
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

TASK SCHEDULING IN A FULL ROAMING SHUTTLE SYSTEM

Martijn P.O.J. Gootzen

Ivo J.B.F. Adan

Eindhoven University of Technology

PO Box 513

Eindhoven, 5600 MB, THE NETHERLANDS

Jorine W.E. Heling

Bruno van Wijngaarden

Vanderlande

Vanderlandelaan 2

Veghel, 5466 RB, THE NETHERLANDS

ABSTRACT

A new concept in automated storage and retrieval systems is the full roaming shuttle system, the distinguishing
feature of which is that its material handling shuttles are not aisle-captive, but can easily switch aisles
and levels in the storage area. A consequence of this flexibility is that shuttles more often overtake each
other and deliver product totes in a different sequence than they are requested. In case of strict sequence
requirements for delivered totes, this leads to more waiting time of shuttles and thus to loss of throughput
capacity. In this paper we propose heuristics to assign tasks to shuttles that aim at minimizing the number
of out-of-sequence occurrences and at maximizing the throughput capacity. These heuristics are evaluated
through simulation. The results suggest that, in comparison to first-in first-out task assignment, substantial
throughput improvement can be achieved by employing smart task assignment heuristics.

1 INTRODUCTION

Distribution centers are important for all companies handling many products that have to be distributed or
stocked. One of the main activities in a distribution center is order picking, which can be defined as the
process of retrieving products from the warehouse to fulfill customer orders. Other operations in distribution
centers include receiving, putting away, storing and shipping, though order picking is the most expensive
one (Tompkins, White, Bozer, and Tanchoco 2010). A detailed overview of operations in distribution
centers can be found in (Bartholdi and Hackman 2014), and a description of different types of order picking
systems is provided in (de Koster, Le-Duc, and Roodbergen 2007).

To reduce operational costs and to increase throughput capacity, many companies invest in automating
the order picking process, in particular in automated storage and retrieval systems (ASRS). In ASRS
product totes containing the items that have to be picked are automatically transported to workstations
where operators (or robots) will pick one or more items from the product tote, after which the tote will
again be transported to and stored in the storage area. A novel solution of such goods-to-man systems is
the full roaming shuttle system (FRS), an example of which is the 3D storage system (ADAPTO 2015) of
Vanderlande. This system is suitable for slow-moving products in retail and wholesale distribution centers.
The distinguishing feature of an FRS is that its material handling devices, i.e. roaming shuttles, are not
aisle-captive, but they can easily switch aisles and even levels (through lifts) in a multi-level storage area.
A consequence of increased routing flexibility is that shuttles will more often overtake each other and
deliver product totes in a different sequence than they are released. Hence, when totes have to be delivered
in a strict sequence (for example, due to buffer or loading constraints), this flexibility may lead to more
waiting time of shuttles and operators, and thus to loss of throughput capacity. For companies, however, it

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 2844

Gootzen, Adan, Heling, and van Wijngaarden

is important that maximum throughput is achieved for the existing or new equipment. This may achieved
by developing intelligent control strategies.

(Matthijssen 2012) investigates the performance of FRS where order lines are released to shuttles
according to first-in first-out (FIFO). This is a simple strategy, suitable in case there are no sequencing
requirements. However, when sequencing is required, he shows that this strategy leads to longs waiting
times at the lifts. (van Dorst 2012) investigates the performance of a more intelligent task assignment method
based on the assumption of fixed inter-arrival times (FIAT) of shuttles, called the required arrival time
(RAT) method, and shows that significant throughput improvement can be achieved with RAT. However,
RAT has not been validated in case of conflicts (i.e., interference delays) between shuttles, and a drawback
of RAT is that it requires an accurate estimate of the throughput. To overcome this drawback, Van Dorst
recommends to develop scheduling heuristics that use information about the current state of shuttles in the
FRS in order to predict their arrival times. That is what we intend to in the current paper: We propose smart
task assignment heuristics that aim at minimizing the number of out-of-sequence occurrences, by using
information on estimated arrival times of shuttles. The performance of these heuristics will investigated
through simulation, which takes into account stochastic interference delays.

This paper is organized as follows. In the next section we describe the FRS. Afterwards, in Section
3, we describe the smart scheduling heuristics, by using a running example. In Section 4 the simulations,
which are used to evaluate the heuristics, are discussed, followed by a section showing the results of these
simulations. Finally, the simulation model and its results are discussed, followed by a conclusion.

2 SYSTEM DISCRIPTION

ASRS consist of multiple aisles where product totes are stored in racks. Product totes are stored and
retrieved from the racks with material handling devices. The ASRS considered in this paper is the full
roaming shuttle system (FRS). An FRS typically consists of multiple levels, connected by lifts, where
each level has multiple aisles connected by cross-aisles, and these systems can be build modularly. The
distinguishing feature of an FRS is that its material handling devices, i.e., roaming shuttles, are not bound
to a specific part of the storage area, but can reach every location in the storage area. Hence, an advantage
of the FRS system is that multiple storage and retrieval machines (SRMs) can simultaneously retrieve
product totes from any aisle at any level. The FRS recently developed by Vanderlande is (ADAPTO 2015).

Figure 1: Schematic top view of an FRS showing the layout of a single level (in blue) of the storage area.

2845

Gootzen, Adan, Heling, and van Wijngaarden

Figure 1 displays a schematic representation of an FRS, with two cross-aisles at each level, two lifts and
two workstations. Shuttles can move along the cross-aisle to the desired storage-aisle. In the storage-aisle
a shuttle travels along the aisle, to first store and then retrieve a product tote. Afterwards the shuttle travels
to the front cross-aisle, and then, via this cross-aisle, to the lift. The lift is connected to the cross-aisle
with a rail, which is used as buffer offering space for exactly one shuttle. In this buffer, the shuttle can
wait for the lift to arrive. In case more than one shuttle needs to wait for the lift, the additional ones wait
in (and block) the cross-aisle, and it is not possible to change the sequence of waiting shuttles. When the
lift arrives, the shuttle waiting in the buffer moves in the lift and is then transported to the workstation
level, where the shuttle first unloads the product tote and then loads another one. After loading, the lift
transports the shuttle back to a possibly different level and the cycle of the shuttle repeats. This process
is referred to as dual cycle (combining storage and retrieval operations in a single cycle), as opposed to
inbound (storage) and outbound (retrieval) cycles.

The FRS setup considered in this paper consists of a dual-cycle multi-level system, with a single
cross-aisle at each level. We will now describe the dual cycle of shuttles in more detail.

Shuttles can retrieve product totes from any location in the system and transport them, by using the
lift, to the workstation. After unloading the product tote at the workstation, the shuttle will receive a new
retrieval task as well as a new product tote from which the required item(s) have been extracted, to store
it back in the FRS. We assume that it is always possible to store this product tote in an open location in
the same aisle as (and on its way to) the next product tote that has to be retrieved. This assumption is
reasonable, since the fill rate of the storage area (i.e., percentage of locations occupied by totes) is typically
at most 95%. It implies that no additional travel time is needed for the storage activity of shuttles and that
the travel time is determined by the location of the product tote that has to be retrieved. Note that product
totes can be claimed by one shuttle at the time. To avoid delays due to shuttles competing for the same
product, fast-moving products are stored in multiple totes.

The different components of a shuttle cycle are chronologically listed in Figure 2, and they are explained
below:

T WC WS WL L

Figure 2: Dual cycle of a shuttle in an ASRS with full roaming shuttles.

• T is the travel time without conflict (i.e., interference delay) on a level of the storage area. This
travel time is determined by the location of the product tote that has to be retrieved.

• WC is the waiting time due to conflicts that the shuttle encounters on a level during a cycle.
• WS is the waiting time of the shuttle due to being out-of-sequence.
• WL is the waiting time for the lift. The lift is not available, but serving other shuttles, while this

shuttle has the right sequence.
• L is the lift time. The lift time is the time from picking up the shuttle from the level in the ASRS

until putting this shuttle back at the desired level for the next retrieval.

The conflict time WC is stochastic and can happen anywhere during the travel time T on a level. This
conflict time is due to interference delays between shuttles moving around at the same level of the ASRS.
Two types of conflicts can occur. Either the storage aisle or cross-aisle the shuttle needs to visit is not
available, because another shuttle has already claimed this aisle. These conflicts and resulting delays depend
on the level of congestion in the system and they are difficult to predict and estimate. In Section 4 we will
explain how the conflict time WC is modeled in the simulation study.

The lift time L consists of multiple components. First, the lift picks up the shuttle on level A say, and
transports it to the level of the workstation. The workstation unloads the product tote from the shuttle and

2846

Gootzen, Adan, Heling, and van Wijngaarden

loads it with a another one to be stored again in the storage area. Then the lift transports the shuttle to level
B, where the shuttle leaves the lift, and then the lift moves to level C to pick up the next shuttle. Hence,
the lift time L consists of entering and leaving, loading and unloading, and traveling between three levels
A, B and C, though it will not be modeled in full detail in the simulation study.

The travel time T depends on the location of the tote to be retrieved, which can be anywhere in the
system, and therefore the travel time T can strongly vary among the retrieval tasks. Hence it is possible
that shuttles overtake each other. Since strict sequence restrictions are required by the workstation, shuttles
that have overtaken other shuttles will have to wait in the input buffer in between the cross-aisle and the
lift. As observed by (Matthijssen 2012), when retrieval tasks are assigned to shuttles according to FIFO,
this may result in long waiting times in the input buffer and thus to loss of throughput capacity. Therefore,
we are interested in more intelligent scheduling heuristics that attempt to produce task assign sequences
leading to less out-of-sequence events. These scheduling heuristics are the topic of the next section.

3 SCHEDULING HEURISTICS

In this section we will explain the scheduling heuristics, and include a running example supported by
graphs. The setting that we consider is a single lift (and single workstation) with a fixed number of shuttles
dedicated to this lift. The number of shuttles assigned to the lift is indicated by k. Such systems are referred
to as closed-loop systems (as opposed to pooled systems where multiple lifts share a pool of shuttles).
There is an unlimited list of orders, i.e., product totes that have to be retrieved from the storage area. Hence,
shuttles will immediately receive a new task when they deliver a product tote at the workstation, and thus
never idle. This list of totes to be retrieved also prescribes the strict sequence in which the product totes
have to be delivered at the workstation (so the first tote on the order list has to be delivered first, then the
second one and so on).

The system throughput, that is the number of tasks performed per unit of time, depends on the sequence
in which tasks are assigned to arriving shuttles. The most basic algorithm to schedule tasks is FIFO. Tasks
are assigned to arriving shuttles in sequence of the list of orders, i.e., FIFO simply assigns the ith order
on the list to the ith arriving shuttle. The advantage of this heuristic is its ease of understanding and
implementation. A disadvantage is that it may lead to a lot of overtaking, resulting in long waiting times
due to sequencing restrictions, and thus to loss of throughput capacity.

FIFO does not use any information on the duration of the shuttle cycles nor on the arrival times of
shuttles: We now propose heuristics that use this information. To compute the duration of shuttle cycles,
we will ignore the stochastic component WC and use (an estimate of) the mean lift time E(L) instead of
L. The heuristics look ahead and consider the first N tasks on the list of retrieval tasks, that have not yet
been assigned. The parameter N is called the (rolling) scheduling horizon, and the list of these N tasks is
referred to as the scheduled list. The first heuristics is:

3.1 Brute Force

To decide which task should be assigned to the next arriving shuttle, this heuristic considers all sequences
of the N tasks on the scheduled list, and for each sequence, it computes the makespan, which is the time
required to complete all tasks on the scheduled list. To compute the makespan of a sequence, we have to
estimate the shuttle cycles, in which we ignore (as mentioned above) the stochastic component WC and use
E(L) instead of L. The heuristic then selects the sequence with minimal makespan, and the first task in
this sequence will be assigned to the next arriving shuttle. Note that this task may not be the first one on
the list of tasks, that have not yet been scheduled.

The Brute Force heuristic is illustrated for the example in Table1 with horizon N = 3. The tasks on
the scheduled list are numbered 1,2,3, and Ti is the travel time (in seconds) of task i. The lift time L is
assumed to be exactly 2 seconds for each cycle. The number of shuttles is k = 3 and ai is the time of the
ith arrival of a shuttle, starting from the current time t = 0. Note that, since the second arrival is at time

2847

Gootzen, Adan, Heling, and van Wijngaarden

t = 6, this shuttles occupies the lift from time t = 4 to t = 6, and from t = 6 to t = 8 it is occupied by the
third shuttle.

Table 1: Scheduling example with N = 3.

i Ti[s] ai[s]
1 4 0

2 7 6

3 10 8

There are 3! = 6 possible sequences for which the makespan needs to be evaluated. Figures 3–5
illustrate the calculation of the makespan for three sequences: a = [1, 2, 3] (FIFO), b = [3, 2, 1] and c =
[2, 3, 1]. Note that sequence a in Figure 3 corresponds to FIFO, and that for this sequence, the waiting WL
after T1 is due to the fact the lift is busy with the other shuttles. The makespan is 20 seconds for sequence
a,18 seconds of b and 19 seconds of c. Hence, in case the makespan of the other three sequences is greater
than 18 seconds, the Brute Force method selects sequence b and assigns task T3 to the shuttle arriving
at time a1 = 0. Then it deletes task 3 from the scheduled list {1,2,3}, adds task 4, so the scheduled list
becomes {1,2,4}, and sets a4 = 18. Then time jumps a2 = 6 seconds ahead to the next arrival, and the
Brute Force method repeats.

0 5 10 15 20

T1 WL L

T2 L

T3 L

Figure 3: Retrieval scenario a = [1, 2, 3] (FIFO).

0 5 10 15 20

T1 L

T2 WL L

T3 WS WL L

Figure 4: Retrieval scenario b = [3, 2, 1].

The Brute Force method evaluates all possible task assign sequences of the scheduled list of size N.
Since this number is N!, the computational effort of Brute Force explodes as N grows. For large-sized
systems, scheduled lists of size N > 10 yield good makespan performance, though require excessively long
computation times (especially for PLC implementations). Therefore, a more efficient method is developed
which is explained below.

3.2 Last Scheduled

Let us assume that the best sequence used for the previous arrival is [i1, i2, . . . , iN]. Hence, task i1 is assigned
to the shuttle and removed from the scheduled list. Then the next task iN+1 is added to the list {i2, . . . , iN}

2848

Gootzen, Adan, Heling, and van Wijngaarden

0 5 10 15 20

T1 L

T2 WS WL L

T3 L

Figure 5: Retrieval scenario c = [2, 3, 1].

and time moves to the next arrival. To decide which task should be assigned to the next arriving shuttle, the
Last Scheduled heuristic takes the sequence [i2, . . . , iN] as starting point and only evaluates the makespan
of the sequences obtained by inserting task iN+1 at the N possible positions in sequence [i2, . . . , iN]. The
heuristic then selects the sequence with minimal makespan, and the first task in this sequence will be
assigned to the next arriving shuttle. Clearly, this method is much more efficient than Brute Force, since
it evaluates only N instead N! sequences. However, it is possible that it omits task sequences with a
significantly lower makespan.

To illustrate this method, we consider the example in Table 1 again, and suppose that [1, 3, 2] is the
optimal sequence at time t = 0. Then task 1 is assigned to the shuttle arriving at time t = 0 and it is
removed from the list. Task 4 is added, and to decide which task should be assigned to the shuttle arriving
at time a1 = 6, the Last Scheduled method calculates the makespan of three sequences [3, 2, 4] [3, 4, 2]
and [4, 3, 2], from which the one with minimal makespan is selected.

3.3 Brute Force and Last Scheduled with Fixed Inter Arrival Times

The makespan calculations in Figures 3–5 are based on the actual arrival times of shuttles. In fact, these
arrival times are estimates of the actual times, since in the shuttle cycle times, the stochastic component
WC is ignored and only the mean of L is used. Moreover, the complexity of the calculation of these arrival
times increases as the number of shuttles k increases, and the calculation becomes unworkable, in the
situation where multiple lifts share a pool of shuttles. Heuristics using estimated arrival times of the fixed
pool of k shuttles in order to schedule tasks are referred to as closed-loop schedules. An easier and more
robust approach to estimate the arrival times of shuttles is to assume a Fixed Inter Arrival Time (FIAT)
of shuttles. This means that arrival time ai = i×FIAT. Both methods described above, i.e., Brute Force
and Last Scheduled, can be equipped with the FIAT assumption for the calculation of the arrival times of
shuttles. Such schedules will be referred to as FIAT schedules, and they can be used in closed-loop as well
as pooled systems.

For the example in Table 1, Figures 6–8 illustrate the retrieval scenarios a, b and b based on the FIAT
assumption with FIAT = 3 seconds. The makespan is 18 seconds for a and 16 seconds for both b and c.

4 SIMULATION MODEL

To evaluate the heuristics, we have developed a simulation model of the system shown in Figure 1. However,
this simulation model describes the FRS system at a high level of abstraction: The travel time T , conflict
time WC and lift time L are described by i.i.d. random variables, the parameters of which are obtained
from a detailed simulation model of the complex FRS system in Figure 1, developed by Vanderlande in
the programming environment (AUTOMOD 2014). The high level simulation model has been developed
in the simulation language (χ3.0 2014). In this simulation model we implemented an elegant algorithm
due to (Fuchs 2016) to generate all permutations of the scheduled list (required for Brute Force), and we
developed a fast algorithm to calculate the makespan of task assign sequences (required for each of the
smart heuristics); the reader is referred to (Gootzen 2015) for a detailed description of this algorithm.

2849

Gootzen, Adan, Heling, and van Wijngaarden

0 5 10 15 20

FIAT FIAT

T1 L

T2 L

T3 L

Figure 6: Retrieval scenario a with FIAT.

0 5 10 15 20

FIAT FIAT

T1 L

T2 WL L

T3 WL L

Figure 7: Retrieval scenario b with FIAT.

0 5 10 15 20

FIAT FIAT

T1 L

T2 WS WL L

T3 WL L

Figure 8: Retrieval scenario c with FIAT.

The FRS studied in this paper consists of 20 levels, with at each level, 10 storage aisles with a dept
of D locations. The lift has k dedicated shuttles to retrieve and store product totes. The totes that have to
be retrieved are randomly located in the storage area (i.e., at a random location in a random storage aisle
at a random level). The travel time T , conflict time WC and lift time L are modeled as follows:

• Travel time T : The shuttle needs to travel in the cross-aisle and storage aisle. The travel time in
the cross-aisle is assumed to be Uniform[0, 30] seconds. The travel time in the storage-aisle is
Uniform[0, 0.625×D] seconds. In addition, the travel time includes a fixed time of 18.5 seconds,
describing the storage and retrieval of totes and the communication time with the system supervisor.

• Conflict time WC: Not all shuttles experience conflicts during a cycle, but only a fraction p. Hence,
WC > 0 with probability p, and WC = 0 otherwise. The conditional conflict time WC|WC > 0 is
assumed to be Gamma distributed. The mean E(WC|WC > 0) and coefficient of variation cWC|WC>0

of the conditional conflict time are estimated from data of the detailed simulation model.

2850

Gootzen, Adan, Heling, and van Wijngaarden

• Lift time L: A lift cycle consists of loading and unloading of shuttles and traveling between levels.
The fixed time of loading and unloading of shuttles is large in comparison to the travel time between
levels. The total lift time is assumed to be Uniform[13.5, 19.5] seconds.

The high level simulations can be visualized with Gannt charts. Figure 9(a) shows the resulting cycle
times of orders 700 up to 720 by using k = 6 shuttles operating under FIFO. The results of a smarter
scheduling in Figure 9(b) clearly demonstrate that tasks are no longer assigned FIFO, resulting in a steeper
graph and thus higher throughput. As explained in Section 3, in the simulations the scheduling heuristics
do not take into account stochastic conflict times WC and stochastic lift times L in order to estimate shuttle
cycle times, i.e., the heuristics simply ignore WC and use E(L) instead of L.

1.56 1.57 1.58 1.59 1.6 1.61 1.62

x 10
4

700

702

704

706

708

710

712

714

716

718

720

Time [s]

O
rd

er
nu

m
m

er

Conflict Time
Waiting for Sequence
Waiting for Lift
Lift Time

Shuttle 1
Shuttle 2
Shuttle 3
Shuttle 4
Shuttle 5
Shuttle 6

(a) FIFO

1.44 1.45 1.46 1.47 1.48 1.49 1.5 1.51

x 10
4

700

702

704

706

708

710

712

714

716

718

720

Time [s]

O
rd

er
nu

m
m

er

Conflict Time
Waiting for Sequence
Waiting for Lift
Lift Time

Shuttle 1
Shuttle 2
Shuttle 3
Shuttle 4
Shuttle 5
Shuttle 6

(b) Smart Scheduling Heuristic

Figure 9: Gantt chart of retrieval scenario.

5 SIMULATION EXPERIMENTS

In all experiments presented in this section we generated a list of 20.000 tasks. To avoid startup symptoms
the first 500 task completion times are not taken into account. Comparison of scheduling heuristics is
always based on exactly the same list of tasks, generated by common random numbers (i.e., using the same
seed values). The bars in the figures displayed in this section indicate 95% confidence intervals.

5.1 Performance of Closed-Loop Scheduling with no Conflicts

We start to conduct simulations assuming shuttles experience no conflicts at all (so p = 0). In the absence
of conflicts, shuttle arrival times can be predicted accurately. Figure 10 shows the throughput improvement
of Brute Force and Last scheduled based on closed loop scheduling and different scheduling horizons N.
Figure 10(a) illustrates that for a small-sized system (D = 80, k = 5) a scheduling horizon N = 2 results in a
throughput improvement of around 5.5% compared to FIFO. A longer scheduling horizon does not result in
significantly higher throughput. Figure 10(b) shows that in a larger-sized system (D = 145, k = 6) a longer
scheduling horizon will result in more throughput improvement. It also illustrates that in larger systems
more throughput improvement can be achieved, 11% versus 5.5%. Both figures indicate that Brute Force
performs slightly better than Last Scheduled. However, since the computational effort of Last Scheduled
is substantially less, we will use Last Scheduled (LS) in the remainder of this section.

2851

Gootzen, Adan, Heling, and van Wijngaarden

1 2 3 4 5
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Scheduling Horizon [−]

Im
pr

ov
em

en
t w

.r
.t.

 F
IF

O
 [−

]

Last Scheduled
Brute Force

(a) Small-sized system: D = 80,k = 5.

1 2 3 4 5 6

1

1.02

1.04

1.06

1.08

1.1

1.12

Scheduling Horizon [−]

Im
pr

ov
em

en
t w

.r
.t.

 F
IF

O
 [−

]

Last Scheduled
Brute Force

(b) Large-sized system: D = 145,k = 6.

Figure 10: Performance of closed-loop scheduling heuristics in the absence of conflicts.

5.2 Influence of Conflicts

For a small-sized system (D = 80, k = 5), Figure 11 illustrates the influence of conflicts on the throughput
performance of the closed-loop LS heuristic with N = 2. Figure 11(a) shows the effect of the conflict
probability p, for mean conditional conflict times E(WC|WC > 0) of 15 and 30 seconds, respectively, and
coefficient of variation cWC|WC>0 = 1 (so Exponential conflict times). Figure 11(b) demonstrates the effect
of variability of conflict times, for conflict probability p = 0.15.

0 20 40 60 80 100
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Percentage Conflict [%]

Im
pr

ov
em

en
t w

.r
.t.

 F
IF

O
 [−

]

Mean Conflict = 15 s
Mean Conflict = 30 s

(a) Throughput gain as function of p for cWC |WC>0 = 1.

0 0.5 1 1.5 2
1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055

1.06

Coefficient of variation of conflict [−]

Im
pr

ov
em

en
t w

.r
.t.

 F
IF

O
 [−

]

Mean Conflict = 15 s
Mean Conflict = 30 s

(b) Throughput gain as function cWC |WC>0 = 1 for p= 0.15.

Figure 11: Effect of conflict time on throughput improvement under closed-loop LS.

As expected, Figure 11 shows that the more shuttles experience conflicts, i.e., the greater p, the less
throughput improvement can be achieved with a smart scheduling heuristic. The same is true for the mean
and variability of the conflict times.

5.3 Closed-Loop versus FIAT Scheduling

We now compare the throughput performance of closed-loop scheduling with FIAT scheduling. Instead
of calculating the arrival times of shuttles at the workstation, as done in closed-loop scheduling, FIAT

2852

Gootzen, Adan, Heling, and van Wijngaarden

scheduling simply assumes a Fixed Inter Arrival Time of shuttles. Hence, this scheduling strategy uses
less system information, and it has the advantage that it can also be applied in pooled systems. Figure
12 shows the throughput improvement of FIAT with respect to FIFO for various FIAT values in a system
with D = 145 and k = 6. The scheduling heuristic is LS with horizon N = 6. The conflict parameters are
p = 0.33, E(WC|WC > 0) = 20.2 seconds and cWC|WC>0 = 1.098. Figure 12 demonstrates that FIAT based
scheduling outperforms closed-loop scheduling for FIAT values in the range of 20-40 seconds, and that
its performance is fairly robust with respect to the choice of FIAT as long as it is not too small. Clearly,
a lower bound for FIAT is the lift time (since shuttles cannot arrive faster), and Figure 12 suggests that
1.75×E(L)≈ 29 seconds is a safe choice for FIAT.

0 20 40 60 80 100

1

1.02

1.04

1.06

1.08

1.1

1.12

Fixed Inter Arrival Time (FIAT) [s]

Im
pr

ov
em

en
t w

.r
.t.

 F
IF

O
 [−

]

LS FIAT
LS (Closed Loop)

Figure 12: Throughput performance of FIAT and closed-loop LS scheduling.

5.4 Cycle Time Components

So far we focussed on throughput. Now we investigate the effect of smart scheduling on the waiting time
components of the shuttle cycle, shown in Figure 2. For a system with D = 145 and k = 6, Table 2 shows
the mean values of the cycle time components for FIFO and LS, which are based on N = 6 and FIAT =
1.75×E(L). For a system without conflicts (table at the left), the reduction of the mean out-of-sequence
waiting time E(WS) is more than 70%, the total mean waiting time in front of the lift E(WS)+E(WL) is
reduced by 45% and the total cycle time is reduced by around 10%. For a system with conflicts (table
at the right), the parameters of which are p = 0.33, E(WC|WC > 0) = 20.2 seconds and Cv = 1.098, the
reduction of E(WS) is around 38%, E(WS)+E(WL) is reduced by 25% and the total cycle time is reduced
by around 6%. Hence, the benefits in case of stochastic conflicts are less, but still considerable.

Table 2: Cycle times (in seconds) of FIFO and LS, with (right) and without (left) stochastic conflicts.

FIFO LS

E(T) 78.79 78.79

E(WC) 0.00 0.00

E(WS) 10.19 2.95

E(WL) 18.49 12.92

E(L) 16.48 16.48

Total 123.94 111.14

FIFO LS

E(T) 78.54 78.54

E(WC) 7.10 7.10

E(WS) 13.41 8.34

E(WL) 19.48 16.55

E(L) 16.50 16.50

Total 135.04 127.04

2853

Gootzen, Adan, Heling, and van Wijngaarden

6 CONCLUSION

In this study we developed scheduling heuristics that can potentially improve the throughput of an FRS
system. The proposed heuristics estimate shuttle cycle lengths and arrival times over a rolling horizon
and attempt to use this information to optimally assign tasks to arriving shuttles. Through a high-level
simulation model we investigated the throughput performance of various scheduling heuristics. Simulation
experiments suggest that: (i) smart scheduling heuristics indeed improve the throughput capacity, (ii) more
improvement is possible for larger systems, (iii) variability in shuttle cycle times due to, e.g., interference
delays, reduces throughput capacity, (iv) LS with FIAT is a simple, robust and well-performing scheduling
heuristic, with the advantage that it can be used in both closed-loop and pooled systems.

REFERENCES

ADAPTO 2015. https://www.vanderlande.com/warehouse-automation/innovative-systems/storage-asrs/
adapto/.

AUTOMOD 2014. http://www.appliedmaterials.com/global-services/automation-software/automod.
Bartholdi, J., and S. Hackman. 2014. Warehouse and Distribution Science. Release 0.96 http://www.

warehouse-science.com/.
χ3.0 2014. Documentation of the χ3.0 Language. http://chi.se.wtb.tue.nl/.
de Koster, R., T. Le-Duc, and K. Roodbergen. 2007. “Design and Control of Warehouse Order Picking: A

Literature Review”. European Journal of Operational Research 182:481–501.
Fuchs, P. 2016. Scalable Permutations: A Permutation of Agreeable Ideas. http://www.quickperm.org/

ScalablePermutations.php.
Gootzen, M. 2015. Optimization of Task Scheduling in a Full Roaming Shuttle System. Internship report,

Eindhoven University of Technology.
Matthijssen, I. 2012. Integration of Automated Item Picking in Multi Workstation Order Completion Goods

to Man Systems. Master thesis, Eindhoven University of Technology.
Tompkins, J., J. White, Y. Bozer, and J. Tanchoco. 2010. Facilities Planning. JohnWiley and Sons.
van Dorst, N. 2012. Task scheduling in Full Roaming Shuttle Automatic Storage and Retrieval Systems.

Internship report, Eindhoven University of Technology.

AUTHOR BIOGRAPHIES

MARTIJN P. O. J. GOOTZEN is an M.Sc. student in Mechanical Engineering at the Eindhoven University
of Technology. He has studied the simulation of scheduling heuristics as part of his master programm. His
email address is mgootzen@gmail.com.

IVO J. B. F. ADAN is a Professor of the Department of Mechanical Engineering at the Eindhoven University
of Technology. His current research interests are in the modeling and design of manufacturing systems,
warehousing systems and transportation systems, and more specifically, in the analysis of multi-dimensional
Markov processes and queueing models. His email address is i.j.b.f.adan@tue.nl.

JORINE W. E. HELING is Group Leader Systems Simulation at Vanderlande. The Systems Simulation
group performs computer simulations on the automated material handling system designs of Vanderlande
in order to validate system performance. Her email address is Jorine.Heling@vanderlande.com.

BRUNO VAN WIJNGAARDEN is System Architect at Vanderlande. His current activities are require-
ments management, system design support, product platform and system architecture development and
knowledge management. His e-mail address is bruno.van.wijngaarden@vanderlande.com

2854

