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ABSTRACT 

As one of the most promising renewable energy sources, wind energy reduces consumption of fossil fuels 
and becomes economically viable with significant environmental benefits. Offshore wind resources are 
abundant and more stable for sustainable clean energy production. In this paper, we propose stochastic 
models and optimization methods for optimal development of offshore wind farms. Wind uncertainty is 
studied by using probabilistic models with seasonal/time scenarios. A two-stage optimization framework is 
proposed to first determine the optimal number of turbines and then refine the turbine placement for most-
productive layout under wind uncertainty. The method is tested using an offshore farm at the south New 
Jersey coast. 

1 INTRODUCTION 

As a fast growing renewable energy resource, wind power provides a sustainable energy alternative with 
lower operational costs and less environmental impact. Worldwide wind energy production and 
consumption increase steadily. As of 2014, the market volume for new wind projects was 40% bigger than 
in 2013. In the United States, wind power is a $10 billion per year industry, with the potential to generate 
20% of national electricity by 2030.  

Offshore wind, specifically, is known to be strong, steady and abundant. Since offshore wind is stronger 
during the middle of the day and evening when energy is consumed most, offshore wind power can play a 
significant role for peak hour energy supply. In Europe, there have been installed more than 2,000 offshore 
wind turbines, providing thousands of Mega-watts of electricity each year. Offshore wind projects in the 
States, however, is in the early stage. In 2014, the US Department of Energy initiated three pilot offshore 
wind projects, including the on-going one in south New Jersey. In this paper, an offshore wind farm located 
at south Jersey coast is considered and studied.  

Offshore wind farm development project involves determining the number of turbines and their 
locations. Due to the uncertainty of wind directions and speeds, it is difficult to find the most productive 
locations for all turbines. Research on wind farm development faces the following three challenges: (i) Due 
to the dynamic nature of wind and complex interaction between turbines, accurate evaluation of power 
generation of the farm is subject to various sources of uncertainty. (ii) The system performance is highly 
nonlinear and stochastic. To find the optimal development plan, decision variables, such as the number of 
turbines and its corresponding placement, have to be considered simultaneously under wind uncertainty.
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(iii) A mixed-integer stochastic programming model needs to be developed to account for integer variables, 
continuous variables, and stochastic wind parameters.    

The wind farm layout problem is often studied as combinatorial problems. Extensive research in wind 
farm layout design includes both onshore wind farms (Mosetti et al. 1994; Ozturk and Norman 2004; Grady 
et al. 2005; Marmidis et al. 2008; Wan et al. 2009; Wan et al. 2009; Emami and Noghreh 2010; González 
et al. 2010; Kusiak and Song 2010; Li et al. 2010; Ituarte-Villarreal and Espiritu 2011; Chen and Agarwal 
2012; Wan et al. 2012; Chen et al. 2013) and offshore farms (Pérez et al. 2013; Yuan-Kang Wu 2014; Gao 
et al. 2015; Peng Hou 2015; Rodrigues et al. 2015).  

To accurately evaluate wind energy generated from wind turbines, wake loss models have been widely 
applied to count for turbine interactions. Analytical wake loss models characterize the wind speed under 
wake by the use of closed-form expressions. One of the most popular analytical models was developed by 
Jensen (Jensen 1983), which has been widely adopted in wind energy literature. Jensen’s wake loss model 
assumes that the wake expands linearly, and the speed of turbine in a wake region can be calculated by a 
function of distance between turbines. Due to its simplicity and relative accuracy, Jensen’s model is the 
most commonly used wake loss model in wind energy simulation; details are introduced in Section 2.3. 
There are other analytical wake loss models (Ozturk and Norman 2004; Ishihara et al. 2004; González et 
al. 2010). For instance, Ishihara’s model (Ishihara et al. 2004) considers a turbulence’s recovery rate; 
Ozturk’s model (Ozturk and Norman 2004) develops a direction-based model in which linear reduction 
wake model is considered in cross wind interference and quadratic reduction wake model is used in 
prevailing wind interference. 

To find the optimal placement of turbines, exhaustive evaluation of all possible turbine placements in 
a field is not feasible, particularly for large-scale development problems. Mixed-integer programming 
(MIP) models, in this case, can be employed to search for optimal or practically good solutions. Methods 
developed in previous literature for such MIP problems can be classified by considering candidate turbine 
locations (Mosetti et al. 1994; Grady et al. 2005; Marmidis et al. 2008; Wan et al. 2009; Wan et al. 2009; 
Emami and Noghreh 2010; Li et al. 2010; Mittal 2010; Ituarte-Villarreal and Espiritu 2011), or by 
predetermining total numbers of turbines (Kusiak and Song 2010; Wan et al. 2012). For example, in 
Mosetti’s (Mosetti et al. 1994), when the possible turbine locations are pre-defined (in the center of 10x10 
discretized cells), the optimization process is applied to search all possible layout solutions for the number 
of turbines and their best placement. For placement optimization, evolution based global search algorithms, 
such as Genetic Algorithm (Mosetti et al. 1994; Grady et al. 2005; Emami and Noghreh 2010; Li et al. 
2010; Chen et al. 2013; Gao et al. 2015), Gaussian Particle Swarm (Wan et al. 2012; Peng Hou 2015), virus 
based algorithm (Ituarte-Villarreal and Espiritu 2011), bionic algorithm (Song et al. 2013) are widely used 
to find the optimal placement. Wan (Wan et al. 2009) develops a two-stage Genetic Algorithm for wind 
farm development. In the first stage, it employs binary Genetic Algorithm to seek turbine locations for 
minimal cost per unit energy production. During the second stage, the positions of turbines are allowed to 
be adjusted within their cells to further improve the energy production. Wan’s work (Wan et al. 2009) is 
different from the our work in this paper in that our two-stage framework optimizes the turbine placement 
inside the whole farm in the send stage optimization.  

For the optimal development of wind farm under wind uncertainty, the proposed two-stage optimization 
framework couples a discrete model for the optimal number of turbines and a continuous model for a refined 
turbine placement solution. Probabilistic wind models are built based on real offshore wind data collected 
at the New Jersey coast. The contributions of this work include: (i) we consider uncertainty of wind based 
on real offshore wind data and perform simulation optimization for offshore wind farm development; (ii) 
We develop a two-stage simulation based optimization framework that can be used to determine both the 
number of facilities (turbines) and locations of these facilities. As a general framework, this method can be 
used for logistic, transportation, and facility planning problems under complex system uncertainty. 

The remainder of this paper is organized as follows. Section 2 describes the problem formulation, 
including wind farm models, wind uncertainty model, wake loss model along with two-stage optimization 
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methodologies. Section 3 presents computational studies and discusses the optimization results. Section 4 
concludes this work.  

2 PROBLEM FORMULATION 

2.1 An Offshore Wind Farm at New Jersey Coast 

The wind farm case studied in this paper is based on an on-going offshore wind power project in New 
Jersey. The considered region off the coast of New Jersey is shown in Figure 1(a). During the first stage, 
132 candidate locations are pre-determined for possible turbines as shown in Figure 1(b). The farm is about 
7km x 3km and adjacent turbine locations are about 400m apart. Different from onshore wind farm, offshore 
wind field (particular for wind speed) is heterogeneous; wind decreases significantly towards coastline due 
to change of tide and terrain conditions. To take this into account, a linear reduction term is added to the 
wind speed model. We assume a 20% reduction as wind flows through the farm from its east side (ocean) 
to west side (coastline).  

 

     
Offshore wind farm in New Jersey.                 (b) Wind farm with 132 candidate turbine locations. 

Figure 1: An NJ coast offshore wind farm. 

2.2 Modeling Wind Uncertainty 

The wind uncertainty along the NJ coast is studied and historical wind speed and direction data in this area 
is collected. The wind speed data is collected once every 10 minutes at the measuring location. The 2014’s 
one year wind data is used to fit the wind probabilistic models.  

 

 
Figure 2: A rosemap for stochastic wind modeling. 
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Based on the wind rosemap shown in Figure 2, historical data indicates wind blows in the direction 
mainly from 162° to 267°, with higher probabilities falling in the range of (181°,267°). With some 
distribution analysis, the wind direction 𝜃𝜃0  at measuring location can be estimated by a lognormal 
distribution log (𝜃𝜃0)~𝑁𝑁(5.3566, 0.11842)).  Wind speed changes significantly at different times of a day. 

Thus, we use different wind speed models  considering two dayparts scenarios: (12pm,22pm], 
(22pm,12pm]. Figure 2 indicates the wind speed is mostly in the range of 8 m/s-11 m/s. With some simple 
statistical fitting analysis, two Weibull distributions are determined for the two scenarios respectively with 
parameters shown in Table 1. 

Table 1: Weibull models for stochastic wind speed considering two dayparts scenarios. 

  T(1) (22:10pm~12pm) T(2) (12:10pm~22pm) 
Shape Parameter 3.0523 2.5042 
Scale Parameter  10.5787 9.6388 

2.3 Modeling Wake Loss among Turbines 

Wind energy captured by a turbine in the farm varies by locations and wind dynamics. To model such 
stochastic interaction between turbines, a wake loss model is needed to estimate the varying speed captured 
by different turbines. Jensen’s model is used to quantify the wake effects among turbines. Under 
assumptions, the vertex vortices effect is neglected in the near field where wind speed right behind the rotor 
is reduced to one third of original speed, thus the wake model is better applied in the remote wake region. 
The wake radius expands linearly behind the turbine and the wake deficit is obtained by assuming linearized 
momentum conservation. In Jensen’s wake loss model, the speed at a turbine is mainly affected due to wake 
loss caused by upwind turbines. Figure 3 shows the wake shadow behind an upwind turbine in the wind 
direction. 

The wake region of an upwind turbine can be simply defined by a cone centered at its rotor centroid 
expanding along the wind direction 𝑑𝑑 of an angle 𝛾𝛾=arctan(ĸ), where ĸ is the speed entrainment constant. 
If a downwind turbine 𝑗𝑗 is inside the wake cone of an upwind turbine 𝑖𝑖, the speed reduces from 𝑢𝑢0 to 𝑢𝑢, 
where  𝑢𝑢0 is the upwind speed at 𝑖𝑖; otherwise j has the same speed 𝑢𝑢0 as i if j is not in the wake of i. 
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Figure 3: Jensen’s Wake Loss Model. 
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Considering wake effects from multiple upwind turbines, a downwind turbine can have wake loss 
caused by more upwind turbines. For example, as shown in Figure 4, when the wind blows from west to 
east, both turbines T1 and T2 are upwind without any wake effect between each other; turbine T5 has the 
wake interaction solely from T2; and T4 is located in the combined wake loss region of T1, T2 and T3. On 
the other side, T3 is outside of both wake cones of its upwind turbine T1 and T2; therefore, there’s no wake 
loss of wind power for T3, given this wind direction.  
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Figure 4: Turbines under the Wake of Multiple Turbines (top view). 

Wind power generation at a time instant for a turbine is often modeled by equation (11) with the wind 
speed 𝑈𝑈 at the turbine. Accurate evaluation of wind power generated from a turbine also needs to offset the 
power from wake loss caused by upwind turbines. As the wind direction and speed are highly dynamic, the 
wake loss zones in the farm changes in time.  

Considering the wake loss between a pair of identical turbines 𝑖𝑖 and 𝑗𝑗, the Jensen’s model quantifies 
the reduction of wind speed. As indicated with equation (1), the reduced wind speed u at the downwind 
turbine 𝑗𝑗 can be calculated by equation (2). 

 

 

(1) 

 

 

(2) 

Where 𝑢𝑢0  is the wind speed at turbine 𝑖𝑖, 𝑢𝑢 is the reduced wind speed at turbine 𝑗𝑗, d is the distance 
between turbines 𝑖𝑖 and 𝑗𝑗 in the wind direction, and R is the radius of turbine rotor. The entrainment constant 
ĸ, which indicates how quickly the wake decays in distance, can be quantified with a simple model (3): 
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(3) 

Where Z is the hub height of wind turbine, and 𝑍𝑍0 is the surface roughness of the terrain. In this study, 
identical wind turbines and a flat farm land spans with homogeneous obstructions are considered, therefore 
𝑍𝑍0 and Z are assumed to be constant throughout the field. 

In equation (1), α is the axial induction factor around a turbine, specifying the reduction rate of wind 
speed when the wind passes through the upwind turbine. The factor α can be calculated using the thrust 
coefficient 𝐶𝐶𝑇𝑇: 
 

 

(4) 

Where 𝐶𝐶𝑇𝑇 is a characteristic parameter of the turbine. Let 𝑅𝑅𝑑𝑑 be the radius of wake cone, 𝑅𝑅𝑑𝑑 can be 
calculated by equation (5).  
 

𝑅𝑅𝑑𝑑 = 𝑅𝑅� 1 − 𝛼𝛼
1 − 2𝛼𝛼

 (5) 

By equations (3) and (4), the reduced wind speed 𝑢𝑢 in the wake zone (equation (2)) is a function of the 
distance 𝑑𝑑 between turbines i and j. When a turbine 𝑗𝑗 locates within multiple turbines’ wake regions, due 
to the multiple wake loss effects, the total energy loss for 𝑗𝑗 can be computed by equation (6) based on the 
kinetic energy balance. After a simple transformation by equation (1) and (6), the wind speed for turbine 𝑗𝑗 
can be computed by (7). 
 

𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑉𝑉𝑑𝑑𝑗𝑗 = �� 𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑉𝑉𝑑𝑑𝑖𝑖,𝑗𝑗
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In equation (7), 𝑁𝑁𝑗𝑗 is the total number of upwind turbines that generate wake effect 𝑉𝑉𝑉𝑉𝑉𝑉_𝑑𝑑𝑉𝑉𝑑𝑑𝑖𝑖,𝑗𝑗 at turbine 
𝑗𝑗. Note that 𝑁𝑁𝑗𝑗 may vary continuously as the wind direction and speed change through the time and at 
different locations in the farm. Here 𝑢𝑢𝑖𝑖𝑗𝑗 represents the reduced speed at turbine 𝑗𝑗 affected by upwind turbine 
𝑖𝑖. 

2.4 Optimal Development of Offshore Wind Farm 

The objective of wind farm development projects considers to minimize the Cost per Expected Power 
Production (CEPP). The total development costs and expected annual energy production are evaluated and 
analyzed. Distance constraints for turbine layout design are included in the proposed turbine placement 
optimization models.  

2.4.1 Costs of Wind Turbines 

The costs for offshore wind farm development include the capital investment of equipment, cable and 
devices installation, as well as labor cost. In this paper, it aims to minimize such development cost. The 

0
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ĸ
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average installation cost for each turbine can be reduced by installing more turbines in the field. As 
discussed in Mosetti’s and Grady’s work (Mosetti et al. 1994; Grady et al. 2005), the total cost of a wind 
farm project (K$) can be estimated by N, the total number of turbines installed in the wind farm. 

 

 
(8) 

From equation (8), if N is large enough, the average installation cost of each turbine can be reduced 
approximately by 1

3
.  

The farther a turbine installed from the coast, the more it will cost due to increasing consumption of 
cable materials and associated installation cost. Such cable cost can be estimated by a linear cost function: 

 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐷𝐷𝑖𝑖) = 𝑐𝑐0 + 𝑐𝑐𝑑𝑑 ∗ 𝐷𝐷𝑖𝑖 (9) 

Where 𝐷𝐷𝑖𝑖 is the distance of a turbine away from the coast, 𝑐𝑐0 is fixed cost for major cable structure 
installation and 𝑐𝑐𝑑𝑑 is the cable installation cost per unit distance from the shoreline. The total wind farm 
cost is modeled as: 
 

𝐶𝐶(𝑁𝑁, 𝐷𝐷𝑖𝑖) = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖(𝑁𝑁) + �  
𝑁𝑁

𝑖𝑖=1

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶(𝐷𝐷𝑖𝑖) 
(10) 

2.4.2 Expected Annual Energy Production 

The potential energy 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑 in the wind of speed 𝑈𝑈 is commonly modeled by equation (11). Considering 
the energy loss in power generation, a turbine can produce 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐 at a certain time with wind speed 𝑈𝑈 and 
efficiency coefficient 𝐶𝐶𝑝𝑝, as described by equation (12).  
 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑 =

1
2

𝜌𝜌𝜌𝜌𝑈𝑈3 (11) 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐 =
1
2

𝐶𝐶𝑝𝑝𝜌𝜌𝜌𝜌𝑈𝑈3 (12) 

Where 𝜌𝜌 is the air density 1.25kg/m3 at the sea level. A is the rotor swept area and 𝑈𝑈 is the wind speed. 
The power coefficient 𝐶𝐶𝑝𝑝 varies depending on aerodynamic and mechanical losses. According to Betz’s 
law, the maximum energy captured by a turbine can be no more than 59.3% of the kinetic energy in wind; 
that is 𝐶𝐶𝑝𝑝 ≤ 0.593. A simple power function at turbine 𝑖𝑖 is applied as the function of wind speed 𝑢𝑢𝑖𝑖: 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐 𝑖𝑖(𝑢𝑢𝑖𝑖) = 0.3𝑢𝑢𝑖𝑖
3 (13) 

In general, the power generated from a turbine is not always related to wind speed  𝑢𝑢𝑖𝑖 by (13) when   𝑢𝑢𝑖𝑖 
is outside a certain range. The model (13) is only applied to a certain range of wind speed [𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑜𝑜𝑡𝑡𝑡𝑡] for a 
designated turbine. The minimum effective speed  𝑢𝑢𝑖𝑖𝑖𝑖  is called the cut-in speed for a turbine to start 
generating power, while the maximum effective speed  𝑢𝑢𝑜𝑜𝑡𝑡𝑡𝑡 is called the cut-out speed. When 𝑢𝑢 ≥ 𝑢𝑢𝑜𝑜𝑡𝑡𝑡𝑡, 
turbines will terminate operation to avoid damage. In this study 𝑢𝑢𝑖𝑖𝑖𝑖 = 3 𝑚𝑚/𝑠𝑠, 𝑢𝑢𝑜𝑜𝑡𝑡𝑡𝑡 = 22𝑚𝑚/𝑠𝑠. For any 
speed  𝑢𝑢 in between  𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑜𝑜𝑡𝑡𝑡𝑡, a turbine generates energy estimated by (13). 

( ) 20.001742 1
3 3

N
insC N N e− = + 
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2.4.3 Objective Model 

We use Weibull probabilistic models 𝑑𝑑𝑡𝑡0(𝑢𝑢0) and Lognormal probabilistic model 𝑑𝑑𝜃𝜃0(𝜃𝜃0) respectively for 
modeling wind speed and direction. The expected total wind power produced from a wind farm with N 
turbines’ placement can be computed as follows. 

 
𝐸𝐸𝜃𝜃0,𝑡𝑡𝑜𝑜(𝑢𝑢0, 𝜃𝜃0) = � � � 𝑃𝑃𝑖𝑖(𝑢𝑢𝑖𝑖; 𝑢𝑢0, 𝜃𝜃0)𝑑𝑑𝑢𝑢0

(𝑢𝑢0)𝑑𝑑𝜃𝜃0
(𝜃𝜃0)𝑑𝑑𝑢𝑢0

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡𝑖𝑖𝑖𝑖

360

0

𝑁𝑁

𝑖𝑖=1
𝑑𝑑𝜃𝜃0 

(14) 

Where 𝑢𝑢0 is the speed at which the wind enters the farm, and 𝑢𝑢𝑖𝑖 is the actual wind speed captured by 
turbine 𝑖𝑖 taking into account the wake loss from upwind turbines.  

Given a layout X=[X1, X2, X3, …, Xi,…,XN], ui = u0 if turbine i is located at a place without any 
upwind turbines given the wind direction θ0; otherwise, ui < u0 can be quantified by considering the wake 
loss from related upwind turbines:  
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 (15)  

Where T(s) is time scenario index as specified in Table 1.  
The objective function of optimization is to minimize the annual total development costs per expected 

power production (CEPP). It can be formulated as follows.  

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑎𝑎(𝑁𝑁,𝑋𝑋)  𝐶𝐶𝐸𝐸𝑃𝑃𝑃𝑃 =

𝜌𝜌𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑉𝑉 𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑉𝑉 𝐶𝐶𝑇𝑇𝑠𝑠𝑇𝑇
𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑐𝑐𝑇𝑇𝑉𝑉𝑑𝑑 𝑃𝑃𝑇𝑇𝑃𝑃𝑉𝑉𝑎𝑎 𝑃𝑃𝑎𝑎𝑇𝑇𝑑𝑑𝑢𝑢𝑐𝑐𝑇𝑇𝑖𝑖𝑇𝑇𝑎𝑎

 

        =
𝐶𝐶 (𝑁𝑁, 𝐷𝐷𝑖𝑖)

𝐸𝐸𝜃𝜃0,𝑡𝑡𝑜𝑜

=
𝑁𝑁 �2

3 + 1
3 𝑉𝑉−0.00174𝑁𝑁2� + (𝑐𝑐0 + 𝑐𝑐𝑑𝑑 ∗ 𝐷𝐷𝑖𝑖)

∑ ∫ ∫ 𝑃𝑃𝑖𝑖(𝑢𝑢𝑖𝑖; 𝑢𝑢0, 𝜃𝜃0)𝑑𝑑𝑡𝑡0(𝑢𝑢0)𝑑𝑑𝜃𝜃0(𝜃𝜃0)𝑑𝑑𝑢𝑢0
𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡𝑖𝑖𝑖𝑖

360
0

𝑁𝑁
𝑖𝑖=1 𝑑𝑑𝜃𝜃0

    

  

 𝑢𝑢0 ≥ 𝑢𝑢𝑖𝑖 

                                     �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗� ≥ 200, ∀ 𝑖𝑖 ≠ 𝑗𝑗 ∈ {1,2 … 𝑁𝑁}                                 (16) 

 

Since 𝑑𝑑𝑡𝑡0 is a Weibull density function, and 𝑑𝑑𝜃𝜃0 is a Lognormal density function, there is no closed form 
solution (N∗, X∗) for this model. Monte Carlo methods can be applied to sample wind data (𝑢𝑢0, 𝜃𝜃0) and to 
estimate CEPP with a sample mean.  

To account for significant variations during a day, two daypart scenarios s (𝑠𝑠 ∈ {1,2}) are considered: 
(22pm,12pm], (12pm,22pm]: s=1 when wind energy is produced during (22pm,12pm]; s=2 otherwise. One 
Weibull model is used for each of the two scenarios as discussed in 2.2. To approximate (16), twenty data 
points from each scenario s are randomly sampled, resulting in 40 wind data points for (𝑢𝑢0, 𝜃𝜃0). In this case, 
by equations (1)(2)(6)(7), CEPP in model (16) can be approximated by the sample mean: 
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𝐶𝐶𝐸𝐸𝑃𝑃𝑃𝑃� =
𝑁𝑁 �2

3 + 1
3 𝑉𝑉−0.00174𝑁𝑁2� + (𝑐𝑐0 + 𝑐𝑐𝑑𝑑 ∗ ∑  𝑁𝑁

𝑖𝑖=1 𝐷𝐷𝑖𝑖)

∑ (0.25 ∑ (0.1 ∑ 0.3(𝑢𝑢𝑖𝑖(𝑋𝑋; 𝑢𝑢0, 𝜃𝜃0|𝑇𝑇(𝑠𝑠), 𝑠𝑠))320
𝑇𝑇(𝑖𝑖)=1 )2

𝑖𝑖=1 )𝑁𝑁
𝑖𝑖=1

=
𝑁𝑁(2

3 + 1
3 𝑉𝑉−0.00174𝑁𝑁2) + ($10,000 + $500 ∗ 𝐷𝐷𝑖𝑖)

0.0075 ∑ ∑ ∑ 𝑢𝑢𝑖𝑖(𝑋𝑋; 𝑢𝑢0, 𝜃𝜃0|𝑇𝑇(𝑠𝑠), 𝑠𝑠)320
𝑇𝑇(𝑖𝑖)=1

2
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

 

        (17) 

Where building the cable structure has a fixed cost 𝑐𝑐0 $10k and installation associated cost $500/m.  

2.5 Two-stage Optimization Framework 

Genetic algorithm (GA) is a population based random search method, which has been widely applied to 
wind turbine layout design. GA is general as it does not require computing gradient of the objective 
functions. GA, however, is often slow and in some cases fails to converge.  

In order to seek both the optimal number of turbines and their most productive locations, a two-stage 
optimization framework is proposed. In the first stage of optimization, the wind farm field is discretized to 
a number of candidate locations for turbines placement. A GA based binary global search optimization 
model is used to find the optimal number of turbines and their locations. As shown in Figure 5, the 
optimization in first stage searches solutions 𝐾𝐾=[𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾3, …, 𝐾𝐾𝑖𝑖,…,𝐾𝐾𝑀𝑀] where 𝐾𝐾𝑖𝑖 ∈ {0,1} and M is the 
total number of candidate locations (i.e. in this case M=132),   K ∈ {0,1}𝑀𝑀. 𝐾𝐾𝑖𝑖 = 1  indicates a turbine 
installed at location 𝑖𝑖 and 𝐾𝐾𝑖𝑖 = 0 when no turbine built at 𝑖𝑖. Thus, GA returns a solution 𝐾𝐾∗ specifing a 
layout design for the wind farm development.  ∑ 𝐾𝐾𝑖𝑖

𝑀𝑀
𝑖𝑖=1 = 𝑁𝑁 is the optimized number of turbines needed.  

The second stage optimization takes the initial solution 𝑋𝑋0����⃑  that is the corresponding coordinates for 
turbines determined by 𝐾𝐾��⃑ ∗. The continuous model with decision variables (x𝑖𝑖,y𝑖𝑖) will be solved by a local 
search optimization method for an improved layout design solution 𝑋𝑋∗����⃑  that specifies the most-productive 
energy production locations for the N turbines in the field. In this work, a Pattern Search algorithm is 
employed to find �⃑�𝑋∗.  

  
Figure 5: Two-stage optimization model. 

𝐾𝐾∗ → 𝑋𝑋 
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3 NUMERICAL ANALYSIS ON AN OFFSHORE WIND FORM 

To demonstrate the proposed two-stage optimization framework, we consider an offshore wind farm at the 
NJ coast. Wind uncertainty is studied using probabilistic models by considering stochastic speed/direction 
scenarios with Monte Carlo sampling. 

Identical turbines are considered with parameters: the hub height Z = 60m, the thrust coefficient 𝐶𝐶𝑇𝑇 = 
0.88,  the surface roughness length 𝑍𝑍0 = 0.3m, and the rotor radius R = 20m. For the first stage, the field 
has total of 132 candidate locations with 400m apart. In the second stage of optimization, the N turbines 
are allowed to be located anywhere with a minimum distance of 200m between adjacent turbines. By 
equations (3) and (4), the values of entrainment constant ĸ and the axial induction factor α can be computed: 
ĸ=0.0944, α=0.3268.  

Based on the one-year wind data at a measurement location, the wind direction is modeled with a 
Lognormal distribution log (𝜃𝜃0)~𝑁𝑁(5.3566, 0.11842) , and the wind speed is modeled with Weibull 
distribution with parameters shown in Table 1. Figure 2 shows that the wind directions lie mostly in the 
range of (181°, 267°) and the wind speeds are mainly between 8m/s and 11m/s. The offshore wind often 
blows from the ocean towards the coast and  the speed reduces when it approaches the coastline. A 20% 
linear reduction of wind speed is used when wind hits coastline.  

We apply the two-stage simulation optimization to this case. The optimized layouts in Figure 6 show 
that turbines tend to locate at farthest places from the coast where the wind is strongest, even though the 
cable costs will be higher. Figure 6(a) presents the optimized layout by the first stage of optimization, where 
the 98 turbines are located at the predetermined cells. 
  

                  Generation
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(a) Stage 1 Layout. (b) Stage 1 Convergence. 
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(c) Stage 2 Layout. (d) Stage 2 Convergence. 

Figure 6: Optimal layouts and optimization progresses. 
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 The optimization results of this case are summarized in Table 2. The first stage optimization determines 
that 98 turbines to be built in the farm with objective value CEPP=$7.8217 × 10−3 /kW.year. The second 
stage further reduces CEPP by changing the locations of those 98 turbines; the CEPP value is decreased to 
$7.6673 × 10−3 /kW.year.  

Table 2: Optimization results for developing the NJ offshore wind farm. 

 Stage 1 
(discrete location-based search) 

Stage 2 
(continuous coordinates-based 

search) 
Number of turbines 98 98 

Expected power (kW/year) 18,550 20,319 
Total Cost  $145,092 $155,792 

Objective value CEPP 
($/kW.year) x10-3 7.8217 7.6673 

 

4 CONCLUSION 

In this study, a two-stage optimization framework is presented to optimize offshore wind farm layout 
design. Wind uncertainty is analyzed using probabilistic models based on one-year wind measurement data. 
The expected wind energy generation is estimated with sample means using Monte Carlo simulation. In the 
first stage, GA optimization is used to search candidate locations for the optimal number of turbines and 
their corresponding placement. In the second stage, a pattern search algorithm is applied to further improve 
turbine placement by searching continuous location variables so that CEPP is minimized.  

In the future work, more realistic cost functions such as maintenance and failures will be considered.  
Multiple criteria decision making for the project including costs, revenues, and carbon emission control 
will be analyzed. Further work also includes development of new optimization solvers used in the two-
stage optimization framework for large-scale wind farm development and other energy production systems.  
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