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ABSTRACT 

We consider a single stage multi-item production-inventory system under stochastic demand. We had 

previously proposed a production planning model integrating ideas from forecast evolution and inventory 

theory to plan work releases into a production facility in the face of stochastic demand. However, this 

model is tractable only if the capacity allocations are exogenous. This paper determines the capacity 

allocated to each product in each period using a genetic algorithm. Computational experiments reveal that 

the proposed algorithm outperforms the previous approach in both total cost and service level. 

1 INTRODUCTION 

The coordination of production and inventories across global supply chains is particularly difficult in 

capital-intensive industries such as semiconductor manufacturing, where high capital costs require 

factories to maintain high levels of utilization in order to be profitable. The high number of unit 

operations required by the complex production processes, together with the high equipment utilization 

and high levels of variability due to engineering holds, yields excursions and unplanned equipment 

downtime (Uzsoy et al. 1992, Uzsoy et al. 1994) result in a complex production environment with cycle 

times of the order of several weeks. Products are sold in several markets with different dynamics and 

uncertain demand, and both production and distribution networks are global in nature.  

The primary objective of supply chain management in this domain is to plan the releases of work into 

the factories in such a manner that on-time delivery targets are met. The uncertain nature of demand, in 

turn, requires appropriate levels of safety stocks throughout the supply chain to meet demand at desired 

service levels. The two sets of decisions are intimately interrelated. Classical inventory theory (Zipkin 

2000, Axsater 2010) has shown that the amount of safety stock necessary to achieve a specified service 

level is determined by the distribution of the total demand over the replenishment lead time. When 

replenishment orders are placed with a production facility, such as a semiconductor wafer fab, the lead 

time is determined by the cycle time of the factory. The need to hold safety stocks results in additional 

orders being placed on production facilities to replenish depleted safety stocks, causing increased resource 

utilization in the factory, and hence higher cycle times and WIP levels (Hopp and Spearman 2008). These 
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higher cycle times and WIP levels, in turn, alter the distribution of the lead time demand, requiring 

additional safety stocks. Thus there is potential for a harmful positive feedback loop between safety stock 

levels and factory cycle times, requiring planning procedures that consider both safety stocks and work 

releases in an integrated manner. 

However, production planning and inventory management have mostly been addressed independently 

of one another. Most of the literature on production planning (Johnson and Montgomery 1974, Voss and 

Woodruff 2003) is based on deterministic mathematical programming formulations that do not consider 

uncertain demand. Stochastic optimization techniques such as stochastic programming (Birge and 

Louveaux 1997) and simulation optimization (Fu 2002, Zapata et al. 2011) have had limited impact due to 

their high computational burden. The literature on inventory models (Zipkin 2000, Axsater 2010), on the 

other hand, focuses on stochastic demand under relatively simple replenishment models. The main 

finding from this work has been the optimality of base-stock policies for a wide range of problems with 

linear holding and backordering costs (Clark and Scarf 1960). However, the primary method for exact 

solutions in this area is stochastic dynamic programming, which is computationally intractable as problem 

size increases.    

The current state of the art suggests that seeking exact solutions to these complex production-

inventory problems is unlikely to produce practical solutions. Instead, we explore approximate solutions 

that combine the ability of mathematical programming models to handle capacity constraints and the 

robust performance of the base stock policies derived from inventory theory. To this end, we have 

developed a series of mathematical programming models using chance constraints to develop 

approximate solutions for single-item single-stage production-inventory systems. However, the presence 

of capacity constraints renders the development of models for capacitated multi-item systems difficult.  

In this paper we extend a multiple-item single stage model developed in previous work (Albey et al. 

2015) to a capacitated multi-item system with stochastic demand. Planning takes place in a rolling 

horizon environment, where demand forecasts are updated and work release decisions implemented at 

each planning epoch. Exploiting the fact that the linear programming model for this system can be 

separated into independent single-item models if the capacity allocation among products in each period is 

specified, we use a simulation optimization approach based on a genetic algorithm to search for near-

optimal capacity allocations, using the single-product models as a fitness measure. Computational 

experiments suggest that the procedure can obtain high-quality solutions in reasonable CPU times.  

  The remainder of the paper is organized as follows. Section 2 briefly reviews the related literature. 

Section 3 presents the planning framework, the production planning model and the genetic algorithm used 

to allocate capacity. Section 4 presents the design of the numerical experiments, Section 5 the results, 

while conclusions and directions for future research are presented in Section 6.  

2 PREVIOUS RELATED WORK 

Mathematical programming approaches to production planning (Johnson and Montgomery 1974, Saad 

1982, Voss and Woodruff 2003, Missbauer and Uzsoy 2011) generally treat all problem parameters, 

including demand, as deterministic. The implicit assumption is often that these models will be used in a 

rolling environment (Baker and Peterson 1979), where at each decision epoch (point of time where a set 

of planning decisions are made) the model is solved for some number of periods, but only decisions for 

the current period are implemented. Spitter et al. (2005, 2005) report on the performance of linear 

programming models or supply chain planning in this context.  

Production planning problems with stochastic demand have been addressed using stochastic 

programming (Peters et al. 1977, Higle and Kempf 2011), robust optimization (Bertsimas and Sim 2004, 

Bertsimas and Thiele 2006), and chance constraints. Stochastic programming rapidly encounters 

computational difficulties due to the rapid increase in the size of the scenario tree with increasing number 

of scenarios and decision epochs. Robust optimization appears more promising, but care must be 

exercised in setting parameters appropriately, which can be difficult in large systems with many products. 
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Chance constraints (Charnes and Cooper 1959, Prékopa 1995) formulate stochastic optimization problems 

using constraints that can be violated with a specified probability. Although these formulations can cause 

theoretical problems due to the fact that the costs of recourse actions taken in the event of constraint 

violations are not considered (Blau 1974), under fairly mild conditions they lead to tractable linear 

programming models. Ravindran et al. (2011) propose a chance-constrained model for production 

planning in a single stage single-item system under stochastic demand and workload-dependent lead 

times, which is extended by Orcun et al. (2009). Aouam and Uzsoy (2012, 2014) compare the 

performance of chance constrained models, stochastic programming and robust optimization on a system 

similar to that considered here, without the rolling horizon component or evolving forecasts. They find 

that the chance-constrained models provide solutions comparable in quality to those from the other 

techniques with much simpler formulations. Norouzi (2013) proposes an alternative chance constraint 

based on the results of Glasserman (1997) for a capacitated single-stage single-item inventory model. 

Albey et al. (2015) implement this model using data from a major semiconductor manufacturer, 

incorporating forecast evolution using the Martingale Model of Forecast Evolution (MMFE) proposed by 

Heath and Jackson (1994), and show that the model has promising performance.  

Simulation optimization approaches (Fu 2002, Zapata et al. 2011) have been used in a variety of 

problem domains, but their high computational burden has limited their application to production 

planning problems. Planning production in a large facility over a long planning horizon requires many 

time-consuming simulation runs, as well as a large number of iterations while searching for a local 

optimum. Liu et al. (2011) compare the performance of a simulation optimization procedure based on a 

multiobjective genetic algorithm for a scaled-down semiconductor wafer fab (Kayton et al. 1997). Li et al. 

(2016) implement simulation optimization using a pre-fitted metamodel, avoiding the need for time-

consuming simulation replications during the optimization process.  

The model presented in this paper is a direct extension of the work of Norouzi (2013) and Albey et al. 

(2015) to a single-stage multi-item production inventory system. While the system considered is simple 

compared to practical semiconductor supply chains, the results provide an initial step to the development 

of more complex models for larger systems. The computational efficiency of the chance-constrained 

model allows the simulation optimization to identify near-optimal capacity allocations for the different 

products in modest CPU times. The solutions thus obtained provide a benchmark for other heuristics, and 

provide insight into the structure of solutions that can be exploited to develop more efficient procedures. 

3 PRODUCTION PLANNING FRAMEWORK  

3.1 Planning Framework Assumptions 

We assume that planning takes place in a rolling horizon framework, where demand forecasts for future 

periods are updated in each period as the new information becomes available. Eventually, the sequence of 

forecasts for a future period evolves into its realized demand once the demand is observed. The 

integration of forecast updates into a production planning model requires a probabilistic model of the 

evolution of the forecasts over time. For this purpose, we use the additive model of forecast evolution 

proposed by Heath and Jackson (1994) and extended by Norouzi and Uzsoy (2014) which considers the 

correlation between forecast updates. This model was successfully integrated into a chance constraint 

based production planning model (Albey et al. 2015), which forms the basis of the model in this paper. 

However, our previous model assumed that capacity is allocated among products in proportion to their 

mean demand. This paper extends this work to obtain a near-optimal capacity allocation as part of the 

model solution.    

 We consider a finite horizon periodic review setting for a planning horizon of G periods, in which the 

planning model seeks decisions for the next T < G periods. We define a decision stage or epoch   to be 

one of a consecutively numbered set of points in time at which the decision maker updates demand 

forecasts and determines how much of each product to release into the system (referred to as releases) for 
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the next T ≤ G periods. Stage  , spanning the time between stages   and      represents the current point 

in time and stage s-1 the time in the past when the most recent decisions were made. Demand forecasts 

are available for some number H ≤ T of future periods, referred to as the forecast horizon. 

Let         denote the product index and         the index for periods. All products i have mean 

demand of   
 , and require unit processing time. The production system has known capacity C 

representing the total number of products that can be produced in a planning period.     
  represents the 

capacity allocated to product   at stage   for period  . For a given stage   and product i the demand 

forecast for period   is denoted by    
 , the amount on hand at the end of period   by      

 , and the 

amount backordered at the end of period   by    
 . Without loss of generality we assume a production lead 

time of one period such that the amount of material    
  released in period   can only be used to satisfy 

demand in period    . The unit inventory holding cost, unit backorder cost and unit shortfall cost are 

denoted by   
 ,   

  and   
 , respectively.  

We assume that the system operates under a base stock policy. When the production capacity is not 

sufficient to raise the inventory position of product i at the beginning of period t to the specified base 

stock level    
 , the shortage, referred to as the shortfall (Glasserman 1997), is a random variable  
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The assumption of a base stock policy implies that  
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i.e., we should release enough material in previous periods to raise the sum of on-hand inventory, 

     
     

        
   and possible shortfall,       

  , at the start of period     to at least        
  units 

with high probability determined by the desired Type-1 service level, i.e., the average probability of no 

stockout. The cost-minimizing base stock level     
  

 is given by: 
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where       
      represents the   percentile of the variable       

        
   This result states that the 

optimal base stock level is a critical fractile. Norouzi (2013) shows that when backorder cost is 

significantly larger than inventory holding cost, (3) is well approximated by 
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where         
    

           
 
     such that     

    
 ; and the correction term for normally 

distributed demand is                
 
    (Toktay and Wein 2001), where    represents the 

covariance between the demand forecasts for periods t and t+p determined by the covariances of the 

forecast update vectors used in the MMFE. Details of the integration of the MMFE into (4) are given by 

Norouzi and Uzsoy (2014) and Albey et al. (2015). These approximations yield a chance-constrained 

formulation where the right hand side of the chance constraint can be calculated offline. Albey et 

al.(2015) show that the chance constraint model obtained using this approximation is promising, and that 

the integration of forecast evolution leads to improved performance over models that do not consider 

them. Norouzi et al. (2014) show that this formulation can obtain solutions of comparable quality to those 

obtained using stochastic programming. In the next subsection, the production planning model that 

integrates the MMFE and chance constraints is presented.   
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3.2 Chance Constraint Based Production Planning Model: CC Model 

The multiproduct chance-constrained model of Albey et al.(2015) that forms the basis of the work in this 

paper is stated below. For simplicity the s index, the stage index in the rolling horizon context, is dropped, 

with the understanding that the model represents the optimization problem solved at each decision stage s.  

 

           
     

    
   

    
   

  

 

   

 

   

 

 
(5) 

subject to   

    
    

        
      

    
    

  ∀ i, t=s,…,s+H-1 (6) 
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    ∀ i, t=s,…,s+H-2 (9) 

  
      

    
    

     
    ∀ i, t=s,…,s+H-1 (10) 

 
The objective function (5) aims to minimize the total backorder, inventory holding and shortfall cost. The 

shortfall cost is required to ensure that the model obtains meaningful solutions, as discussed in Albey et 

al. (2015).  Constraint set (6) is the demand balance constraint, written for all products and each period in 

the forecast horizon. Constraint set (7) ensures that production of a product in a period does not exceed its 

allocated capacity in that period, and constraint set (8) that the total capacity allocated to all products does 

exceed the available capacity in the period. Constraint (9) is the chance constraint ensuring a service level 

corresponding to the critical fractile (3), combining (2), (3) and (4) as in Albey et al. (2015). Treating the 

capacity allocations    
  as decision variables yields a nonlinear, nonconvex optimization model. 

However, if the    
  are given, the model yields a straightforward linear program. Hence we propose a 

genetic algorithm to determine the capacity allocations    
 .  

3.3 Genetic Algorithm: GA 

The proposed GA encodes a population of capacity allocations for each product i and each period as a two 

dimensional matrix              ∀           . Each entry asi of A(s,i) lies in the interval (0,1) and 

represents the fraction of the available capacity in excess of that necessary to meet the mean demands 

allocated to product i in period s. To ensure feasibility the capacity allocations for all products in each 

epoch for all periods add up to 1, i.e.             ∀ . The allocation is computed based on excess 

capacity, because the parameter   in (4) is constructed assuming that the capacity allocated to each 

product is strictly greater than the mean demand of that product. In other words, in each period a fixed 

portion of the capacity, enough to produce mean demand for each product is allocated to products, while 

any remaining capacity is allocated to products using the        values. Hence for each instance of the 

CC model the     
  values are generated as:  

 

    
    

            ∀                  (11) 

  

 The fitness value of each valid encoding is obtained by solving the CC model (5)-(10) in a rolling 

horizon setting under a set of simulated demand realizations, as shown in Figure 1.  

 The GA algorithm is executed as follows: the first individual in the initial population is generated 

using the normalized mean demand values, given by          
    

 
   ∀           , which 

2723



Albey, Uzsoy and Kempf 

 

constitutes the benchmark allocation rule. For the remaining individuals, the        matrix is created 

randomly and the entries are normalized such that             ∀    to ensure capacity feasibility of the 

solutions. The pseudocode of the overall GA framework is presented in Table 1. 

 

 

Figure 1: Fitness calculation. 

Table 1: Pseudocode of the GA. 

1-Generate an initial generation of size N (one individual using mean demands, N-1 individuals randomly)  

2-Repeat until L generations have been generated or no improvement in the best solution has been found in   

consecutive generations:  

2.1-Immigration: Select the fittest p% of individuals from the most recent generation and transfer them into 

the new generation. 

2.2- Repeat for each member of the population: 

2.2.1-Parent Selection: An individual, i.e. parent candidate,   , is randomly generated and a random 

individual,    , is selected from the current population. First parent is set as the fittest of     and 

   . This selection is called “selective random”. 

2.2.2-Crossover: Generate a random number uniformly distributed between 0 and 1. If the number is less 

than the crossover probability    apply crossover by selecting the mate using the roulette wheel 

method (Goldberg 1989).  

2.2.3-Mutation: Generate a random number uniformly distributed between 0 and 1. If the number is less 

than the mutation probability    implement mutation.   

2.2.4-Insertion: Using the procedure described in Figure 1 calculate the fitness of the individual obtained 

after possible crossover and mutation operations and add the individual to the current population.  

3- Report the individual with the highest fitness value in the final population. 

 

 The crossover step is executed in a manner similar to uniform crossover (Goldberg 1989) with a 

minor modification. The smallest meaningful part of the solution encoding is assumed to be the allocation 

ratio in a period. During offspring creation, a decision is made for each period t as to which parent’s 

capacity allocation information will be transferred to the offspring. The probability of each parent being 

selected is biased towards the fitter of the parents in proportion to the relative magnitudes of their fitness 
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values. This crossover process generates the gene of the offspring period by period and guarantees 

capacity feasibility.   

 The mutation process is executed after crossover. If the individual has gone through a crossover and 

its new fitness value is better than the best solution found to date, the mutation process is skipped. 

Otherwise, mutation is executed with mutation probability,   . The mutation process reviews every entry 

in        and decides whether or not to mutate the entry based on a mutation threshold probability    . 

For each entry of       , a U(0,1) random number is generated and compared to    . At the end of the 

mutation process, a normalization step is executed such that             ∀    is retained. The values of 

the GA parameters were selected through a preliminary experiment and are listed in Table 2. 

Table 2: Selected values for GA parameters. 

GA Parameters Selected Values 

                                                 

4 EXPERIMENTAL DESIGN 

The experiments are designed to cover six months of rolling planning implementation with weekly 

planning stages. The planning model covers a four week period. Thus we set G = 26, T = 4 and H = 3, all 

in units of weeks. The forecast horizon is H = 3 weeks because the current period does not require a 

demand update, since demand is realized at the beginning of the period.  

 We compare the performance of the proposed approach to the mean demand allocation rule used in 

our previous work, under which capacity in each period is allocated to the products based on their mean 

demand values. The planning model using the capacity allocation values generated with this rule will be 

referred to as the MA model. The performance of the GA model is compared to that of MA using 16 

different test instances. The values of G, T and H remain fixed in all these instances. Note that no GA is 

used with the MA model, under which the demand for the current period is realized and forecasts for 

future periods updated at each decision stage. The finished goods inventory (FGI) holding and backorder 

costs along with the realized service level over the entire planning horizon of G periods are computed to 

obtain the final realized cost of the production plan found by the models. At each planning epoch s, the 

demand for the current planning period (that is the planning period t, where t = s) is realized and 

corresponding FGI, backorder and shortfall levels and associated cost values are computed using the 

output of the mathematical model. 

16 test instances are generated. The base scenario has three products whose demands follow normal 

distributions with the parameters listed in Table 3. Different versions of the base scenario are generated 

with different cost, service level and capacity settings. To demonstrate the scalability of the proposed 

approach, a nine product scenario is also included in the experimental analysis. 

Table 3: Demand Parameters.  

 

Mean Demand Coefficient of Variation 

Product 1 125 0.20 

Product 2 250 0.30 

Product 3 50 0.20 

 

We conduct three different experiments. In the first, Scenarios 1-12, it is assumed that the cost 

structure and the capacity usage of all products are identical, and vary the available capacity and the target 

service levels. We consider three target service level values (0.90, 0.94, 0.98). The capacity level is 

represented as a multiple of the total mean demand over all products, so that a capacity level of 1.10 

indicates that the available capacity is 10% higher than the total mean demand. Four different capacity 
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levels are used (1.30, 1.20, 1.10, 1.05). For a fixed FGI holding cost and a given service level, the 

backorder cost is computed using the newsvendor equation. The shortfall cost is set equal to the half of 

the back order cost, which was found to yield the best performance (Albey et al. 2015). Initial FGI, 

backorder and shortfall levels are assumed zero. Variance covariance matrices (VCV) for the forecast 

updates are generated randomly, and forecast updates are generated using multivariate normal 

distributions as discussed in Albey et al ((2015).  

 

5 RESULTS 

The realized total cost values of the GA and MA models for Scenarios1-12 are presented in Figure 2. For 

all instances the realized cost of the GA approach is less than that of MA approach. It should also be 

noted that the realized backorder costs of GA never exceed those of MA, indicating that GA yields better 

production plans in terms of the achieved service levels. These results indicate that GA approach does a 

better job of utilizing the chance constraints and produces plans with low cost and high service level. 

 

  

Figure 2: Total cost comparison of CC and MA model under varying capacity and service level settings. 

 In the second set of experiments, three scenarios (Scenarios13-15) are generated using a service level 

of 0.94 and capacity level of 1.10. In Scenario 13, the FGI costs of the products (and hence their 

backorder costs, due to the use of the newsvendor equation) are generated in proportion to their mean 

demands, i.e. product with a higher mean demand assigned a higher FGI holding cost; whereas in 

Scenario 14, the FGI holding costs are inversely proportional to the mean demand values. In Scenario 15, 

the VCV matrices of the products are changed such that the magnitudes of the off-diagonal entries are 

increased. In all Scenarios 13-15, the production system has initial FGI levels equal to the mean demand 

of the products. As seen in Figure 3, the GA model yields substantially better results than the MA model 

in Scenario 13, where the high backorder costs for high-demand products results in higher backorder 

costs. The increased variability in demand in Scenario 15 results in a smaller difference between the two 

models in terms of magnitude of total cost, but the percentage difference is still substantial, as seen in 

Table 4. 

 The final experimental setting, Scenario 15 with nine products, is used to test the scalability of the 

proposed approach with capacity factor 1.10 and target SL of 0.94. Initial FGI values are set equal to half 

the mean demand values, together with the VCV matrices and cost structures in Scenarios 1-15. A 

detailed breakdown of the costs and achieved service levels for each product are presented in Table 4. The 

last row of Table 4 presents the average service level and total cost over all products. The GA approach 
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finds a production plan with 37% less total cost than that of MA, and is far more effective in meeting the 

desired service level (99% compared to 82%). 

 

 

Figure 3: Comparison of total cost of MA and GA for Scenarios13-15. 

Table 4: Model Results for Scenario15. 

MA Model 

 

GA Model 

Product SL FGI Cost BO Cost Total Cost 

 

Product SL FGI Cost BO Cost Total Cost 

1 0.65 87,804 746,043 833,847 

 

1 1.00 251,881 0 251,881 

2 0.69 305,230 2,666,710 2,971,939 

 

2 1.00 955,579 0 955,579 

3 0.62 16,453 568,627 585,080 

 

3 1.00 64,296 0 64,296 

4 1.00 1,212,119 0 1,212,119 

 

4 1.00 1,567,416 0 1,567,416 

5 1.00 3,596,226 0 3,596,226 

 

5 1.00 2,278,212 0 2,278,212 

6 0.69 38,035 415,480 453,515 

 

6 0.92 88,982 46707 135,689 

7 1.00 740,619 0 740,619 

 

7 1.00 1,074,268 0 1,074,268 

8 0.69 267,520 1,067,620 1,335,140 

 

8 1.00 1,084,150 0 1,084,150 

9 1.00 341,036 0 341,036 

 

9 1.00 221,948 0 221,948 

Total 

 

660,5041 5,464,480 12,069,521 

   

7,586,731 46707 7,633,438 

 

 The experiments were conducted on a Windows 7 PC with an 8 core (2.93 GHz) Intel i7 Processor 

and 8 GB of RAM. Algorithms are implemented in C#, and we use the IBM ILOG CPLEX 12 Callable 

Library (ILOG 2007) to solve the mathematical models. The GA runs, on the average, requires 7.5 

seconds for a single generation of 200 individuals, which represents a considerable CPU time. However, 

the vastly improved quality of the solutions suggests that this approach is well worth pursuing. 

 

6 CONCLUSIONS AND FUTURE RESEARCH 

This paper extends a previously developed chance constrained production planning model with forecast 

evolution and stochastic demand to a multiproduct environment using a genetic algorithm to search for 

the cost-minimizing capacity allocations among products. The results indicate that the proposed model is 

capable of obtaining significantly improved solutions over a baseline method that allocates capacity in 

proportion to mean demands. Given the well-known difficulty of obtaining effective allocation rules in 

multiproduct capacitated inventory systems, these results are promising. The primary drawback of this 

approach is its potentially high computation time, which must be addressed for it to be useful in industrial 
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environments with multiple products. Opportunities for improved efficiency may lie in improved tuning 

of the GA parameters to avoid unnecessary iterations, and better implementation.  

Several additional directions for future research are apparent. The extension of this type of model to 

multiechelon production-inventory systems with a serial structure has been suggested by Ravindran et al. 

(2011), and appears quite feasible. Extension to more general network structures such as distribution 

networks remains challenging. Finally, the development of exact solution procedures such as stochastic 

programming models is required in order to determine how close to optimality the solutions obtained 

actually are. 
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