
Proceedings of the 2016 Winter Simulation Conference 
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. 
 
 
 

MEAN CYCLE TIME APPROXIMATIONS FOR G/G/M QUEUEING NETWORKS USING 
DECOMPOSITION WITHOUT AGGREGATION WITH APPLICATION TO FAB DATASETS 

 
 

Jinho Shin 
James R. Morrison 

Dean Grosbard 
Adar Kalir 

  
Department of Industrial & Systems Engineering Fab/Sort Manufacturing Division 

Korea Advanced Institute of Science and 
Technology 

291, Daehak-ro, Yuseong-gu 
Intel Corporation 

Daejeon, KS015, REPUBLIC of SOUTH KOREA 2 HaZoran St. 
Qiriat-Gat 82109, ISRAEL 

 
 
 
ABSTRACT 

The modern semiconductor fabricator needs both accurate and fast cycle time (CT) forecasts. Due to 
complexity of development and computational intractability, simulation may be supplemented by 
queueing network methods. In this paper, we develop extensions to approximation methods for queueing 
networks that are suited for fab modeling using decomposition without aggregation. We conduct 
simulation experiments based on a semiconductor industry-inspired dataset. For sensitivity analysis, we 
mainly focus on the interarrival distribution, service time distributions, and bottleneck toolset loading. 
The results show that the approximations predict the total CT fairly well in various cases. 

1 INTRODUCTION 

Queueing networks can serve as models for semiconductor wafer fabricator (fabs). However, exact 
analytic expressions for key performance measures such as the mean CT rarely exist. One alternative to 
exact analysis is to use approximation methods. For networks of G/G/m queues, Whitt’s QNA (1983) 
used an approach termed decomposition with aggregation (DWA) to determine the variability parameters 
for the internal flows. It is most applicable for systems with probabilistic routing. Reiman (1990) 
extended the approach to include customer priorities. Approximations for fabs using these ideas were 
developed in Connors et al. (1996). Unfortunately, fabs feature mostly deterministic routing and, as Bitran 
and Tirupati (1989) explain, the splitting operator in DWA is a cause of errors in the approximations. 
Decomposition without aggregation (DWOA) is considered more appropriate for networks based on fabs; 
see, Kim (2005). Since fabs often feature both deterministic routing and probabilistic routing (due to 
metrology for example), Grosbard et al. (2013) extended DWOA to accommodate both deterministic and 
probabilistic routing. For further information, Whitt (1983) provides details on queueing network systems 
and Kim (2005) reviews the existing DWOA methods. 

In this paper, we modify and extend the DWOA method suggested in Grosbard et al. (2013) to 
improve the mean CT approximations. To test the quality of the approximations, we conduct numerous 
simulation studies on two models inspired by actual fab settings. Sensitivity analysis on bottleneck toolset 
loading, service time distribution and interarrival time distribution are considered.  

The paper is organized as follows. In Section 2, we provide the modified traffic variability equations 
and mean total CT approximations for a network of G/G/m queues with both deterministic and 
probabilistic routing. In Section 3, we provide a description of the datasets and simulation setup. The 
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overall performance of the proposed approach is reviewed in Section 4. The results of sensitivity studies 
are reviewed in Section 5. Concluding remarks are provided in Section 6. 

2 MODEL FORMULATION 

In this section, we define our basic notation and describe the calculation of traffic rates, traffic variability, 
and CT approximations. In this section, we focus on the mathematical steps leading to our modified 
DWOA method. Due to space limitations, illustrations which may be of help are omitted. We refer the 
interested reader to Whitt (1983) for intuitive and helpful figures.  

2.1 Basic Notation 

2.1.1 Notation for parameter sets 

𝑇𝑇 = {1,⋯ ,𝑊𝑊}   : Set of G/G/m queues (toolsets) in the network 
𝑂𝑂 = {1,⋯ , 𝜈𝜈}   : Set of operations in the network 
𝑃𝑃 = {𝜈𝜈 + 1,⋯ , 𝜈𝜈 + 𝜃𝜃} : Set of PM type operations in the network 
𝑇𝑇𝑘𝑘,𝑂𝑂ϵ𝑂𝑂     :  Set of operations served at queue k 
𝑇𝑇𝑘𝑘,𝑃𝑃𝑃𝑃ϵ𝑃𝑃    :  Set of PM type operations conducted at queue k  
𝑇𝑇𝑘𝑘      :  𝑇𝑇𝑘𝑘,𝑂𝑂 ∪ 𝑇𝑇𝑘𝑘,𝑃𝑃𝑃𝑃 
 

In this paper, we consider the toolsets in semiconductor manufacturing facility as queues in G/G/m 
network. Each operation represents a buffer at a queue in which customers (lots) await service. Numerous 
operations are allowed at each queue. Operations are for the products. Preventive maintenance (PM) type 
operations are used to model tool failures. Customers may arrive to any operation (except the PM type 
operations). PM’s are modeled as high priority customers that may arrive to any PM type operation. 
Customer are low priority customers. Multiple PM type operations may be present at each queue to model 
PMs with different character (e.g., monthly, quarterly and annual PMs). 

After service at operation i, a lot next proceeds to operation j with probability qij. Operations i and j 
may be processing, metrology or rework operations. With probability 1-qi1-qi2-…-qiv a lot finishing 
operation i is complete and exits the network. 

2.1.2 Notation for queueing network variables 

Throughout, we use CV to denote coefficient of variation. 
 
𝜆𝜆𝑖𝑖𝐸𝐸𝐸𝐸  :  Exogenous mean arrival rate of (product) customers to operation i 
𝜆𝜆𝐸𝐸𝐸𝐸  :  Column vector of exogenous mean arrival rates of (product) customers to each operation 
𝜆𝜆𝑖𝑖,𝑃𝑃𝑃𝑃 :  Exogenous mean arrival rate of type i PM customers  
𝜆𝜆𝑃𝑃𝑃𝑃 :  Column vector of mean arrival rates for the PM customers 
C𝑎𝑎𝑖𝑖𝐸𝐸𝐸𝐸 : CV of the interarrival times of exogenous arrivals to operation i 
C𝑎𝑎𝑖𝑖  : CV of the interarrival times for all arrivals (both exogenous and endogenous) to operation i 
C𝑎𝑎,𝑃𝑃𝑃𝑃𝑖𝑖

 : CV of the interarrival times for PM type i customers 
qi,j  : Probability that a customer departing from operation i is routed next to operation j 
Q  :  The routing matrix of qi,j values 
𝜆𝜆𝑖𝑖  :  Mean total arrival rate of customers to operation i (both exogenous and endogenous) 
𝜆𝜆   :  Column vector of mean total arrival rates of customers to each operation (both exogenous and 
   endogenous) 
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𝑆𝑆𝑖𝑖  :  Mean service time of operation i (which is served at queue k with 𝑖𝑖ϵ𝑇𝑇𝑘𝑘,𝑂𝑂) 
C𝑆𝑆𝑖𝑖   : CV of the service time for operation i 
𝐷𝐷𝑖𝑖  :  Mean downtime of PM type i customers 
C𝐷𝐷𝑖𝑖  : CV of type i PM downtime 
mk  : Number of servers dedicated to serving customers at queue k 
σ(i)  : Queue at which operation i performed 
Γ𝑘𝑘  : Mean total arrival rate of all customers to queue k 

 
 We consider a network of G/G/m queues. Each queue k consists of mk dedicated servers. The servers 
are not prone to failure – we model the downtime as service for high priority customers (PMs). Each 
queue caters to distinct operations. Customers may arrive to an operation from outside the network (an 
exogenous arrival process) with arrival rate 𝜆𝜆𝑖𝑖𝐸𝐸𝐸𝐸. The interarrival times are IID random variables for each 
process. Customers departing operation i are routed to operation j with probability qi,j. If a customer is not 
routed to some operation, it departs the network. The service duration for a customer in operation i is a 
random variable with mean value Si. All interarrival times and service time are independent of each other.  
We treat the servers as non-idling. When a server completes the current service on a customer, it 
immediately finds another customer to serve. Customers are selected from those waiting for service at 
operations catered to by queue k in a FIFO manner within each priority class. High priority customers are 
given non-preemptive priority over the product customers.  

Note that because we model the PMs as high priority customers, they do not behave exactly as would 
a PM in the real world. For example, in reality an incoming PM event is associated with a specific tool in 
the set of servers. However, in the G/G/m model, high priority customers can be served by any available 
tool serving the queue.  

To calculate the mean total CT of customer in the network, we define the variables for expected 
number of visits to each operation.  

 
𝑛𝑛𝑖𝑖,𝑗𝑗  :  Expected number of visits to operation j by a customer from the exogenous arrival process to  
   operation i 
𝑁𝑁𝑖𝑖  :  Column vector of 𝑛𝑛𝑖𝑖,𝑗𝑗 values, j = 1, …, ν, for customers from the exogenous arrival process  
   to operation i 

2.2 Traffic Rates 

Given exogenous mean arrival rate of customers to specific operation, we can derive the mean total 
arrival rate of customer by solving the following set of linear equations.  

  
∀𝑖𝑖 ∈ 𝑂𝑂,   𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖𝐸𝐸𝐸𝐸 + ∑ 𝑞𝑞𝑗𝑗,𝑖𝑖𝑗𝑗∈𝑂𝑂 𝜆𝜆𝑗𝑗     (1) 

 
As we mentioned, PM type customers only visit designated PM type operation once, and then leave 

the network. For that, equation (1) is simplified to ∀𝑖𝑖 ∈ 𝑃𝑃,   𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖,𝑃𝑃𝑃𝑃. 
 Equation (1) in matrix notation: 

 
λ = (I-QT)-1 λEX    (2) 

 
 Each row of Q sums to a value in [0,1], with sum less than 1 indicating a positive probability for the 
customers to depart the network. This allows both deterministic and probabilistic paths. Since the routing 
matrix has no sense of history, if one wishes to model an “operation” that should be revisited (say 3 
times), a separate operation for each such visit (thus 3 operations) with the same service statistics should 
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be created. As each operation is unique and only visited once by customers, routing matrix Q can be 
organized as block diagonal structure. For example, in figure 1, there are totally 70 operations and 30 PM 
type operations in Q. Operation 1 and 40 have exogenous customers arrivals, and PM type operation 71 
through 100 have their own PM type customers arrivals. This means that the customers arriving to 
operation 1 only visit operation 1 through 39 in its manufacturing route. Similarly, the customers arriving 
to operation 40 go around operation 40 through 70. As the PM type operations have no interaction with 
other operations, their 𝑞𝑞𝑗𝑗,𝑖𝑖 values are all equal to 0. 
 

Q =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑞𝑞1,1 ⋯ 𝑞𝑞1,39
⋮ ⋱ ⋮

𝑞𝑞39,1 ⋯ 𝑞𝑞39,39

0 0

0
𝑞𝑞40,40 ⋯ 𝑞𝑞40,70
⋮ ⋱ ⋮

𝑞𝑞70,40 ⋯ 𝑞𝑞70,70

0

0 0
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Figure 1: Block diagonal matrix Q. 

 If every customers can eventually leave, the network is called open and (I-QT)-1 exists. This structure 
can readily be used to model separate customers classes each with its own dedicated operations (and as 
mentioned “operations” visited multiple times in a reentrant process flow should be separated into 
identical but separately labelled operations in the model). 
 Given λEX, the solution to the traffic equations λ = (I-QT)-1 λEX exists. Based on the solution of  traffic 
equation, we can get mean total arrival rate of all customers (both non-preemptive high priority customers 
and non-preemptive low priority customers) to queue k.   

 
∀𝑘𝑘 ∈ 𝑇𝑇,   Γ𝑘𝑘 = � 𝜆𝜆𝑖𝑖

∀𝑖𝑖∈𝑇𝑇𝑘𝑘,𝑂𝑂

+ � 𝜆𝜆𝑗𝑗,𝑃𝑃𝑃𝑃
∀𝑗𝑗∈𝑇𝑇𝑘𝑘,𝑃𝑃𝑃𝑃

 

 
 The vector 𝑁𝑁𝑖𝑖 can be obtained by a process similar to solving the traffic equations. That is, Ni = (I-
QT)-1 ei, where ei is a ν x 1 vector of zeros with a single 1 in the ith row. (Note that this only has meaning 
for operations i that host an external arrival process.)  

2.3 Traffic Variability 

Following the nature of semiconductor fabrication systems, in which the manufacturing processes are 
mostly deterministic, the DWOA method is adopted to calculate the traffic variability. We use DWOA 
similarly to Kim (2005), but extend it to allow both deterministic and probabilistic routing. 

To calculate the CV of interarrival time of lots, additional variables should be calculated first. Let 
 

∀𝑖𝑖 ∈ 𝑇𝑇𝑘𝑘,   𝜑𝜑k,i = 𝜆𝜆𝑖𝑖/Γ𝑘𝑘     (3) 
  

∀𝑖𝑖 ∈ 𝑂𝑂 ∪ 𝑃𝑃,   𝜌𝜌𝜎𝜎(𝑖𝑖),𝑖𝑖 = 𝜆𝜆𝑖𝑖 ∙
𝑆𝑆𝑖𝑖

𝑚𝑚𝜎𝜎(𝑖𝑖)
   (𝜆𝜆𝑖𝑖,𝑃𝑃𝑃𝑃 ∙ 𝐷𝐷𝑖𝑖

𝑚𝑚𝑘𝑘
, in case of PM type operation)    (4) 

  
∀𝜎𝜎(𝑖𝑖) ∈ 𝑇𝑇,   𝜌𝜌𝜎𝜎(𝑖𝑖) = ∑ 𝜌𝜌𝜎𝜎(𝑖𝑖),𝑖𝑖𝑖𝑖∈𝑇𝑇𝑘𝑘      (5) 
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In (3), for each operation i served at queue k, the fraction of lots arriving to queue k that require operation 
i is obtained. The loading due to operation i at queue k is obtained in (4). By summing the loading 
brought by all operations served at queue k, we obtain the total loading of queue k (5).  

We define the set of operations that route to an operation j as follows. 
 

∀𝑖𝑖 ∈ 𝑂𝑂, 𝐺𝐺𝑖𝑖 = �∀𝑗𝑗 ∈ 𝑂𝑂�qj,i > 0�   : Set of operations j which satisfy qj,i > 0 for operation i 
 

 The core of DWOA is the departure variability approximation from Whitt (1994). The SCV of the 
departure process from each operation is approximated as a convex combination of two limiting cases: a 
heavy traffic case (with 𝜌𝜌 → 1 ) and a light traffic case (with 𝜌𝜌 → 0 ). Whitt (1994) provides an 
approximation for the departure process SCV from operation j in the case of a single server queue is  

 

Cdj2 ≈ ρ𝜎𝜎(j)
2 ��

ρ𝜎𝜎(j),j

ρ𝜎𝜎(j)
�
2

Csj2 + �1 −
ρ𝜎𝜎(j),j

ρ𝜎𝜎(j)
�
2

Ca𝑗𝑗2 + ∑ �
ρ𝜎𝜎(j),k

ρ𝜎𝜎(j)
�
2
λj
λk
�Csk2 + Cak2�k∈Tj

k≠j
�              (6) 

+(1 − ρ𝜎𝜎(j)
2 )Caj2 

  
 To approximate the SCV in a multi-server queue, we first replace the variables Csj2 and Csk2 with 

 

1 +
Csj

2−1

m𝜎𝜎(i)
0.5        (7) 

 
and 

 
Csk

2

m𝜎𝜎(j)
0.5                    (8) 

 
respectively. We thus obtain the SVC of the departure process from operation j with a multi-server queue  

 

Cdj2 ≈ ρ𝜎𝜎(j)
2 ��

ρ𝜎𝜎(j),j

ρ𝜎𝜎(j)
�
2

�1 +
Csj

2−1

m𝜎𝜎(j)
0.5 � + �1 −

ρ𝜎𝜎(j),j

ρ𝜎𝜎(j)
�
2

Caj2 + ∑ �
ρ𝜎𝜎(j),k

ρ𝜎𝜎(j)
�
2
λj
λk
� Csk

2

m𝜎𝜎(j)
0.5 + Cak2�k∈Tj

k≠j
�         (9) 

+�1 − ρ𝜎𝜎(j)
2 �Caj2 

  
Using the approximation from Kuehn (1979), the SCV for the portion of departure process from 

operation j that is routed to a particular next operation i is approximated by 
 

Cd𝑗𝑗,i
2 ≈ �1 − qj,i� + qj,iCdj2    (10) 

  
For an operation i with multiple predecessors, the asymptotic method described in Whitt (1983) is 

used to approximate the SCV of the total arrival process (including both exogenous and endogenous 
arrivals) to that operation as 

 
Cai2 ≈ ∑ λjqj,i

λi
Cd𝑗𝑗,i

2
𝑗𝑗∈𝐺𝐺𝑖𝑖 + λ0,i

λi
Cao,i

2     (11) 

  
Plugging the approximations from (9) and (10) into (11), we obtain the following expression for Cai2. 

For ∀𝑖𝑖 ∈ 𝑂𝑂: 
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Cai2 = Ai + ∑ �Bi,j�Caj2j∈Gi
i≠j

+ ∑ ∑ �𝐶𝐶𝑗𝑗,ℎ�Cah2h∈𝑇𝑇𝑗𝑗
h≠j

𝑗𝑗∈𝐺𝐺𝑖𝑖
i≠j

            (12) 

  
with Ai, Bi,j, Cj,h are given by: 

 

Ai =
λ0,i

λi
Ca0,i

2 +�
λjqj,i
λijϵGi

(1 − q𝑗𝑗,i) 

 

+∑
λjqj,i

2

λi
�ρ𝜎𝜎(j)

2 ∑
�𝜑𝜑𝜎𝜎(𝑗𝑗),jρ𝜎𝜎(𝑗𝑗),h

2 �

�𝜑𝜑𝜎𝜎(𝑗𝑗),hρ𝜎𝜎(𝑗𝑗)
2 �

Csh
2

m𝜎𝜎(h)
0.5h∈Tj

h≠j
�jϵGi                                                 (13) 

+∑
λjqj,i

2

λi
�ρ𝜎𝜎(j),j

2 �1 +
Csj

2−1

m𝜎𝜎(j)
0.5 �� jϵGi                                                   

 

                                              Bi,j =
qj,i
2 λj

λi
�ρ𝜎𝜎(j)

2 �1−
ρ𝜎𝜎(j),j

ρ𝜎𝜎(j)
�
2

+ (1 −ρ𝜎𝜎(j)
2 )�                               (14) 

 

                             C𝑗𝑗,h = ρ𝜎𝜎(j)
2 �𝜑𝜑𝜎𝜎(𝑗𝑗),jρ𝜎𝜎(𝑗𝑗),h

2 �/�𝜑𝜑𝜎𝜎(𝑗𝑗),hρ𝜎𝜎(𝑗𝑗)
2 �

qj,i
2 λj

λi
                               (15)                 

   
Note that the coefficient Ai (13) has no interarrival SCV terms; it contains only mean arrival rates and 

service time statistics. Bi,j (14) captures the SCV for all operations that are joined together to create the 
arrival stream for operation i. The coefficient C𝑗𝑗,h (15) is used to adjust Bi,j in the case that operation h is 
serviced at the same queue as an operation j. 

2.4 CT Approximation 

2.4.1 G/G/m Waiting Time Approximation 

Let 𝑊𝑊𝑞𝑞𝑘𝑘 denote the mean queueing delay time at queue k for (product) customers. (Not for the high 
priority PM customers, though they delay our low priority customers.) 
 

𝑊𝑊𝑞𝑞𝑘𝑘 ≈
(∑ 𝜌𝜌𝜎𝜎(𝑖𝑖),𝑖𝑖𝑖𝑖∈𝑇𝑇𝑘𝑘 )�𝑚𝑚𝑘𝑘−1

𝑚𝑚𝑘𝑘
2

∑ �𝐶𝐶𝑎𝑎𝑖𝑖
2+𝐶𝐶𝑠𝑠𝑖𝑖

2��𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖2�𝑖𝑖∈𝑇𝑇𝑘𝑘,𝑂𝑂 +∑ �C
𝑎𝑎,𝑃𝑃𝑃𝑃𝑖𝑖

2 +𝐶𝐶𝐷𝐷𝑖𝑖
2��𝜆𝜆𝑖𝑖,𝑃𝑃𝑃𝑃𝐷𝐷𝑖𝑖2�𝑖𝑖∈𝑇𝑇𝑘𝑘,𝑃𝑃𝑃𝑃

2�1−∑ 𝜌𝜌𝜎𝜎(𝑖𝑖),𝑖𝑖𝑖𝑖∈𝑇𝑇𝑘𝑘 ��1−∑ 𝜌𝜌𝜎𝜎(𝑖𝑖),𝑖𝑖𝑖𝑖∈𝑇𝑇𝑘𝑘,𝑃𝑃𝑃𝑃 �
                (16) 

                                           
In this study, we deal with the G/G/m queueing network with non-preemptive high priority (NPPR) 
customers. There for CT approximation for single toolset with G/G/1/NPPR queueing system in Wu 
(2014) and G/G/m/NPPR approximation in Connors (1996) are considered and adjusted by using the 
values of Cai2 , ∀𝑖𝑖 ∈ 𝑂𝑂  which are unobtainable under the DWA method. The proposed G/G/m/NPPR 
approximation is shown in (16).  

2.4.2 Total CT Approximation 

 
𝑇𝑇𝐶𝐶𝑖𝑖 = ∑ �𝑛𝑛𝑖𝑖,𝑗𝑗𝑆𝑆𝑗𝑗�𝑗𝑗∈𝑂𝑂 +  ∑ �𝑛𝑛𝑖𝑖,𝑘𝑘𝑊𝑊𝑞𝑞𝑘𝑘�𝑘𝑘∈𝑇𝑇 ,   for  �𝑖𝑖: 𝜆𝜆𝑖𝑖𝐸𝐸𝐸𝐸 > 0�                        (17) 
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To see the prediction accuracy of our approximation model, we calculate the mean total CT of customers 
using (17). In this paper, the mean total CT is generated via aggregating all the mean service times and 
mean queueing delay times in customer route. For probabilistic routing, we apply the mean number of 
visit to each operation and toolset. As a reminder, 𝑇𝑇𝐶𝐶𝑖𝑖 is the mean total CT of customers which start the 
manufacturing processes by first arriving to operation i. 

3 DATASET DESCRIPTION AND SIMULATION SETUP 

For two systems, we test our total CT approximation. The systems used are listed below. 
 
• Industry inspired MIMAC dataset 7: We explore the performance of our total CT approximation 

in this deterministic routing fab model. 
• Industry Inspired FAB Dataset: We explore the performance of our total CT approximation in 

both  deterministic and probabilistic routing fab model. 
 

 In this section, we describe the datasets used and provide an overview of our simulation study 
approach and how they are converted into a network of G/G/m queueing networks. 

3.1 Industry Inspired MIMAC Dataset 7 

To test the conformity of our model to the simulation result in deterministic route system, we use one of 
the well-known MIMAC datasets which are based on industrial data. We adjust the data to apply to our 
G/G/m network model as follows.  

We use set7 from the MIMAC datasets. It contains 24 toolsets (all of them are single lot processing 
toolsets), 1 product, and 21 PM types. We use the mean service durations given in the original dataset for 
the product customers; they are per-lot processing times. Since queues 16, 18, and 23 do not have PMs 
specified, we give them default PM plans with 360 hours mean interarrival time and 33 hours of mean 
PM activity duration.  

For the basic analysis, the service durations are uniformly distributed in the range from 10% below to 
10% above the mean value. The interarrival times for the single customer product are set to 55.029 hours 
(this gives 90% loading on the bottleneck queue); they are exponentially distributed. All PM setup 
durations have mean value ½ of the default PM activity duration. The PM service times are Erlang 
distributed (consisting of two exponential sub-stages). The assumptions on service times, PM service 
times, and interarrival times distributions are followed by Morrison et al. (2014). 

We conduct sensitivity analysis using dataset 7 on system loading, the service time distributions and 
the interarrival time distributions. There are 10, 5 and 6 different cases considered for each, respectively.  

 
• Sensitivity to bottleneck queue loading: 10 (loading = 90, 91, 92, 93, 94, 95, 96, 97, 98, 99%) 
• Sensitivity to service time distributions: 5 (SCV = 0.003, 0.030, 0.083, 0.163, 0.270) 
• Sensitivity to interarrival time distributions: 6 (SCV = 0.0625, 0.125, 0.25, 0.5, 1, 2) 
 
The numbers in parenthesis above are the specific values of % loading of the bottleneck toolset, 

squared CV (SCV) of service times and SCV of the interarrival times. There are 22 experiments 
implemented with this system. 

3.2 Industry Inspired FAB Dataset 

To check the conformity of our model to the simulation result in both deterministic and probabilistic route 
systems, we use industry inspired fab dataset. Unlike MIMAC datasets, this is not publically available 
simulation model. In here, we only describe the adjusted version of this dataset.  
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 It contains 14 toolsets (all of them are single lot processing toolsets), 1 product, and 14 PM types. 
There are totally 39 servers, 31 normal operations, and 10 probabilistic routing processes in this network. 

Followed by previous work, the service durations are uniformly distributed with 10% around the 
mean value for the basic analysis,. The interarrival times for the single customer product are set to give 
90% loading on the bottleneck queue. They are exponentially distributed. The PM service times are 
Erlang distributed (consisting of two exponential sub-stages).  

We also conduct sensitivity analysis using this dataset on similar scope of MIMAC dataset analysis.  
 
• Sensitivity to bottleneck queue loading: 6 (loading = 90, 91, 92, 93, 94, 95%) 
• Sensitivity to service time distributions: 5 (SCV = 0.003, 0.030, 0.083, 0.163, 0.270) 
• Sensitivity to interarrival time distributions: 6 (SCV = 0.0625, 0.125, 0.25, 0.5, 1, 2) 
 
The numbers in parenthesis above are the specific values of % loading of the bottleneck toolset, 

squared CV (SCV) of service times and SCV of the interarrival times. There are 17 experiments 
implemented with this system. 

3.3 Simulation Setup 

For simulation, we use AutoSched AP software with 20 years of warm-up and 50 years of data 
acquisition. Such a long period is required as the duration of time between PM event arrivals can be very 
long (e.g., 3 months). We want the data to contain at least 500 such events for each PM type. We use 30 
replications. 

4 NUMERICAL STUDY: TOTAL CT 

Here we focus on comparing the mean total CT obtained via approximation and simulation.   

4.1 Numerical Study in Deterministic Routing Dataset 

Table 1 summarizes the results of the simulation study for MIMAC dataset 7. There the mean total CT for 
product customers is shown for both the approximation and simulation. The error is -5.77%.  

Table 1: Summary of the numerical study with MIMAC dataset 7. 

 
Title 

Mean total CT comparison 
Approximation (h) Simulation (h) Difference (%) 

MIMAC 
dataset 7 

1513.55 1606.27 -5.77 

 

4.2 Numerical Study in Deterministic and Probabilistic Routing Dataset 

Table 2 shows the results of the simulation study using industry inspired fab dataset. The error is 8.84%.  

Table 2: Summary of the numerical study with industry inspired fab dataset. 

 
Title 

Mean total CT comparison 
Approximation (h) Simulation (h) Difference (%) 

Industry inspired 
fab dataset 

1506.96 1384.58 8.84 
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5 NUMERICAL STUDY: SENSITIVITY ANALYSIS 

We conduct sensitivity studies on bottleneck utilization, interarrival time distribution and service time 
distribution. Table 3 provides the detailed results. 

5.1 Sensitivity to Bottleneck Queue Loading 

We consider 10 cases in the MIMAC dataset in which bottleneck loading varies from 90% to 99% in 1% 
increments. We consider 6 cases in the industry inspired fab dataset in which bottleneck loading varies 
from 90% to 95% in steps of 1%. This is accomplished by changing the lot arrival rate. For each system, 
the mean total CT obtained via approximation and simulation are shown in Figures 2. For both cases, as 
the bottleneck queue loading increased, simulated mean total CT also gradually increased. Our 
approximation model predicts the simulation results fairly well across a broad range of parameter input 
values. In MIMAC dataset, the minimum and maximum differences of the mean total CT are -0.63% and 
-8.92%. For industry inspired fab dataset, those differences are 8.84% and 11.91%.  

5.2 Sensitivity to Service Time SCV 

To check the tendency when the service time distribution changes, we modify the SCV value of service 
time from almost 0 (0.003) to above 0.25. These values are obtained for uniformly distributed service 
time with the ranges of [0.9∙MS, 1.1∙MS], [0.7∙MS, 1.3∙MS], [0.5∙MS, 1.5∙MS], [0.3∙MS, 1.7∙MS], and 
[0.1∙MS, 1.9∙MS], where MS is the mean service time for that operation.   
 

Table 3: Summary of the sensitivity analysis. 

 
Category 

Mean total CT comparison (Difference, %) 
MIMAC dataset 7 Industry inspired fab dataset 

Sensitivity 1. 
Bottleneck queue 

loading 

90.0% -5.77 8.84 
91.0% -5.86 9.06 
92.0% -6.64 10.10 
93.0% -6.57 10.63 
94.0% -8.92 11.04 
95.0% -8.74 11.91 
96.0% -8.11 - 
97.0% -7.85 - 
98.0% -4.70 - 
99.0% -0.63 - 

Sensitivity 2. 
Service time 
distribution 

Uni10% -5.77 8.84 
Uni30% -5.69 6.93 
Uni50% -6.03 4.50 
Uni70% -5.88 3.97 
Uni90% -5.92 3.50 

Sensitivity 3. 
Interarrival time 

distribution 

Gam,16 -9.78 7.03 
Gam,8 -7.35 8.10 
Gam,4 -5.27 8.69 
Gam,2 -6.88 7.89 
Gam,1 -5.77 8.84 

Gam,0.5 -5.22 5.73 
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Figures 3 shows the results of the simulated mean total CT with its approximated value for two 
systems. For both cases, the mean total CT increases when the SCV value of service times increased. This 
is well matched with the expected performance.     

 

  
Figure 2: Simulated mean total CT as the product customer arrival rates drive the bottleneck loading from 
90-99% (Left: MIMAC dataset, deterministic routing system / Right: Industry inspired fab dataset, 
deterministic and probabilistic routing system).  

  
Figure 3: Mean total CT increases with the SCV of service times (Left: MIMAC dataset, deterministic 
routing system / Right: Industry inspired fab dataset, deterministic and probabilistic routing system). 

5.3 Sensitivity to Interarrival Time SCV 

We focus on the effect of the SCV of interarrival times. In basic analysis, we consider the interarrival 
times to be exponentially distributed for both product customers and PM type customers. For this study, 
we hold the mean values and vary the number of Erlang sub-stages in the range 0.5, 1, 2, 4, 8, and 16. The 
SCV values are 2, 1, 0.5, 0.25, 0.125 and 0.0625, respectively. 
 For both systems, Figures 4 shows how the mean total CT for product customers increases when the 
SCV for interarrival times increases. The observed increasing tendency of the mean total CT is as 
expected. Our approximation predicts the simulation results evenly in this sensitivity analysis also. 
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Figure 4: Mean total CT increases with the SCV of interarrival times (Left: MIMAC dataset, deterministic 
routing system / Right: Industry inspired fab dataset, deterministic and probabilistic routing system). 

6 CONCLUDING REMARKS 

In this paper, we propose extensions to approximation methods for G/G/m queueing networks that are 
suited for fab modeling using decomposition without aggregation. To study the approximation 
performance, we first compare the simulated mean total CT to approximated mean total CT using two 
industry inspired datasets. The model based prediction on total CT shows satisfactory accuracy. By 
varying some parameters in datasets, sensitivity studies were conducted. The model has errors less than 
12% in all cases and less than 5% in most cases. One observation from our numerical study is that the 
prediction errors are always negative in the deterministic routing system and always positive in the 
system with probabilistic routing. If this difference is the result of systematic differences between the 
systems, we may be able to use this observation to improve our approximation model. We will investigate 
this in more detail in the future. 

In the future, we plan to modify and apply the state of art batching approximation to our model. It 
would be of interest to utilize the proposed approximations in a real fab to promptly identify extreme 
changes in the cycle time behavior across a segment of operations or a segment of tools and address those 
as they evolve into issues.  
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