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ABSTRACT

In modern semiconductor manufacturing facilities, metrology capacity is becoming limited because of
the high equipment cost. This paper studies the problem of optimally assigning the capacity of multiple
identical metrology tools in order to minimize the risk of defective wafers on heterogeneous production
machines. We assume that the output of each production machine is assigned to only one metrology
tool. The resulting problem is formulated as a Multiple Choice Multiple Knapsack Problem (MCMKP),
which combines the Multiple Choice Knapsack Problem and the Multiple Knapsack Problem and does
not appear to have been studied in the literature. A greedy heuristic and an improving heuristic are also
proposed. Numerical experiments are performed on randomly generated instances to analyze and compare
the solutions of the heuristics with solutions obtained with a standard solver.

1 INTRODUCTION

Recently, due to increasing metrology equipment cost, in line quality control has become a scarce resource.
As a result, the level of monitoring desired by quality engineers is not always practicable. Tightening the
control of one product or machine often requires reducing the monitoring level on another. Many aspects
of metrology policy in semiconductor manufacturing plants (fabs) have been studied both by practitioners
and researchers (Lee et al. (2003); Dauzère-Pérès et al. (2010); Colledani and Tolio (2011); Shanoun
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et al. (2011); Nduhura-Munga et al. (2012); Bettayeb et al. (2012); Nduhura-Munga et al. (2013);
Rodriguez-Verjan et al. (2013); Gilenson, Hassoun, and Yedidsion (2015)).

In a previous publication (Dauzère-Pérès, Hassoun, and Sendon (2016)), we study the problem of
optimizing the sampling rates of several production machines competing for the capacity of a unique and
reliable metrology tool. The production machines are characterized by their failure rates, their throughput
rates, and their consumption of the metrology capacity. In the resulting optimization problem, the expected
product loss is minimized subject to the constraint related to metrology capacity. The decision variables are
the sampling periods of the production machines. The problem is then reformulated as a Multiple Choice
Knapsack Problem (MCKP), for which several heuristics are proposed based on the work of Sinha and
Zoltners (1979) and Pisinger (1995).

While in fabs several production machines are sometimes monitored by a unique metrology tool, it is
often the case that several metrology tools can perform the same control operation. A model with several
metrology tools prompts the question of which tool will be partially or fully assigned to the inspection of a
production machine. Metrology tools can also differ in terms of inspection rate, reliability or qualification.
In this paper, we formulate the case of multiple identical metrology tools where the inspection of lots from
a production machine is assigned toa single metrology tool (Section 2). We introduce an Integer Linear
Programming model that can be solved with a standard solver. This model corresponds to a Multiple
Choice Multiple Knapsack Problem (MCMKP). As far as we know, the MCMKP has never been studied
in the literature. We then propose fast heuristics to solve the problem (Section 3). Computational results
on randomly generated instances are reported and discussed in Section 4.

2 MATHEMATICAL MODEL

Several identical metrology tools t = 1, . . . ,T inspect the output of several production machines r = 1, . . . ,R.
The production machines are modeled as Bernoulli experiments, and differentiated by their probability of
failure pr. Let T Pr denote the throughput rate of the production machines and T Mr the throughput rate
of a metrology tool when inspecting lots processed on machine r. We refer to the number of production
cycles on machine r between two consecutive inspections as the sampling period SPr. The inspection is
assumed to be perfect, i.e. the diagnosis provided by the metrology tool is always right. We assume that
one and only one metrology tool is assigned to the inspection of the totality of the production of each
machine, and thus T ≤ R.

The decision variables are the sampling periods SPr and the assignment of machine r to metrology tool
t, modeled using a binary variable vt

r, ∀ r = 1, . . . ,R, ∀ t = 1, . . . ,T . The values of these variables determine
both the expected throughput of bad lots from production tool r, and its share in the consumption of the
capacity of the metrology tools, denoted by gr(SPr). There is also a maximum value SPmax

r over which the
quality control is unacceptable.

Following a decision to inspect products r at rate SPr, wafers are reworked or scrapped at a certain rate
WLr(SPr) formalized later in this paper. We assume that the production of a machine in good condition
is perfect, while that of a defective machine is fully reworked or scrapped. This classical worst-case
assumption can be relaxed in our approach by assuming that only a given percentage of the production is
reworked or scrapped. There is no difference between the value of lots on the different machines. As a
consequence, we strive to minimize the expected overall production rate of defective lots.

Hence, the optimization problem (P) can be formulated as:

min
R

∑
r=1

WLr(SPr) (1)

s.t.
R

∑
r=1

gr(SPr)vt
r ≤ 1 ∀ t = 1, . . . ,T (2)
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T

∑
t=1

vt
r = 1 ∀ r = 1, . . . ,R (3)

SPr ∈ 1, . . . ,SPmax ∀r ∈ 1, . . . ,R (4)
vt

r ∈ {0,1} ∀ r = 1, . . . ,R; ∀ t = 1, . . . ,T (5)

The fraction of capacity consumed on a metrology tool by machine r for a given sampling period SPr
(assuming that the same metrology tool is assigned to measure all lots sampled from r) can be written:

gr(SPr) =
T Pr

SPrT Mr
(6)

A sampling period on tool r is, in our representation, a series of SPr Bernoulli experiments, each of
which corresponds to the production of a lot. If a failure occurs in the first production cycle, all the following
SPr lots (the number of lots produced until the next inspection takes place) are defective. Similarly, if a
failure occurs in the second production cycle, SPr−1 lots will be defective, and so on. A failure occurring
in the last production cycle before inspection, will yield only one defective lot. The expected number of
bad lots between two inspections is therefore given by:

SPr pr +(SPr−1)(1− pr)pr + · · ·+1(1− pr)
SPr−1 pr = pr

SPr−1

∑
i=0

(SPr− i)(1− pr)
i

With T Pr
SPr

being the rate at which inspection is performed at the station, the overall expected rate of
defective lots produced by machine r with an inspection policy using sampling period SPr, and referred to
as Wafer Loss, can be written as (see (Dauzère-Pérès, Hassoun, and Sendon 2016)):

WLr(SPr) =
prT Pr

SPr

SPr−1

∑
i=0

(SPr− i)(1− pr)
i (7)

As in (Dauzère-Pérès, Hassoun, and Sendon 2016), (P) can be rewritten as an Integer Linear Program
(ILP) since, for each machine r, SPr must be chosen in the set of all possible sampling periods {1, . . . ,SPmax}.
However, in our problem, we also need to assign each production machine to one and only one metrology
tool. Let us define the binary variable ws,t

r , where ws,t
r = 1 if metrology tool t is assigned to control the

production of machine r with a sampling rate SPr = s, and 0 otherwise. The ILP can be stated as:

min
T

∑
t=1

R

∑
r=1

SPmax

∑
s=1

WLr(s)ws,t
r (8)

s.t.
T

∑
t=1

SPmax

∑
s=1

ws,t
r = 1 ∀r = 1, . . . ,R, (9)

R

∑
r=1

SPmax

∑
s=1

gr(s)ws,t
r ≤ 1, ∀ t = 1, . . . ,T, (10)

ws,t
r ∈ {0,1} ∀r = 1, . . . ,R; t = 1, . . . ,T ; s = 1, . . . ,SPmax. (11)

Constraints (9) ensure that exactly one sampling rate s and exactly one metrology tool t are selected
for each production machine r. Constraints (10) guarantee that the capacity constraint of each metrology
tool is satisfied. The ILP can be solved using a standard solver but also with the heuristics that we propose
in the following section. The performance of these heuristics on randomly generated instances compared
to the standard solver is analyzed in Section 4.
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3 HEURISTICS

Our first heuristic, which we shall refer to as H1 for the remainder of this paper, aggregates all metrology
tools into one, whose capacity is equal to T , i.e. Constraints (10) in the ILP is replaced with:

T

∑
t=1

R

∑
r=1

SPmax

∑
s=1

gr(s)ws,t
r ≤ T. (12)

The resulting problem is a Multi-Choice Knapsack Problem (MCKP). We solve it using the simple
rounding heuristic proposed in (Dauzère-Pérès, Hassoun, and Sendon 2016), which is based on the linear
relaxation of the problem (LMCKP). The LMCKP is solved optimally using the greedy heuristic proposed
in (Pisinger 1995) whose complexity is O(nlogn) (where n = R.SPmax in our case). Based on the sampling
rates SPr obtained by heuristically solving the MCKP, a greedy heuristic is then applied to build a feasible
solution. At each iteration, the process machine r not already assigned to a metrology tool which consumes
the largest metrology capacity is assigned to the metrology tool t with the largest remaining capacity. If
the capacity of t is exceeded, then SPr is increased until either the capacity of t is enough or SPr = SPmax.
In the latter case, it means that the solution is not feasible.

Note that, with only one metrology tool, Heuristic H1 reduces to Heuristic 1 in (Dauzère-Pérès,
Hassoun, and Sendon 2016). The detailed description of Heuristic 1 is provided in Algorithm 1. Its
worst case time complexity is O(max(R.SPmaxlog(R.SPmax),R.T.SPmax)), which can probably be reduced
to O(R.SPmaxlog(R.SPmax)).

Algorithm 1 Heuristic H1

1: Let F be the set of fixed pairs (machine, sampling period). F ← /0.
2: Determine F by solving the MCKP for the problem where (10) is replaced by (12) with the first

rounding heuristic of (Dauzère-Pérès, Hassoun, and Sendon 2016).
3: Let G be the set of fixed triplets (machine, sampling period, metrology tool). G ← /0.
4: Let Capat be the capacity used on metrology tool t. Capat = 0, t ∈ 1, . . . ,T .
5: while F 6= /0 do
6: Find the process machine r, such that ∃(r,s) ∈F , with the largest metrology capacity gr(s).
7: Find the metrology tool t with the largest remaining capacity, i.e. with the smallest Capat .
8: if Capat +gr(s)≤ 1 then
9: Assign r to t with sampling rate s, i.e. G ← G ∪{(r,s, t)} and Capat =Capat +gr(s).

10: else
11: Increase s until either Capat +gr(s)≤ 1 or s = SPmax

12: if Capat +gr(s)≤ 1 then
13: Assign r to t with sampling rate s, i.e. G ← G ∪{(r,s, t)} and Capat =Capat +gr(s).
14: else
15: Assign r to t with sampling rate SPmax, i.e. G ← G ∪{(r,SPmax, t)}, Capat = 1 and the problem

is infeasible.
16: end if
17: end if
18: F ←F −{(r,s)}.
19: end while

We also developed an improving heuristic described in Algorithm 2. Based on the product assignment to
metrology tools determined in Heuristic H1, a Multi-Choice Knapsack Problem is solved for each metrology
tool. This is done with Heuristic 2/3 (combining two heuristics) proposed in (Dauzère-Pérès, Hassoun, and
Sendon 2016) which was shown to be effective. The new solution for each metrology tool is only kept if
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it improves the current solution. Heuristic H1 combined with the improving heuristic is called H+
1 in the

remainder on the paper.

Algorithm 2 Improving heuristic
1: Let G be a set of fixed triplets (machine, sampling period, metrology tool) determined by Heuristic 1,

i.e. ∃s ∈ 1, . . . ,SPmax and ∃t ∈ 1, . . .T such that (r,s, t) ∈ G , ∀r ∈ 1, . . . ,R.
2: for t ∈ 1, . . . ,T do
3: Set G ′← G .
4: Solve a Multi-Choice Knapsack Problem with Heuristic 2/3 of (Dauzère-Pérès, Hassoun, and Sendon

2016) for the process machines r assigned to metrology tool t, i.e. ∃s ∈ 1, . . . ,SPmax such that
(r,s, t) ∈ G .

5: Update G ′ with the new sampling rates for metrology tool t.

6: if
R

∑
r=1

SPmax

∑
s=1; (r,s,t)∈G ′

WLt
r(s)<

R

∑
r=1

SPmax

∑
s=1; (r,s,t)∈G

WLt
r(s) then

7: G ← G ′

8: end if
9: end for

Note that the improving heuristic can be applied to any feasible solution, and that its time complexity
is at most also O(R.SPmax), i.e. Heuristic H+

1 does not increase the complexity of Heuristic H1.

4 COMPUTATIONAL EXPERIMENTS

In this section, we analyze the performance of Heuristics H1 and H+
1 on numerous randomly generated

instances, and the results of H1 and H+
1 are compared with the results obtained with the ILP and the standard

solver IBM ILOG CPLEX 12.6. Because our heuristics run in less than 1 second for each instance, we
decided to limit the standard solver to 60 seconds. Since the optimal solution is not always obtained, we
provide the lower bound (LB) and the upper bound (UB) given by IBM ILOG CPLEX after 60 seconds.

The number of production machines is chosen from the set {5,10,20,40}, and the number of metrology
tools from the set {3,5}. The characteristics of each machine r are defined as follows. The probability of
failure pr is generated from a uniform distribution U [pmin; pmax], where pmin is kept constant (pmin = 0.01)
and pmax is chosen from the set {0.05,0.2}. The throughput rate T Pr is generated from a uniform distribution
U [T Pmin;T Pmax], where T Pmax = 1,000 and T Pmin is chosen from the set {100,900}. The measurement
rate T Mr is determined using the ratio R·T P

T ·T Mr
chosen from the set {5,10,30}, where T P is the average

throughput rate for the considered scenario. Finally, we set SPmax = 500 for all machines so that it is not
constraining. Combining these parameters leads to 96 scenarios.

Finally, in order to limit the impact of extreme non-representative parameter combinations, 30 instances
are generated for each scenario, each with different randomly generated values of pr and T Pr. Therefore,
a total of 2,880 different problem instances were solved.

Table 1 presents the number of instances, out of a total of 360 (for each combination of R and T ),
for which Heuristic H1 finds a feasible solution. As expected, the only case where a feasible solution is
always found is when R = T . However, H1 finds a feasible solution in the vast majority of the instances.

H+
1 improves over H1 in several ways. First, no matter the instance characteristics, H+

1 always finds
a feasible solution. Table 2 presents the improvement in the objective function achieved by H+

1 over H1
(only for instances for which H1 finds a feasible solution). Note that the improvement achieved by H+

1
is noticeable. The largest gains are obtained for low values of R and T , for which the capacity gr(s) is
usually the largest, thus leading to large increase of s, and thus of the wafer loss, to make the solution
feasible in H1. In all scenarios, there are at least some instances for which H+

1 does not improve over H1.
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Table 1: Number of feasible solutions (out of 360) determined by H1.

T
R 3 5
5 351 360

10 356 355
20 349 353
40 333 349

Table 2: Comparison between H1 and H+
1 .

T
R 3 5

5
Avg 2.6% 0%
Max 7.3% 0%

10
Avg 2.3% 1.1%
Max 8.5% 6.1%

20
Avg 0.9% 0.4%
Max 2.6% 1.8%

40
Avg 0.7% 0.2%
Max 2.3% 1%

Having determined that H+
1 strongly dominates H1, only the performances of H+

1 are now analyzed.
Table 3 compares the results of H+

1 to the upper bounds of the standard solver. We separate the cases
where LB = UB (“Opt.”, the solution obtained by the standard solver is guaranteed to be optimal) and
where LB 6=UB (‘Non-opt.”). Note that, when T = R = 5, both the standard solver and H+

1 give optimal
solutions. This comes as no surprise, since each metrology tool can be fully dedicated to one production
machine. The optimal solution consists in filling the metrology capacity of each tool, and is therefore
straightforward. Some instances, in particular those with lower values of R and T , are more challenging
for the heuristic when LB =UB. For R = 3, in the worst case, H+

1 yields a solution with an expected wafer
loss which is larger than the optimum by 6.4% for R = 5 and 3.4% for R = 10. However, on average,
the performance of H+

1 is excellent. Note also that, when LB 6=UB and in some cases, H+
1 finds a better

solution than the standard solver. In all cases but one, the minimum difference is negligible.
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Table 3: Comparison between H+
1 and UB.

T
3 5

R Non-opt. Opt. Non-opt. Opt.

5
Avg. 0.2% 0.7% 0%
Min. 0% 0% 0%
Max. 0.4% 6.4% 0%

10
Avg. 0.4% 0.9% 0.2% 0.9%
Min. 0% 0% -0.1% 0%
Max. 2% 3.4% 1.7% 3.7%

20
Avg. 0.1% 0.5% 0.4% 1%
Min. 0% 0% 0% 0.2%
Max. 0.9% 1.5% 1.8% 2%

40
Avg. 0.1% 0.2% 0.1% 0.4%
Min. 0% 0% 0% 0.2%
Max. 0.3% 0.6% 0.7% 0.6%

In the next three tables (4 to 6), we break down the results by the scenario characteristics. The tables
present the impact of the ratio R·T P

T ·T Mr
, of T Pmin and of pmax on the average performance of H+

1 compared to
the upper bounds provided by the standard solver. The results seem excellent across the board, confirming
the robustness of H+

1 when faced with very different scenarios.
Table 4 prompts some remarks. First, the higher R·T P

T ·T Mr
, the better the results of H+

1 . This is explained

by the fact that higher R·T P
T ·T Mr

values lead to a higher stress on the metrology capacity, thus larger values
of the sampling periods, and therefore smaller differences for WLr(s) between different values of s, which
allows a solution closer to the optimal solution to be found.

Table 4: Impact of Ratio on the comparison between H+
1 and UB.

Ratio
R T 5 10 30

5
3 1.3% 0.6% 0.1%
5 0% 0% 0%

10
3 1.2% 0.7% 0.3%
5 1.3% 0.7% 0.2%

20
3 0.6% 0.3% 0.1%
5 0.8% 0.4% 0.1%

40
3 0.2% 0.1% 0%
5 0.3% 0.1% 0%

In order to discuss the next two tables, let us recall that the values of T Pr are randomly chosen between
T Pmin and T Pmax = 1000, which means that, with T Pmin = 900, the values of the production rates are not
only larger, but also that the range of allowed production rates in the instance is greatly reduced compared
to the case where T Pmin = 100. The same holds with the failure probabilities. Since pmin = 0.01, scenarios
characterized by pmax = 0.05 allow for a narrower range of values. In both tables, these scenarios (with
similar machines) seem to be more challenging for our heuristic.
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Table 5: Impact of T Pmin on the comparison between H+
1 and UB.

T Pmin

R T 100 900

5
3 0.4% 0.9%
5 0% 0%

10
3 0.6% 0.9%
5 0.7% 0.8%

20
3 0.2% 0.4%
5 0.4% 0.4%

40
3 0.1% 0.1%
5 0.1% 0.1%

Table 6: Impact of pmax on the comparison between H+
1 and UB.

pmax

R T 0.05 0.2

5
3 0.7% 0.6%
5 0% 0%

10
3 0.9% 0.5%
5 0.8% 0.6%

20
3 0.4% 0.2%
5 0.5% 0.4%

40
3 0.1% 0.1%
5 0.2% 0.1%

To confirm our previous analysis, Table 7 presents, for each separate combination of R and T , the
results for each pair of values pmax and T Pmin. Our heuristic consistently performs best when pmax = 0.2
and T Pmin = 100, i.e. when the dissimilarity between machines is the greatest. The worst performance of
H+

1 is observed in the opposite situation, i.e. when pmax = 0.05 and T Pmin = 900.

Table 7: Impact of machine similarity on the comparison between H+
1 and UB.

T Pmin

100 900
pmax pmax

T R 0.05 0.2 0.05 0.2

3

5 0.41% 0.37% 0.98% 0.89%
10 0.67% 0.48% 1.15% 0.58%
20 0.26% 0.17% 0.52% 0.31%
40 0.10% 0.06% 0.18% 0.09%

5

5 0% 0% 0% 0%
10 0.74% 0.64% 0.88% 0.66%
20 0.44% 0.36% 0.47% 0.39%
40 0.14% 0.08% 0.17% 0.11%
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5 CONCLUSION

Extending our previous work to model capacity allocation of a single metrology tool to unreliable production
machines, this paper studied the case of multiple identical metrology tools. We assumed that no partial
allocation is allowed, i.e. that each production machine is assigned to a unique metrology tool. The problem
was modeled as a Multiple-Choice Multiple Knapsack Problem which, to the best of our knowledge, has
never been addressed in the literature. Two heuristics were proposed and compared on randomly generated
instances to the resolution of an Integer Linear Program with a standard solver.

We are pursuing this work by including different extensions. In particular, we study how to consider
heterogeneous and unreliable metrology tools, and also that the metrology capacity required by a production
machine can be shared among multiple metrology tools. These extensions increase the complexity of the
problem, in terms of changes both in the objective functions and the constraints. Moreover, a Decision
Support System that includes our heuristics is being developed with our industrial partner.
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