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ABSTRACT

Resource and buffer allocation problems are well-known topics in manufacturing system research. A proper
allocation of resource and space can significantly improve the system performance and reduce the investment
cost. However, few works consider the joint problem because of its complexity. Recent research has shown
that Discrete Event Optimization (DEO) framework, an integrated simulation-optimization approach based
on mathematical programming, can be used to optimize buffer allocation of production lines, such as
open and closed flow lines and pull controlled manufacturing systems. This paper proposes mathematical
programming models for solving the joint workstation and buffer allocation problem in manufacturing
flow lines constrained to a given target throughput. The problem is formulated in two different ways: an
exact model using mixed integer linear programming formulation and approximate models using linear
programming formulation. Numerical analysis shows that efficiency and accuracy can be both achieved by
using approximate formulations in a math-heuristic procedure.

1 INTRODUCTION

Both resource allocation problems and buffer allocation problems are well-known topics of research in
manufacturing system design. Among all related literatures, only a few works dealt with joint resource and
buffer allocation problems, and all of them solved joint problems assuming the system layout is given, i.e.
finding out the service rate and buffer capacity of each workstation other than designing the networks. The
joint optimization of both server and buffer allocation of a single station system was solved by Shanthikumar
and Yao (1987). Hillier and So (1995) proposed an enumeration method to find the optimal number of
servers and buffer capacities in open networks. Spinellis, Papadopoulos, and Smith (2000) used a simulated
annealing algorithm to solve the same joint allocation optimization problem for long production lines.
Woensel et al. (2010) discussed the problem of acyclic configured M/G/c/K queuing networks under the
assumption of Poisson arrivals and exponential service rates. To solve this problem, they used Lagrangian
relaxation to approximate the joint buffer and server optimization problem, Powell’s search method to
optimize the relaxed problem, and a two-moment approximation to compute the mean throughput.

The whole problem analyzed in this paper can be decomposed as workstation allocation, workload
allocation and buffer allocation. Workstation allocation and workload allocation are both resource allocation
problems in manufacturing systems. Some examples of resource allocation are the server allocation, the
assembly line balancing, the machine grouping problems in cellular manufacturing, the machine loading
and tool allocation problems in flexible manufacturing systems. The server allocation problem has the goal
to allocate parallel servers at each workstation (Boxma, Kan, and Vliet 1990). Assembly line balancing
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problems partition tasks among workstations arranged along a flow oriented material handling equipment
constrained by a cycle time, where the number of workstations is fixed. The survey of Becker and
Scholl (2006) summarized assembly line balancing problems and the related methods for optimization and
evaluation. Machine grouping problems in cellular manufacturing systems allocate different machines to
each cell to maximize compatibility between machines and parts or to seek a trade-off between machine
cost and intercell movement cost (Gunasingh and Lashkari 1989). Machine loading and tool allocation
problems in flexible manufacturing systems help to decide which tools and operations of each part family
are allocated to which machine (Sarin and Chen 1987). The resources allocated in these problems are
machines. Demir, Tunali, and Eliiyi (2014) reviewed 110 articles on buffer allocation problems. Most of
them proposed different algorithms like simulated annealing, tabu search and evolutionary algorithms for
solving buffer allocation problems having an objective function of the throughput maximization. Only a
few articles solved the optimization under the objective of minimization of total buffer space.

The joint problem to be solved in this paper, however, differs from all problems in previous works.
Existing literatures deal with either resource allocation, or buffer allocation or joint server and buffer
allocations of manufacturing systems where the number of workstations is fixed. This paper will help to
design an open flow line by providing the total number of workstations, the workload at each workstation
and the buffer capacity at each stage subject to a target throughput. Therefore, the analyzed problem is
more general than others because it embraces three different problems related one each other.

Manufacturing systems are Discrete Event Systems (DES) whose simulation process can be analytically
modeled into Mathematical Programming (MP) formulation (Chan and Schruben 2003). The times at which
events occur in the simulation is the solution of this MP under the objective of minimization of the sum
of all event times. Solving the MP model means finding the evolution trajectory of the system during
the simulation. Optimization constraints like limited buffer capacity and a target throughput can also
be formulated in the MP. This Discrete Event Optimization (DEO) framework, an integrated simulation-
optimization method based on the MP, is proposed to optimize buffer allocation problem for a class of
queuing systems, such as open flow lines (Matta 2008) and pull control manufacturing systems (Pedrielli,
Matta, and Alfieri 2015b). The optimal solution from this method is the global optimal based on one
simulation sample path. Other examples of enhancement of the DEO approach can be found in Tan (2015),
Stolletz and Weiss (2013). Pedrielli (2013); Pedrielli, Matta, and Alfieri (2015a); Pedrielli, Matta, and
Alfieri (2016) proposed a more general framework, i.e. not tailored to a specific simulation optimization
problem. Specifically, Pedrielli, Matta, and Alfieri (2016) proposed a formal procedure that encompasses all
the steps from the description of Event Relationship graphs (ERGs) for simulation-optimization (ERGLite
formalism) to the generation of the mathematical programming formulation.

In this paper, we use the DEO framework to solve the joint workstation and buffer allocation problem.
This work differs from previous researches in two aspects: (1) it presents a Mixed Integer Linear Programming
(MILP) formulation as an exact representation of the joint workstation and buffer allocation optimization.
(2) it develops a math-heuristic algorithm consisting of three steps based on Linear Programming (LP)
approximate models of the system. This algorithm finds out the number of workstations in the first step and
then allocates workload and buffer space. The MILP formulation of the joint problem, the LP approximate
models for workstation allocation and the math-heuristic algorithm are original contributions.

This paper is organized as follows. The problem is described in the next section. The exact model and
the approximate models using Mathematical Programming Representation (MPR) of DES for simulation-
optimization are formulated in section 3. The three-step math-heuristic algorithm is introduced in section
4. Section 5 reports the application of the math-heuristic to some test cases. Finally, conclusions are drawn
in the last section.

2 PROBLEM DESCRIPTION

Manufacturing systems considered in this paper are open flow lines composed of workstations and buffers
(Figure 1). Processing times are randomly distributed, thus workstations can be assumed perfectly reliable.
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Parts are processed from the first workstation to the last one sequentially. A workstation cannot process
more than one part at a certain time, and a part cannot be processed by more than one workstation at the
same time. Parts wait in the ( j−1)th buffer when jth workstation is working on a previous part. Because
of random processing times and limited buffer capacities, workstations can be either working, starving or
blocked. The last workstation is never blocked.

Figure 1: Example of open flow line with 3 workstations.

We want to minimize the investment cost of the system while guaranteeing a minimum production rate.
The number of workstations influences the production rate. Since it is assumed that the total processing
time to complete a part is given, the longer the line, the higher the throughput. However, the workload and
buffer allocation problems change depending on the number of workstations. For instance, a 10-workstation
line requires allocating 9 buffers, and splitting the process cycle in 10 partitions, but a 2-workstation line
only requires allocating 1 buffer, and splitting the process cycle in 2 partitions. Therefore, workload and
buffer allocations are two problems nested in the workstation allocation problem. It is clear that a joint
optimization can be more effective.

Parameters for solving this joint problem are the expected total processing times of parts, distributions
of processing times at each stage, the target throughput and the random numbers used to generate processing
times in simulation. Expected total processing times of parts can be different, which makes the method
presented in this paper be proper also to flexible manufacturing lines. Furthermore, processing times may
not necessarily be exponential, which is usually an assumption in other researches on open flow lines.

The joint design problem will provide the number of workstations needed, the workload allocated among
workstations and the buffer capacity at each stage given a target throughput where the total cost of the flow
line is minimized. Workload of a workstation is defined as the proportion of expected processing time at
the workstation, therefore it is a real number between 0 and 1. The workload allocated to workstations can
also be limited by additional constraints related to manufacturing process, e.g. a bottleneck workstation,
minimum workload at some workstations because of some special processing techniques, etc. The objective
function, i.e. the total cost of a flow line, consists of workstation cost and buffer cost, and unit costs of
both workstation and buffer space are given.

3 MODELING

3.1 Notation

In this section, according to the approach in Pedrielli, Matta, and Alfieri (2016), we present the ERGL
model (Figure 2), which is then explained through the related integrated MPR with the notations below.

Parameters
UM : the upper bound of workstation number.
UB : the upper bound of buffer capacity at each stage.
N : the total number of parts in simulation experiment.
D : the number of parts in warm-up period.
CM : the unit workstation cost.
CB : the unit buffer capacity cost.
AM : the adjusted unit workstation cost parameter in the approximate model.
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AB : the adjusted unit time buffer cost parameter in the approximate model.
Ai : the arrival time of ith part.
Ti : the expected total processing time of part i, which is the sum of processing time at all stages of the
part.
α∗ : the target throughput.
zi, j : random numbers used to generate processing times ti, j.

Event time decision variables
ti, j ∈ [0,+∞) : the processing time of part i at workstation j.
Fi, j ∈ [0,+∞) : the finishing time of part i at workstation j.

Optimization decision variables
m j ∈ {0,1} : if the jth workstation is allocated in the flow line, m j = 1. Otherwise m j = 0.
s j ∈ [0,1) : workstation workload, the proportion of workload allocated at the jth workstation.
x j,k ∈ {0,1} : if capacity of jth buffer is k−1, x j,k = 1. Otherwise, x j,k = 0.
r j,k ∈ [0,+∞) : time buffer capacity of the jth workstation (in the approximate model).

3.2 Exact MILP Model

The joint workstation and buffer allocation problem can be formulated in an MILP model that integrates
both simulation and optimization. The model is formulated as follows:

min{CM

UM

∑
j=1

m j +CB

UM−1

∑
j=1

UB+1

∑
k=1

(k−1)x j,k}

Subject to:

UM

∑
j=1

s j = 1 (1)

s j ≤ m j, ∀ j = 1,2, . . . ,UM (2)

m j−1 ≥ m j, ∀ j = 2, . . . ,UM (3)
UB+1

∑
k=1

x j,k = 1, ∀ j = 1,2, . . . ,UM−1 (4)

ti, j = φ(Tis j,zi, j), ∀ j = 1,2, . . . ,UM,∀i = 1,2, . . . ,N (5)

Fi,1− ti,1 ≥ Ai, ∀i = 1,2, . . . ,N (6)

Fi+1, j−Fi, j− ti+1, j ≥ 0, ∀ j = 1,2, . . . ,UM,∀i = 1,2, . . . ,N−1 (7)

Fi, j+1−Fi, j− ti, j+1 ≥ 0, ∀ j = 1,2, . . . ,UM−1,∀i = 1,2, . . . ,N (8)

Fi+k, j−Fi, j+1− ti+k, j +(1− x j,k)M ≥ 0, ∀ j = 1,2, . . . ,UM−1,∀k = 1, . . . ,UB +1,∀i = 1,2, . . . (9)
N−D

FN,UM −FD,UM

≥ α
∗ (10)

Constraint (1) states that the workload is completely allocated to the flow line. Constraints (2) describe
that when the workload allocated to a workstation is non-zero, this workstation is allocated to the system;
otherwise if the workload is zero, the related workstation is not allocated. Constraints (3) impose that all
workstations allocated are in the first part of the line, the time for parts passing through unused workstations
is 0 and this does not influence the manufacturing process in front. Constraints (6)-(9) describe the
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production process which is presented with the ERGL model in Figure 2. Constraints (6) are derived from
arcs from Ai to Fi,1, and it states that the ith part arrives at the line at time Ai. Constraints (7) are derived
from horizontal arcs in the ERGL model, and state that one machine cannot process more than one part
at a certain time. Constraints (8) are derived from vertical arcs in the ERGL model, and impose that a
part cannot be processed by more than one machine at the same time ((6)-(8) (Chan and Schruben 2003)).
Constraints (9) are derived from the arcs from Fi, j+1 to Fi+k, j, and describe that buffer capacity is finite: if
capacity of jth buffer is equal to k−1 (which means x j,k = 1), part i+ k cannot enter the jth workstation
before the ith part leaves the ( j+ 1)th workstation ((4) and (9) in Matta (2008)). Constraint (10) states
that the designed production line should reach a minimum target throughput α∗.

Figure 2: ERGlite Representation.

Constraints (5) deal with random generation of processing times, which are a function φ of the expected
value Tis j and the random numbers zi, j. As the value of the decision variable s j changes, also the generated
processing times are modified accordingly. As we solve an MILP problem, the function φ should be a
linear function of variables s j to keep low the complexity of the model. Specifically, s j and zi, j can be
combined in an additive or a multiplicative way:

• Additive combination A function like φ = Ti(s j + zi, j) can be used, where zi, j follows a zero-mean
distribution. For example, if zi, j follows a uniform distribution on (-0.1, 0.1) and ti, j = Ti(s j + zi, j),
then ti, j also follows a uniform distribution on (Ti(s j−0.1),Ti(s j +0.1)).

• Multiplicative combination A function like φ = Tis j f (zi, j) can be used. In this case, distributions
of zi, j and ti, j do not necessarily have the same shape. For example, if zi, j is uniformly distributed
in interval (0,1), and ti, j is assumed to follow an exponential distribution with a mean Tis j, then
ti, j =−Tis jln(1− zi, j).
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Other constraints can also be considered to be more consistent with industrial reality if additional
knowledge is available on the process. For example, constraints (11) impose that the second workstation is
the bottleneck of the system. Another useful constraint is (12) which gives a lower bound to the workload
of the jth workstation.

s2 ≥ s j, ∀ j (11)

s j ≥ 0.2 (12)

By solving this MILP model, the global optimal can be obtained using a single-replication experiment
under the DEO framework. As the replication length increases, the optimal solution epi-converges to the
optimum (Pedrielli et al. 2016). However, the number of variables and the number of constraints increase
significantly as N, UM or UB increases. Specifically, the number of binary variables and the number of
continuous variables in the model are UMUB and 2NUM +UM, respectively. The number of constraints
containing binary variables is NUMUB, and the number of continuous constraints is 3NUM. Therefore,
when designing long production lines or when considering long simulations, the computational complexity
can be very high.

3.3 Approximate Model

One reason for high complexity of the MILP is the large number of integer variables. Thus, replacing these
variables by continuous ones is important for solving long production line design or long simulations in
reasonable computation time.

Constraints (2)-(4) and (9) and the objective function contain the binary variables m j and x j,k. By
using constraints (13), Matta (2008) introduced an LP approximate formulation of buffer allocation binary
variables x j,k.

Fi+k, j−Fi, j+1 ≥ ti+k, j− r j,k (13)

If the capacity of jth buffer is not less than k (which is equivalent to r j,k > 0), part i+ k can enter
machine j before part i leaves machine j+1. A larger r j,k means higher necessity to have the kth slot.
Variables r j,k are also known as time buffer capacity and were extensively studied in Matta (2008); Pedrielli
(2013); Pedrielli, Matta, and Alfieri (2015a); Pedrielli, Matta, and Alfieri (2015b).

The total buffer capacity formula in the objective function is replaced by

UM−1

∑
j=1

UB

∑
k=1

r j,k.

The objective function is changed into formula (14), in which the minimization of workstation number
is guaranteed by giving higher weight on additional workstations.

min{AM

UM

∑
j=1

js j +AB

UM−1

∑
j=1

UB

∑
k=1

r j,k} (14)

where AM and AB are adjusted unit cost parameters.
The main advantage of this approximate LP model is the higher efficiency compared with the exact

model, while the disadvantage is the loss of accuracy, especially for thebuffer allocation problem. Indeed,
minimizing (14) leads that upstream workstations have higher workloads, and therefore, higher buffer
capacities may be needed for such an unbalanced line. To solve this problem, a three-step math-heuristic
algorithm is introduced in section 4.
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4 THREE-STEP MATH-HEURISTIC ALGORITHM

The algorithm iteratively uses two models to approximately find out the optimal system configuration. The
procedure is illustrated in Figure 3. The approximate model can be decomposed into two models. One
model solves the workstation number with infinite buffers. The second model solves the workload and
buffer allocation problem with the fixed workstation number NM. This decomposition works under the
assumption that workstation cost is much higher than buffer cost, which means adding an extra workstation
is never considered as a good solution if target throughput can be fulfilled by increasing buffer capacity.

Figure 3: Algorithm outline.

The workstation number model consists of constraints (1), (5)-(8) and(10) and the following objective
function:

min{
UM

∑
j=1

js j}.

The workload and buffer allocation model consists of constraints (1),(5)-(8),(10) and (13) and the
following objective function:

min{
M−1

∑
j=1

UB

∑
k=1

r j,k}.

The detailed algorithm is described as follows.
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Algorithm 1
Step 1 The workstation number
Solve the workstation number model, and the solution is an approximate workstation number NM0.
Step 2 First iteration of workload and buffer allocation
Workload and buffer allocation model is solved with NM = NM0.
if this model is feasible then

b = true
else

b = f alse
end if
Step 3 Tuning
if b = true then

while b = true do
Solve the workload and buffer allocation model with NM = NM−1.
if The model is infeasible then

b = f alse
end if

end while
Solve the workload and buffer allocation model with NM = NM +1.

else
while b = f alse do

Solve the workload and buffer allocation model with NM = NM +1.
if The model is feasible then

b = ture
end if

end while
end if

5 NUMERICAL ANALYSIS

In this section the application of the proposed math-heuristic algorithm is reported on three cases. In all the
cases, the distribution of processing times of the second workstation is a symmetric triangular distribution
with width = 0.2Ti, i.e. ti,2 are distributed on (Ti(s2−0.1),Ti(s2+0.1)), zi,2 follows a triangular distribution
with minimum value −0.1, maximum value 0.1 and the peak of the probability density function at 0.
Therefore, function φ in constraint (5) becomes

ti,2 = Ti(zi,2 + s2)

Processing times at other workstations are exponentially distributed, i.e. zi, j follows a uniform distribution
in (0,1) and the following expression is used:

ti, j =−Tis jln(1− zi, j), j 6= 2.

All parts arrive at time 0 (Ai = 0, ∀i). Expected total processing times are 1 time unit for 50% of the
parts or 0.5 time unit for 50% of the parts. Boundaries of the problem are UM = 10 and UB = 20. The total
part number N is equal to 20000, and the warm-up period consists of 500 parts (identified with Welch’s
approach). Unit workstation cost CM is 100 and unit buffer slot cost CB is 1. The same joint allocation
problem is also solved using OptQuest in Arena by running 1000 iterations, where each iteration executes
10 simulations for comparison. Results are verified by simulating the optimal system in Arena with 100000
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parts and checking the satisfaction of the throughput constraint (the throughput values are presented in
column - α verified in Table 3 with a half width 95% confidence level less than 0.01).

The first case is the design of a flow line with a bottleneck at the second workstation (s2 ≥ s j). The
target throughput is varied from 1.5 to 6 parts per time unit. Figure 4 shows the total costs of the systems
derived from themath-heuristic and OptQuest. The cost provided by the heuristic is lower than that provided
by OptQuest by 8.2% on the average and the gap can be up to 31.1%. In Table 1, we compare two system
configurations for α∗ = 5 by using different methods.

Figure 4: Case 1: comparison of math-heuristic and OptQuest.

Table 1: Case 1: optimal configurations (α∗ = 5).

Number of Total buffer Stage buffer Total
Method Workstations capacity Workload capacity cost

Math-Heuristic 4 56 0.25, 0.26, 0.24, 0.25 19, 19, 18 456
OptQuest 5 31 0.23, 0.24, 0.17, 0.12, 0.24 16, 6, 1, 8 531

The second case is the design of more unbalanced lines with a constraint of bottleneck at the second
workstation (s2 ≥ 1.2s j). The target throughput is varied from 1.5 to 6 parts per time unit. Other parameters
and distribution assumptions are the same as in case 1. Figure 5 shows the total costs of systems derived
from the math-heuristic and OptQuest. The cost provided by the heuristic is lower than that provided by
OptQuest by 12.7% on the average and the gap can be up to 38.2%. In Table 2, we compare two system
configurations for α∗ = 5 by using different methods.

Table 2: Case 2: optimal configurations (α = 5).

Number of Total buffer Stage buffer Total
Method Workstations capacity Workload capacity cost

Math-Heuristic 5 22 0.20, 0.24, 0.19, 0.17, 0.20 7, 6, 5, 4 522
0.16, 0.20,

OptQuest 7 71 0.05, 0.14, 0.14, 0.17, 0.14 20, 5, 20, 5, 1, 20 771

Table 3 shows that solutions provided by the math-heuristic in both cases can guarantee the throughput
target.

In the third case, we choose two tests, each from the last two cases. The two tests are repeated using
the math-heuristic algorithm with 10 different random sample paths. α∗ = 6 is chosen from case 1, and
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Figure 5: Case 2: comparison of math-heuristic and OptQuest.

Table 3: Throughputs verified using long simulation N = 100000.

Case 1 Case 2
α verified α verified α verified α verified

α∗ of math-heuristic of OptQuest of math-heuristic of OptQuest
1.5 1.9 1.9 1.9 1.6
2 2.1 2.1 2.1 2.1

2.5 2.5 2.8 2.8 2.8
3 3.2 3.2 3.2 3.1

3.5 3.6 3.7 3.5 3.6
4 4.3 4.2 4.2 4.3

4.5 4.6 4.6 4.6 4.6
5 5.0 5.2 5.3 5.7

5.5 5.7 5.7 5.6 6.7
6 6.1 6.5 6.2 6.8

α∗ = 4 is chosen from case 2. Table 4 and Table 5 show the results of these experiments. Similar with
the first two cases, all results provided by the math-heuristic are better than the OptQuest results. It is
possible to notice that the solution found by the heuristic is quite stable. Indeed, the number of allocated
workstations does not change in the ten replications, whereas the total allocated buffer ranges from 59 to
63 (α∗ = 6) and from 13 to 15 (α∗ = 4).

The computation time is around 10 minutes on average for solving one problem using the math-heuristic
algorithm, while the time for OptQuest is around 20 minutes. Experiments show that the proposed algorithm
is both efficient and accurate.

CONCLUSION

This work proposes different MPRs and a math-heuristic algorithm based on the MPRs for solving the joint
workstation and buffer allocation problems, both of which are global search methods. Numerical results
show that the proposed math-heuristic is both efficient and accurate. However, the exact model in large
scale cannot be solved in reasonable computational time. Future work will be dedicated to solve efficiently
the integrated simulation-optimization model by using decomposition approaches from MILP theory.
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Table 4: Case 3: results of 10 different sample paths using the same parameters and constraints as in case
1 with α∗ = 6.

Number of Total buffer Stage buffer
Workstations capacity Workload capacity α verified

5 59 0.21, 0.21, 0.2, 0.19, 0.19 19, 13, 14, 13, 6
5 59 0.21, 0.21, 0.2, 0.19, 0.19 18, 14, 14, 13 6.1
5 59 0.21, 0.21, 0.2, 0.19, 0.19 18, 14, 14, 13 6.1
5 60 0.21, 0.21, 0.19, 0.19, 0.2 19, 14, 14, 13 6
5 62 0.21, 0.21, 0.19, 0.19, 0.2 19, 15, 15, 13 6
5 60 0.21, 0.21, 0.19, 0.19, 0.2 18, 14, 14, 14 6
5 62 0.21, 0.21, 0.19, 0.19, 0.2 19, 14, 15, 14 6.1
5 63 0.21, 0.21, 0.2, 0.19, 0.19 19, 15, 15, 14, 6.1
5 62 0.21, 0.21, 0.19, 0.19, 0.2 19, 14, 16, 13 6
5 63 0.21, 0.21, 0.2, 0.19, 0.19 19, 15, 15, 14 6.1

Table 5: Case 3: results of 10 different sample paths using the same parameters and constraints as in case
2 with α∗ = 4.

Number of Total buffer Stage buffer
Workstations capacity Workload capacity α verified

4 14 0.24, 0.29, 0.22, 0.25 5, 5, 4 4.2
4 14 0.24, 0.29, 0.22, 0.25 5, 5, 4 4.2
4 14 0.24, 0.29, 0.22, 0.25 5, 5, 4 4.2
4 14 0.24, 0.29, 0.22, 0.25 5, 5, 4 4.2
4 14 0.24, 0.29, 0.22, 0.25 5, 5, 4 4.2
4 15 0.24, 0.29, 0.22, 0.25 6, 5, 4 4.3
4 13 0.24, 0.29, 0.22, 0.25 5, 4, 4 4.2
4 13 0.24, 0.29, 0.22, 0.25 5, 4, 4 4.2
4 14 0.24, 0.29, 0.22, 0.25 5, 5, 4 4.2
4 14 0.27, 0.27, 0.21, 0.25 6, 4, 4 4.3
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