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ABSTRACT 

A flexible job-shop scheduling problem (FJSP) with parallel batch processing machine (PBM) is studied. 
First, mixed integer programming (MIP) formulation is proposed. In order to address a NP-hard structure 
of this problem, we relax the model to selectively include jobs into the model. There are thousands of jobs 
in a floor, but we are mostly interested in priority jobs because special customers promise a significant 
amount of financial compensation in exchange of an expedited delivery. This relaxation could allow non-
priority jobs remain unscheduled, but it expedites the discovery of solutions. We then turn job-dependent 
processing time into machine-dependent by assuming a machine has an equal processing time on different 
jobs. This assumption is acceptable for the sake of the reduced computational time. This further relaxed 
model significantly reduces a computational time compared to the original one when tested on a set of 
common problem instances from a paper in the literature.  

1 INTRODUCTION 

In semiconductor industry, researchers have exploited a performance of each production areas such as 
lithography, diffusion, etch, and implanter for the last decades by using advanced scheduling/dispatching 
systems. Now, there is a growing need of orchestrating a whole factory to seek a global optimization. 
While flexible job shop scheduling problem (FJSP) with 6000-job (assuming 150K monthly wafers 
output and 30 days cycle time), thousands of machine, hundreds of steps, and several dozens of products 
is unlikely to be solved in reasonable time, linking and orchestrating multiple consecutive steps seem to 
be tractable.  

One of applications is wet-diffusion area scheduling problem which has 2-4 consecutive steps with 
parallel batching machines (Bixby et al. 2006; Yugma et al. 2012; Jung et al. 2014). Another application 
is to schedule jobs having a time constraints between consecutive process steps (Sun et al. 2005; Ham et 
al. 2011; Klemmt and Mönch 2012; Sadeghi et al. 2015). Last application which has yet been studied in 
the literature is to schedule a priority jobs in order to meet a pre-determined due date. It is a common 
business practice of foundry industry. They call it priority job scheduler (PJS). Due to non-preemptive 
nature of machines in semiconductor manufacturing, a floor supervisor often takes an extreme measure 
letting some ports of machine empty as a priority jobs are approaching from an upstream steps which 
results in a productivity loss. We tackle the problem in the context of FJSP with batching. 
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1.1 FJSP 

The classical job shop scheduling problem (JSP) schedules a set of jobs on a set of machines with the 
objective to minimize a maximum completion time over all jobs (Cmax), subjected to the constraint that 
each job has an ordered set of operations, each of which must be processed on a predefined machine, 
whereas FJSP allows an operation to be processed on a machine out of a set of alternatives, which adds 
another dimension of complexity. 
 Researchers have addressed the FJSP mostly using heuristics. Despite the fact that those heuristics 
may generate fast and effective solutions, they are usually tailor-made. Moreover, the efficiency of these 
techniques strongly depends on the proper implementation and fine tuning of parameters since they 
combine the problem representation and the solution strategy into the same framework. In contrast, 
mathematical modelling approach divides the problem representation and the solution strategy in an exact 
MIP model and solving mechanics respectively (Kopanos et al. 2010). Furthermore, as computer 
hardware and solvers have improved, practitioners have been able to formulate increasingly detailed and 
complex problems. Therefore, we explorer a mathematical modelling approach. 
 Table 1 shows an overview of FJSP mathematical models in the literature. The overview table created 
by Demir and İşleyen (2013) is slightly modified. A vast number of researches have addressed FJSP and 
its variants such as plan flexibility, setup, overlapping, preventive maintenance, etc. However, to the best 
of our knowledge to date, no published work has dealt with the FJSP with batching.  

Table 1: The articles related FJSP mathematical models. 

References Highlights Journal 
Liu and MacCarty 1997 with sequence dependent setup times Eur. J. Oper. Res. 
Kim and Egbelu 1999 with process plan flexibility Int. J. Prod. Res. 
Thomalla 2001 with alternative process plan Int. J. Prod. Eco. 
Low 2001 with sequence dependent setup times Int. J. Prod. Res. 
Tamaki et al. 2001 with sequence dependent setup times IEEE Symposium 
Lee et al. 2002 with process plan flexibility Comput. Ind. Eng. 
Torabi et al. 2005 with homogenous machines Int. J. Prod. Eco. 
Imanipour 2006 with sequence dependent setup times IEEE conference 
Low et al. 2006 with sequence independent setup times Comput. Oper. Res. 
Gao et al. 2006 with flexible preventive maintenance J. Intell. Manuf. 
Fattahi et al. 2007 - J. Intell. Manuf. 
Mehrabad and Fattahi 2007 with sequence dependent setup times Int. J. Adv. Manuf. Technol. 
Zhang et al. 2009 - Comput. Ind. Eng. 
Lin and Jia-zhen 2009 with sequence independent setup times Systems Eng. theory practice 
Fattahi et al. 2009 with overlapping Appl. Math. Modell. 
Özgüven et al. 2010 with process plan flexibility Appl. Math. Modell. 
Fattahi and Fallahi 2010 with disturbances J. Manuf. Sci. Technol. 
Ham et al. 2011 - Int. J. Prod. Res. 
Moradi et al. 2011 with preventive maintenance Expert Syst. Appl. 
Zhang et al. 2012 with transportation constraints Comput. Oper. Res. 
Demir and İşleyen 2013 evaluation of MIP models Appl. Math. Modell. 
Jalilvand-Nejad and Fattahi 2015 with sequence dependent setup times J. Intell. Manuf. 
 

1.2 Priority Job Scheduler 

Business requirements drive the need for a small number of jobs to be run through the factory as fast as 
possible. Various manual and automated schemes have been tried to keep the priority jobs from “queuing 
at the machine”. These schemes involve idling tools ahead of the arrival of priority jobs and trading 
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machine utilization for priority jobs cycle time (Bixby et al. 2006). We tackle this PJS problem in the 
context of FJSP with batching.  
 The main contributions of this paper can be summarized as follows. We propose a mathematical 
formulation of FJSP with batching constraint for the first time and make a practical modification in order 
to implement the theory into the practice.  
 

2 PROBLEM DESCRIPTION & FORMULATION 

2.1 FJSP with Batching 

The FJSP with batch processing machine inherits every complexity of the original FJSP. In addition, it 
has a set of parallel batch processing machines. Each job has to be processed on one machine out of a set 
of given compatible machines as it visits a pre-determined series of steps. The batching allows multiple 
jobs to be simultaneously processed as long as the total size of the batch does not exceed machine 
capacity. The processing time of a batch is dependent on the individual jobs in the batch, which is the 
maximum of individual processing times. Figure 1 represents a FJSP instance of 5-job, 6-machine, and 3-
step with batching. 

 
Figure 1: FJSP instance of 5-job, 6-machine, and 3-step with batching. 

 In this problem, we assume all machines and jobs are available at time 0. We also assume that batch 
processing machine can process different products simultaneously (compatible job families). The notation 
used in this paper is summarized in the following: 
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We name the following model 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖. 

R
outing 

�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑗𝑗,𝑗𝑗

= 1    ∀𝑗𝑗, 𝑠𝑠    (1.1) 

��𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑗𝑗,𝑗𝑗

 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗
𝐵𝐵𝐵𝐵𝑐𝑐𝐵𝐵   ∀𝑘𝑘,𝑚𝑚 (1.2) 

Scheduling 

𝑀𝑀𝑗𝑗,𝑗𝑗
𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝  ≥ �𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗,𝑗𝑗,𝑗𝑗

𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  ∀𝑗𝑗, 𝑠𝑠,𝑚𝑚,𝑘𝑘  (1.3) 

𝐹𝐹𝑗𝑗,𝑗𝑗
𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝐵𝐵𝑎𝑎  = 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝑗𝑗𝑝𝑝  ∀𝑗𝑗, 𝑠𝑠 = 1   (1.4) 

𝑀𝑀𝑗𝑗,𝑗𝑗
𝑗𝑗𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 ≥ 𝐹𝐹𝑗𝑗,𝑗𝑗

𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝐵𝐵𝑎𝑎 + 𝑀𝑀�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 − 1�  ∀𝑗𝑗, 𝑠𝑠,𝑚𝑚,𝑘𝑘                    (1.5) 

𝑀𝑀𝑗𝑗,𝑗𝑗
𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 = 𝑀𝑀𝑗𝑗,𝑗𝑗

𝑗𝑗𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 + 𝑀𝑀𝑗𝑗,𝑗𝑗
𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝   ∀𝑚𝑚,𝑘𝑘 (1.6) 

𝐹𝐹𝑗𝑗,𝑗𝑗+1
𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝐵𝐵𝑎𝑎   ≥ 𝑀𝑀𝑗𝑗,𝑗𝑗

𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 + 𝑀𝑀�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 − 1�   ∀𝑗𝑗,𝑚𝑚,𝑘𝑘 ∶ 𝑠𝑠 < |𝐹𝐹| (1.7) 

𝑀𝑀𝑗𝑗,𝑗𝑗+1
𝑗𝑗𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 ≥ 𝑀𝑀𝑗𝑗,𝑗𝑗

𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 ∀𝑚𝑚 ∶ 𝑘𝑘 < |𝐾𝐾| (1.8) 

M
easuring 

𝐶𝐶𝑚𝑚𝑝𝑝𝐶𝐶 ≥ 𝑀𝑀𝑗𝑗,𝑗𝑗
𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 +𝑀𝑀�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 − 1� ∀𝑗𝑗, 𝑠𝑠,𝑚𝑚,𝑘𝑘 (1.9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑀𝑀𝐶𝐶𝑋𝑋             (1.10) 

 

Constraint (1.1) ensures that jobs are assigned to one of the available slots. Machine capacity is taken into 
consideration in Constraint (1.2). Then, Constraint (1.3) defines the processing time of a batch on a 
machine, which is represented by the longest time of all jobs in the batch. Constraint (1.4) considers the 
release time of a job. Constraint (1.5) ensures that a batch cannot start its processing until all jobs 
assigned to the corresponding batch become ready. Constraint (1.6) determines the completion time of a 
batch. Constraint (1.7) ensures that the available time of a job is greater than or equal to the completion 
time at the very previous step. Constraint (1.8) ensures the precedence relationship between batches at the 
same machine. Finally, Constraint (1.9) determines the makespan and Objective (1.10) minimizes it.   
 Figure 2 represents an optimal solution for the FJSP instance of 5-job, 6-machine, and 3-step when 
batching is not considered or the capacity of machine is set to 1. The values in rectangle show a job 
schedule, for instance, j3s1m1p87 indicates job 3 is scheduled to machine 1 at step 1 with a processing 
time of 87. 
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Figure 2: An optimal solution for the 5-job, 6-machine, and 3-step without batching. 

 On the other hand, Figure 3 represents an optimal solution for the same instance when batching is 
considered.  

 
Figure 3: An optimal solution for the 5-job, 6-machine, and 3-step with batching. 

2.2 FJSP with Batching Applied to Priority Job Scheduling 

During a preliminary experimentation, we found that the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 model can not generate an 
effective solution for a large instances after several hours of computational time so we explorer an 
opportunity of practical modification. An interview with an industry subject matter expert (SME) provides 
two key insights:  
a) One key insight is about a selective job scheduling. There are thousands of jobs in floor, but we are 

mostly interested in priority jobs because special customers promise a significant amount of financial  
compensation in exchange of an expedited delivery. To take advantage of this compromise, the 
proposed model has come under close scrutiny. The model uses lots of binary variables (Xjsmk). One of 
set indexes which caught our eye is k, permutation sequence, whose size is currently set to |J|×|S| 
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assuming all operations could be scheduled to a single machine. This size can be dramatically 
decreased owing to the compromise which allows some jobs remain unscheduled. The unscheduled 
jobs are scheduled at the next run. Now, the routing Constraint (1.1) which forces all jobs to be 
assigned is not valid any more so we change the constraint as follows: 

�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑗𝑗,𝑗𝑗

≤ 1    ∀𝑗𝑗, 𝑠𝑠 (2.1) 

 
Constraint (2.2) is added in order to force a job to complete all operations once it is selected for 
schedule.  

�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗

= �𝑋𝑋𝑗𝑗,𝑗𝑗+1,𝑗𝑗,𝑗𝑗
𝑗𝑗𝑗𝑗

 ∀𝑗𝑗 ∶ 𝑠𝑠 < |𝐹𝐹| (2.2) 

 
Unfortunately, this change on the routing constraint drives a solver to make undesirable results. 
Namely, a solver drops all jobs from a schedule to minimize Cmax. In order to prevent this side effect, 
Objective (2.3) rewards each job schedule with a large compensation, M, which is the theoretical upper 
bound of Cmax.  

𝑀𝑀𝑝𝑝𝐶𝐶𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 � (𝑀𝑀)𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑗𝑗,𝑗𝑗,𝑗𝑗,𝑗𝑗

 (2.3) 

 
We then calculate a completion time of a job and use it to calculate the makespan as melted into 
Constraints (2.4) and (2.5), which replace Constraint (1.9). 

𝐹𝐹𝑗𝑗
𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 ≥ 𝑀𝑀𝑗𝑗,𝑗𝑗

𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 + 𝑀𝑀�𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 − 1�  ∀𝑗𝑗𝑠𝑠𝑚𝑚𝑘𝑘 (2.4) 

𝐶𝐶𝑀𝑀𝐶𝐶𝑋𝑋 ≥  𝐹𝐹𝑗𝑗
𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝   ∀𝑗𝑗 (2.5) 

 
This change reduces a number of nodes in branch-and-bound algorithm owing to smaller |K|. This 
variant is named 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝

+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖.  

b) Another insight is about a processing time. Although there are minor variations of processing times, a 
machine has an equal processing time on different jobs in general. This compromise is acceptable for 
the sake of a reduced computational time. The proposed model has again come under close scrutiny. 
We modify 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖  model as follows. Let 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗

𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝  be the processing time of machine m. 
Then, Constraint (1.6) can be replaced by Constraint (2.6) and Constraint (1.3) can be removed. This 
modification tightens the formulation and vastly improves CPLEX run-time performance. We discuss 
it in computational study section. 

𝑀𝑀𝑗𝑗,𝑗𝑗
𝐵𝐵𝑐𝑐𝑗𝑗𝑐𝑐𝑎𝑎𝑝𝑝𝐵𝐵𝑝𝑝 = 𝑀𝑀𝑗𝑗,𝑗𝑗

𝑗𝑗𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗
𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝   ∀𝑚𝑚,𝑘𝑘 (2.6) 

 
 Hereby, new objectives are to maximize a total count of jobs scheduled while minimizing the last 
completion time. 
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3 COMPUTATIONAL STUDY 

In this section, we test the effectiveness of our proposed models. We first compare 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 with 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝

+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖  in order to understand a computational advantage of the proposed method. Then, we 
repeat a similar study with the assumption of machine-dependent processing time. 
 MIP models are generated by IBM OPL and solved by CPLEX 12.6.3 on a personal computer with an 
Intel Core i5-3470 @ 3.2 Ghz processor and 16 GB RAM.  

3.1 Small-Size Test Instances 

To test our model, we borrow the same test problems instances created by Fattahi et al. 2007. They 
randomly generated a total of 20 FJSP instances. The instances are divided to two categories: small size 
problems (SFJS1:10) and medium and large size problems (MFJS1:10). The instances however do not 
have a batching requirement so we simply assume even (odd) numbered machines have a capacity of two 
(one). Another change is made to support the machine-dependent processing time assumption. The 
processing time of machine (𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗

𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝) is calculated as follows: 𝑚𝑚𝑀𝑀𝑀𝑀�𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗,𝑗𝑗,𝑗𝑗
𝑐𝑐𝐵𝐵𝑖𝑖𝑗𝑗𝑝𝑝  ∀𝑚𝑚�. 

 In this study, we make sure 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝
+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 to schedule every jobs for a fair comparison with 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖. This is made by setting |K| value to six and confirmed during a study.  

3.2 Results of Small-Size Test Instances 

Table 2 summarizes the computational results. Column 1 shows the name of instances used by Fattahi et 
al. 2007.  Columns 2–5 contain the best solutions generated by 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝

+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 which 
are reported within 300 seconds. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝

+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖finds an optimal solutions of 11 instances out of 20 
within 300 seconds compared to 9 out of 20 by 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 which demonstrates a reduction of 
computational time. Another finding is that there is a significant difference in Cmax values for the large 
instances of MFJS 8, 9 and 10, which suggests a superiority of  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝

+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 for an industry-scale 
problem instance. 

Table 2: Comparison of two different models with the assumption of job-dependent processing time. 

                𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖               𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝
+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 

Problem Cmax CPU Cmax CPU 
SFJS1 66 0.05 66 0.08 
SFJS2 107 0.05 107 0.05 
SFJS3 208 0.31 208 0.20 
SFJS4 272 0.06 272 0.05 
SFJS5 100 0.14 100 0.39 
SFJS6 320 12.29 320 1.37 
SFJS7 397 9.77 397 1.00 
SFJS8 216 5.34 216 6.46 
SFJS9 210 2.95 210 0.87 
SFJS10 516 300 516 91.96 
MFJS1 410 300 410 300 
MFJS2 410 300 410 300 
MFJS3 420 300 420 300 
MFJS4 506 300 506 300 
MFJS5 488 300 488 300 
MFJS6 631 300 614 42.43 
MFJS7 916 300 863 300 
MFJS8 896 300 808 300 

2746



Ham 
 

MFJS9 nf 300 955 300 
MFJS10 3418 300 1215 300 
* Optimal values in bold. 

 
Table 3 summarizes the computational results based on the assumption of machine-dependent 

processing time. Under this assumption, both 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝
+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 find an optimal solutions 

of 16 instances out of 20 within 300 seconds which demonstrates a reduction of computational time by 
tightening the formulation. We also find a significant differences in Cmax values for the large instances of 
MFJS8, 9 and 10. 

 

Table 3: Comparison of two different models with the assumption of machine-dependent processing time. 

            𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖             𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑝𝑝
+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖𝑖𝑖 

Problem Cmax CPU Cmax CPU 
SFJS1 48 0.03 48 0.03 
SFJS2 63 0.01 63 0.03 
SFJS3 106 0.03 106 0.03 
SFJS4 126 0.03 126 0.03 
SFJS5 42 0.02 42 0.03 
SFJS6 134 0.09 134 0.12 
SFJS7 194 0.08 194 0.17 
SFJS8 100 0.11 100 0.17 
SFJS9 84 0.16 84 0.25 
SFJS10 314 0.22 314 0.28 
MFJS1 236 1.00 236 4.38 
MFJS2 236 2.28 236 6.58 
MFJS3 250 4.06 250 12.34 
MFJS4 251 26.43 251 71.57 
MFJS5 251 17.91 251 29.44 
MFJS6 254 23.71 254 51.29 
MFJS7 325 300 325 300 
MFJS8 980 300 344 300 
MFJS9 1160 300 435 300 
MFJS10 1036 300 457 300 
* Optimal values in bold. 

4 CONCLUSION AND FUTURE WORKS 

Encountered at semiconductor manufacturing, a flexible job-shop scheduling problem (FJSP) with 
parallel batch processing machine (PBM) is studied as there is a growing need of orchestrating a whole 
factory to seek a global optimization. We establish a baseline by composing a mixed integer programming 
(MIP) formulation for the first time. Owing to two critical insights we found during an interview with 
industry SME, an original mathematical formulation is relaxed to cope with an industry-size instances. 
The first insight is about a selective job scheduling. Although there are thousands of jobs in a floor, 
industry is mostly interested in priority jobs because special customers promise a significant amount of 
financial compensation in exchange of an expedited delivery. The priority jobs must be included into a 
schedule whereas normal jobs could be selectively scheduled as much as possible to maximize a 
production output, but it is still optional. The second insight is about the machine-dependent processing 
time. There are minor variations of processing times depending on recipes, but a machine has a similar 
processing time on different jobs in general. This compromise is acceptable for the sake of a reduced 
computational time. This modification tightens the formulation and vastly improves CPLEX run-time 
performance.  
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This research can be further extended by considering a relatively new approach, constraint 
programming (CP), which is designed to cope with a complex scheduling problems such as TSP, JSP, and 
FJSP. Another extension is to improve the proposed MIP model. We can also look into application side as 
we previously discussed in the introduction section. 
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