable 𝑋𝑋 as 𝑃𝑃{𝑙𝑙 ≤ 𝑋𝑋 ≤ 𝑢𝑢} =
100(1− 𝛼𝛼)% . Where 𝑙𝑙  is the lower interval limit, and 𝑢𝑢  is the upper interval limit. However, the 
interpretation for confidence interval and credible interval is conceptually different. A confidence interval 
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is a range of values designed to include the true value of the variable with the tolerance probability of 
100(1− 𝛼𝛼)% .  

Bayesian approaches define the problem in a different way. A Bayesian method assumes the 
variable’s value is fixed but has been chosen from some probability distribution, known as the prior 
probability distribution. It starts with a prior distribution of the variable, which represents the estimator’s 
belief about the variable before any observation, and the posterior distribution is the updated belief about 
the variable after observation.  

The Bayesian inference is simpler and straightforward. Data are collected and then utilized to 
calculate the probability of different values of the variable given the data. This new probability 
distribution is called the posterior probability. Bayesian approaches can summarize their uncertainty by 
giving a range of values on the posterior probability distribution that includes 100(1 − 𝛼𝛼)%  of the 
probability. This is called a 100(1 − 𝛼𝛼)%  credible interval. Credible interval serves a summary of 
posterior information. It has more meaningful interpretation than the confidence interval. Also, once the 
posterior sample has been generated, it has advantages to derive all other statistics such as mean, median, 
variance and all quantiles, which can be used as the inputs of Monte Carlo Simulation. The Bayesian 
posterior could be used to answer decision makers’ questions more directly and intuitively.  

2.2.2 Bayesian Inference 

Bayesian Inference is a systematic way of updating information as more observations become available 
(Gelman et al. 2003). Bayesian Inference derives the posterior probability as a consequence of two 
antecedents, a prior probability and a likelihood function (Gelman et al. 2003). In this research, the 
parameter of interest is the fraction nonconformance 𝑝𝑝. The prior distribution of 𝑝𝑝 is 𝑃𝑃(𝑝𝑝) and summaries 
what is known about 𝑝𝑝 before the experiment is carried out. The likelihood function 𝐿𝐿(𝑝𝑝) provides the 
distribution of the data 𝑥𝑥  given the fraction nonconformance 𝑝𝑝 . The posterior distribution 𝑃𝑃(𝑝𝑝|𝑥𝑥) 
indicates the information in the data 𝑥𝑥 together with the information in the prior distribution. 𝑃𝑃(𝑥𝑥) is the 
marginal distribution of the data 𝑥𝑥. Based on Bayes’ Theorem, the posterior distribution 𝑃𝑃(𝑝𝑝|𝑥𝑥) can be 
expressed as Eq. (6).  
 

𝑃𝑃(𝑝𝑝|𝑥𝑥) =
𝐿𝐿(𝑝𝑝)  × 𝑃𝑃(𝑝𝑝)

𝑃𝑃(𝑥𝑥)
 (6) 

2.2.3 Jeffreys Interval 

Jeffreys Interval is a Bayesian credible interval obtained when using the non-informative Jeffreys prior 
for the binomial proportion 𝑝𝑝. It is common to use beta distributions as the standard conjugate priors for 
inferring parameter 𝑝𝑝 in binomial distribution (Berger 1985). 

Suppose the number of nonconforming welds 𝐷𝐷~𝐵𝐵(𝑛𝑛, 𝑝𝑝) and suppose fraction nonconforming 𝑝𝑝 has 
a prior distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝑎𝑎, 𝑏𝑏). Then the posterior distribution of 𝑝𝑝 is 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝐷𝐷 + 𝑎𝑎,𝑛𝑛 − 𝐷𝐷 +  𝑏𝑏) (Berger 
1985).  

Therefore, a 100(1− 𝛼𝛼)% eqial-tailed Bayesian interval is given by Eq. (7). 
 

[𝑙𝑙,𝑢𝑢] = [𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝛼𝛼 2⁄ ;𝐷𝐷 + 𝑎𝑎,𝑛𝑛 − 𝐷𝐷 + 𝑏𝑏),𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(1 − 𝛼𝛼 2⁄ ;𝐷𝐷 + 𝑎𝑎,𝑛𝑛 − 𝐷𝐷 + 𝑏𝑏)] (7) 
 

Where 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝛼𝛼; 𝑎𝑎, 𝑏𝑏 ) denotes the 𝛼𝛼 quantile of a 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝑎𝑎, 𝑏𝑏) distribution.  
In this problem, the Jeffreys prior is 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(1 2⁄ , 1 2⁄  )  (Brown et al. 2001). After observing 𝐷𝐷 

nonconforming welds in n inspections, the posterior distribution for 𝑝𝑝 is a Beta distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝐷𝐷 +
1 2⁄ ,𝑛𝑛 − 𝐷𝐷 + 1 2⁄ ). The 100(1 − 𝛼𝛼)% equal-tailed Jeffreys interval is defined as Eq.(8). 
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[𝑙𝑙,𝑢𝑢] = [𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝛼𝛼 2⁄ ;𝐷𝐷 + 1 2⁄ ,𝑛𝑛 − 𝐷𝐷 + 1 2⁄ ),𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(1 − 𝛼𝛼 2⁄ ;𝐷𝐷 + 1 2⁄ ,𝑛𝑛 − 𝐷𝐷 + 1 2⁄ )] (8) 
 

This interval leaves 𝛼𝛼 2⁄  posterior probability in each omitted tail.  

Figure 2 shows the probability density function (PDF) and cumulative density function (CDF) of the 
posterior distribution of Jefferys Interval (𝛼𝛼 = 5%) for 𝐷𝐷~𝐵𝐵(100, 0.1). Therefore, D = 0.1 × 100 = 10. 
The lower and upper limits are calculated as Eq. (9). 

 
[𝑙𝑙,𝑢𝑢] = [𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(0.05/2; 10 + 0.5, 100 − 10 + 0.5),𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(1 − 0.05/2; 10 + 0.5, 100 − 10

+ 0.5)] = [𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(0.025; 10.5, 90.5),𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(0.975; 10.5, 90.5)]
= [0.053, 0.170] 

(9) 

 
The result means for 10 nonconformers out of 100, a 95% credible interval is [0.053, 0.170]. The 

sample fraction nonconforming is 10/100 = 0.1.  The fraction nonconforming is theoretically distributed 
as 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(10.5, 90.5).  
 

 
                (a)               (b)  

Figure 2: Posterior distribution of Jeffreys Interval (α = 5%) of D~B(100, 0.1): (a) probability density 
function (PDF); (b) cumulative density function (CDF). 

According to Eq. (6), the range of Jeffreys Interval depends on two variables. The first variable is the 
sample size 𝑛𝑛, the other variable is the fraction nonconforming 𝑝𝑝. Figure 3 (a) depicts the relationship of 
the estimated Jeffreys Interval and sample size n when fraction nonconforming 𝑝𝑝 is fixed as 0.1. The 
Jeffreys Interval shrinks to 0.1 when 𝑛𝑛  gets larger. Figure 3 (b) depicts the relationship of Jeffreys 
Interval and fraction nonconforming 𝑝𝑝 when 𝑛𝑛 is fixed as 100. The Jeffreys Interval shrinks when fraction 
nonconforming 𝑝𝑝 gets close to 0 or 1. When fraction nonconforming 𝑝𝑝 = 0.5, Jefferys Interval has the 
maximum range.  
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                   (a)               (b)  

Figure 3: Relationship between Jeffreys Interval and variables: (a) Jeffreys Interval of D~B(n, 0.1); (b) 
Jeffreys Interval of D~B(100, p). 

2.3 Fraction Nonconforming Estimate 

In the realm of risk management, Monte Carlo method has been widely implemented to estimate 
uncertainties for decision making. The main steps of Monte Carlo Simulation are: 1) generating the static 
model; 2) identifying inputs distribution; 3) sampling random variables with multiple runs; and 4) 
analyzing results for decision making (Raychaudhuri 2008).  

For each type of welds, a posterior distribution can be derived by implementing the first two steps of 
the hybrid model and incorporating real-time updated inspection data. For estimating the project fraction 
nonconforming, Monte Carlo Simulation is performed to find a set of fraction nonconforming for a 
project. The static model can be described as Eq. (10). 

 

𝜌𝜌 = �𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=0

× 𝑟𝑟𝑖𝑖 × 𝑝𝑝𝑖𝑖 (10) 

 
Where,  
𝜌𝜌 is the estimated fraction nonconforming of the given project.  
ni is the number of welds for weld type i.  
𝑟𝑟𝑖𝑖 is the required sampling rate of for weld type i.  
𝑝𝑝𝑖𝑖 is the randomly sampled fraction nonconforming 𝑝𝑝 from the posterior distribution by Monte Carlo 

Simulation.  
N is the number of pipe welds types.  
 
After multiple runs, the Monte Carlo Simulation results are fitted into Beta distribution via the 

method of Maximum Likelihood. A QQ-plot and PP-plot are utilized to visually judge the goodness of fit.  
The main reasons for choosing Beta Distribution are 1) the forecasted repair rate should be bounded 

within the range of 0 to 1; 2) beta distribution has the flexibility to provide accurate and representative 
output for analysis; and 3) the parameters of beta distribution are intuitively and physically meaningful 
and easy to estimate from the simulation output.  
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3 CASE STUDY 

In this section, a fabricator’s pipe welding quality management system, called AcuTrack, is investigated 
to demonstrate the proposed methodology step by step. This system has tracked the pipe welds inspection 
records of 35 pipe spool fabrication projects during the past 10 years. In this paper, the authors will utilize 
the records of Radiographic Tests (RT) of all butt welds for illustration purposes. Figure 4 shows the 
main procedures for implementing the proposed approach for the case study. R, a free software 
environment for statistical computing and graphics, is utilized to conduct all the procedures. Firstly, 
ODBC package is used to extract raw data from the SQL server. Then, the raw data is processed to the 
desired format via dplyr/tidyr package. All the graphs are generated using the ggplot2 package. Finally, 
mcsm package is used to perform Monte Carlo Simulation.   
 

ArcuTrack

SQL Server

Data Connection
R: ODBC Package

Data Wrangling
R: dplyr/tidyr Package

Data Visualization
R: ggplot2 Package

Monte Carlo Simulation
R: mcsm Package

 

Figure 4: Procedures and tools for the proposed Bayesian Inference based simulation approach. 

3.1 Data Description 

In practice, a pipe is generally specified by an NPS that defines constant outside diameter and a Pipe 
Schedule that defines the wall thickness. Materials are categorized into Material A – Plain Carbon Steel, 
Material B – Alloy Steel, Material C – Stainless Steel, and Material D – Others. RT inspection results are 
tracked in three statuses for each butt weld, they are: 0 – no inspection performed; 1– inspected and 
passed; and 2 – inspected and failed. In total, 224,298 records for RT inspection of butt welds are 
included in the AcuTrack system. A data sample for RT inspection of Butt welds is listed in Table 1. Each 
weld is a combination of NPS, Pipe Schedule, and material.  

Table 1: A data sample for RT inspection of butt welds. 

Weld ID Pipe Schedule Nominal Pipe Size (NPS)  Material  Inspection Result 
1 STD 4 A 1 
2 STD 12 A 1 
3 40S 10 B 1 
4 40 2 C 0 
5 XS 6 D 2 

… … … … … 

3.2 Data Processing and Analysis 

For inferring the repair rate of each type of pipe welds, all data processing work is conducted using R. 
The main steps are listed as follows: 
 

1. Connect to SQL Server via R (RODBC Package). 
2. Group pipe welds based on pipe attributes, e.g., NPS, Pipe Schedule, and material. 
3. Summarize the total welds, inspected welds, and repaired welds for each type of pipe welding.   
4. Summarize the work proportion, inspection rate, and repair rate for each type of pipe welding.  
5. Calculate the lower and upper Jeffreys Interval (𝛼𝛼 = 5%) limits of repair rate.  
6. Document the posterior distributions for Monte Carlo Simulation use.  
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All 224,298 welds are grouped into 631 types of pipe welding. Based on the cumulative frequency 
graph shown in Figure 5, the top 35 types of pipe welds take more than 80% of all historical welds. For 
illustration purpose, only those 35 types of welding are shown in the following graphs. Detailed 
information about the top 35 types of pipe welds is listed in Appendix 1.  
 

 
Figure 5: Cumulative work proportion of types of pipe welds. 

Since the sampled welds do not include all welds from the population, an interval for repair rate needs 
to be estimated to allow for sampling error. As discussed, Jeffreys Interval can be used for inferring the 
repair rate of pipe welds. Figure 6 demonstrates the Jeffreys Intervals of the top 35 types of pipe welds. 
The darkness of the estimated repair rate represents the proportion that type of welds makes up. The 
posterior distributions derived from Jeffreys Intervals are used as the inputs of the Monte Carlo 
Simulation.  
 

 
Figure 6: Jeffreys Intervals for different types of pipe welds (α = 5%). 

3.3 Results of Simulation 

To estimate the repair rate, pipe weld information (e.g., NPS, Pipe Schedule, and material) from 35 
historical projects was used as the inputs for the Monte Carlo Simulation. The simulation model was run 
100 times for each project to generate the graphs of 1) histogram and fitted theoretical density function 
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(Beta Distribution); 2) empirical and theoretical cumulative density functions; 3) Q-Q plot; and 4) P-P 
plot. Figure 7 shows the simulation output of one historical project.  

 

 
Figure 7: An example of simulation results of one historical project. 

Based on the fabricators’ risk attitude to a new project, an acceptable possibility for estimating the 
repair rate can be decided accordingly. Then, the estimated project repair rate can be found in the 
simulated CDFs given an acceptable quantile. For example, the 10% quantile represents an aggressive 
risk attitude; the 50% quantile represents a neutral risk attitude; and the 90% quantile represents a 
conservative risk attitude. Estimated repair rates for each type of risk attitude are listed in Table 2.  

Table 2: Simulation Results for Different Risk Attitudes 

Risk Attitude Quantile Estimated Repair Rate 
Risk Seeking 10%  0.038 

Neutral 50%  0.041 
Risk Averse  90%  0.044 

 
To evaluate the reliability and accuracy of the proposed Bayesian Inference based simulation model, a 

comparison between actual repair rate and simulated repair rate is conducted for all 35 historical projects. 
As shown in Figure 8, the x-axis represents the actual repair rate, and the y-axis represents the simulated 
repair rate with 50% (most likely) and 90% quantile value. Each circle represents a project, and the circle 
size indicates the amounts of welds completed in that project. If the circle is located on the left-upper side 
of the line y=x, it means the simulated repair rate can cover the actual repair rate, and vice versa. 
Apparently, the simulated repair rate can cover the actual repair rate for most projects, 30 out of 35 
projects for 90% quantile, and 28 out of 35 projects for 50% quantile.  The other five projects are not too 
far away from the line as well. Therefore, the conclusion can be drawn that the proposed data-driven 
simulation model can serve the purpose for estimating a safe repair rate. Practitioners can utilize the 
simulation tool to make better decisions for proposing new projects to clients.  
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         (a)          (b)  

Figure 8: Comparisons of simulated repair rate and actual repair rate: (a) 50% Quantile (Most Likely); (b) 
90% Quantile. 

4 CONCLUSIONS 

This research proposed a Bayesian Inference based simulation approach for estimating welds fraction 
nonconforming based on historical welds’ quality inspection data. The Bernoulli Process is introduced to 
model the welds inspection process. Jeffreys Interval is utilized for estimating the distribution of the 
fraction nonconforming.  The estimated distribution can be used as the input of Monte Carlo Simulation 
to improve the accuracy of simulation models. A real case of pipe fabrication is studied to demonstrate 
the proposed novel approach step by step.  

The academic contributions of this research are 1) providing an analytical model for modeling the 
binomial quality inspection process; 2) proving the advantages of implementing Bayesian Inference in 
fraction nonconforming inference; and 3) developing a data-driven simulation model for estimating 
fraction nonconforming of the pipe welding process. For practitioners, the proposed model can be used to:  
1) understand the welds quality performance based on historical data; 2) estimate project fraction 
nonconforming for proposing a new project to clients; and 3) perform what-if scenario analysis based on 
the simulation results.  

In future work, the tracked inspection data will be further studied to understand how pipe attributes 
impact the quality performance of pipe the welding process, so practitioners can modify their welding 
procedures to improve performance quality.   
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APPENDICES 

Top 35 Types of Pipe Welds: 

PipeType Schedule PipeSize Material 
1 XS 2 Material A 
2 STD 3 Material A 
3 STD 6 Material A 
4 STD 4 Material A 
5 STD 2 Material A 
6 XS 6 Material A 
7 STD 8 Material A 
8 XS 4 Material A 
9 160 2 Material A 

10 80 2 Material A 
11 STD 10 Material A 
12 STD 12 Material A 
13 XS 3 Material A 
14 XS 8 Material A 
15 40S 2 Material C 
16 40 2 Material A 
17 80 4 Material A 
18 160 3 Material A 
19 40 4 Material A 
20 40 6 Material A 
21 XS 10 Material A 
22 XS 12 Material A 
23 10S 2 Material C 
24 40 3 Material A 
25 40 8 Material A 
26 40S 3 Material C 
27 40S 4 Material C 
28 80 3 Material A 
29 80 6 Material A 
30 STD 16 Material A 
31 10S 3 Material C 
32 40S 6 Material C 
33 10S 6 Material C 
34 10S 8 Material C 
35 80 16 Material A 
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