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ABSTRACT 

Queueing models can be used to evaluate the performance of manufacturing systems. Due to the 
emergence of cluster tools in contemporary production systems, proper queueing models have to be 
derived to evaluate the performance of machines with complex configurations. Job cascading is a 
common structure among cluster tools. Because of the blocking and starvation effects among servers, 
queue time analysis for a cluster tool with job cascading is difficult in general. Based on the insight from 
the reduction method, we proposed the approximate model for the mean queue time of a cascading 
machine subject to breakdowns. The model is validated by simulation and performs well in the examined 
cases. 

1 INTRODUCTION 

The development of queueing theory can be traced back to A.K. Erlang (1909) for the performance 
evaluation of telecommunication networks. In the mid-twentieth century, researchers (White and Christie 
1958; Gaver Jr 1962) applied it to evaluate the performance of manufacturing systems. However, a 
manufacturing system is much different from a telecommunication network in terms of interruption types, 
batching, setups and tool configurations, etc. In this paper, we study the performance of machines with 
complex configurations. Specifically, we propose closed form approximations for the mean queue time of 
a cluster tool with cascading. 

In manufacturing systems, the configuration of a workstation can be more complex than a server (i.e., 
a customer representative) in telecommunication systems. For example, in a pharmaceutical secondary 
manufacturing plant, the tablets are made from active pharmaceutical ingredients through dispensing, 
blending, granulation, compression, and coating. To reduce waiting or transportation time between 
consecutive steps, all process steps can be done in a single cascading machine rather than by the 
individual ones. In the food industry, dispensing of a tray meal is a combination of several consecutive 
steps at a workstation. The workers dispense food items sequentially according to pre-specified weight 
limits. 

In a semiconductor fabrication facility (fab), machines commonly have complex configurations and 
almost every machine in a fab has multiple load ports. For example, a wet bench is composed of a series 
of tanks. When a lot, which carries multiple wafers, has to be processed by a wet bench, it starts from 
setting recipes on a load port and then processed by required tanks sequentially according to the pre-
defined recipe (Hyun-Jung et al. 2014).  

In contract with the over simplified assumptions in most queueing models, a photo lithographer in a 
semiconductor fab is the combinations of scanners and tracks, where a track consists of a series of 
processing chambers (i.e., coaters and developers). A dry etcher has two load ports, a transferring load 
lock, and four processing chambers. A lot is transferred to one of the load ports dedicated to incoming lot. 
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After pumping down, wafers are transferred inside the dry etcher via a dual-arm robot to one of the 
processing chambers. The process repeats until all wafers are processed and transferred to the output load 
port. 

A flexible machine in contemporary production systems generally has complex configurations. In 
above examples, the process chamber (or tank) is commonly called a station of a cluster tool and performs 
a specific recipe of a process step.  

 
 

 
Figure 1: An ideal cascading machine with M servers in series. 

Due to the limited buffer space, exact queue time analysis for workstations with complex 
configuration is hard in general (Wu and Zhao 2015a). The analysis may also depend on robot scheduling 
and processing sequences of each specific job. On the other hand, among the cluster tools with job 
cascading (or cascading machines), an underlying structure among them is cascading. An ideal cascading 
machine refers to a workstation, which is composed of multiple single server stations in series (as shown 
in Figure 1) and no setup before job processing, e.g. a wet bench. Hence, more than one job can be 
processed by a cascading machine at different process steps simultaneously, where the process step is the 
service provided by a single server station (or a server) of the ideal cascading machine. Since most tools 
in the semiconductor manufacturing have load ports, ideal cascading machines are commonly seen in 
fabs, especially for the tools with simple configurations, such as sorters, which consist of two load ports 
(one for load and the other for unload) and a sorting station. In this paper, we propose analytical models 
to approximate system mean queue time of an ideal cascading machine.  

Due to the internal blocking and starvation among servers, the exact analysis of cascading machines 
is difficult except for some special cases. The ideal cascading machine can be modeled as a tandem queue 
with no buffer in between. When service times of all servers are phase-type distributed or constant, we 
can analyze system performance exactly. Avi-Itzhak (1965) proved that the departure process from the 
tandem queue with constant service times and finite buffer capacity is independent of the order of the 
servers, and Friedman (1965) found that its queue time is determined solely by the bottleneck. Latouche 
and Neuts (1980) studied exponential tandem queues with finite buffers and showed that the steady-state 
probability vectors are of matrix-geometric form. Gómez-Corral (2004) derived the sojourn time 
distribution of two-node tandem queues with finite buffers, Markovian arrival process and phase type 
service time. Seo and Lee (2011) considered a stationary waiting time in a Poisson driven single-server 
m-node tandem queue with either constant or nonoverlapping service times. By using (max,+)-algebra, 
they explicitly expressed the stationary waiting time at each node. Though the matrix-geometric method 
and (max,+)-algebra are applicable in the above cases, the algorithms are complex and time consuming. 

Since even the analysis for two single servers in series is hard (Wu and McGinnis 2013; Wu and Zhao 
2015b), the analysis of cascading machines with generally distributed service times is difficult. It is even 
harder when the servers are subject to interruptions, such as breakdowns or preventive maintenances 
(PM). When breakdowns exist, most literature approximated the throughput and mean sojourn time by 
assuming that there is no starvation at the first server of a tandem queue. The prevalent approximation 
methods are based on the aggregation or decomposition approach (Lim et al. 1990; Dallery and Gershwin 
1992; Li et al. 2006; Li et al. 2009).  

The analysis of cluster tools has been studied for over a decade. Robot scheduling is essential to this 
problem and has been studied (Venkatesh et al. 1997; Rostami and Hamidzadeh 2002; Kim et al. 2003). 
Due to the complexity, simulation studies have been conducted (Mauer and Schelasin 1994; LeBaron and 
Hendrickson 2000). Perkinson et al. (1994), Wood (1996) and Morrison and Martin (2007) studied 
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system throughput through rough approximate models without differentiating the queue time impacts 
from different types of interruptions, and the differences between service time and process time. 
Niedermayer and Rose (Niedermayer and Rose 2003) explained the importance of cluster tools in 
semiconductor manufacturing and studied their cycle time. They pointed out that the cycle time analysis 
can only be done by simulation until then. When simulation is used, the simulation optimization 
technique can be employed (Xu et al. 2015). 

To analyze the queue time performance of a cascading machine, we decompose a cascading machine 
into the bottleneck and non-bottleneck, and then approximate the system queue time based on the 
reduction method (1965) and its error bounds. Through the identified underlying structure, a closed form 
model is proposed to approximate the mean queue time of a cascading machine with interruptions.  

In the following, we first give definitions and assumptions in Section 2. In Section 3, the mean queue 
time approximate model is proposed. Simulation validation is given in Section 4. We conclude this paper 
in Section 5. 

2 DEFINITION AND ASSUMPTION 

To derive the approximate model, we have to define some terminologies first. The bottleneck server in a 
cascading machine refers to its throughput bottleneck, which is also the server with the longest service 
time in an ideal cascading machine (Wu 2005). 

In queueing theory, a busy period is the duration of a server between two consecutive idle periods. It 
is also the duration when a server is continuously running, or in continuous run mode. However, when a 
machine is composed of multiple servers in series (i.e., a cascading machine), continuous run mode 
cannot guarantee that its bottleneck server is always busy, since the machine is considered as in service, 
as long as, at least, one of the servers is busy. Hence, there are two levels of continuous run mode: 
continuous run mode at the machine level and continuous run mode at the bottleneck level, where the 
previous one only assures that at least one of the servers of the cascading machine is busy, which may not 
be the bottleneck server. 

Clarifying the concept of service time is of fundamental importance in the application of queueing 
theory. In manufacturing systems, the service time of a cascading machine is closely related to the 
concept of takt time. Takt time is a notion employed in continuous productive operations. It is defined as 
'the rate that a completed product needs to be finished in order to meet customer demand' (iSixSigma 
2012), or 'the desired time between units of production output, synchronized to customer demand' 
(Strategos 2012). Applications of takt time were reported (Labanowski 1997). Rather than using process 
time, Wu and Hui (2008) found the concept of takt time is closer to the definition of service time in queue 
theory. However, it fails to tell the impact from non-preemptive interruptions, which should not be 
counted into service time (Wu 2014). Hence, a more complete and general definition for service time is 
needed. 

In queueing theory, the concept of service time is derived from capacity. And service time is indeed 
the inverse of capacity, where capacity is the maximum throughput rate in steady state. An important 
generalization of service time is the generalized service time (G), which reflects the capacity of a server 
under the influences of interruptions (Wu et al. 2011): 

 
G = Job departure time – The time epoch when the job first claims capacity of the server,    (1) 

 
where job departure time is the time a job release the server capacity. A job claims capacity of a server if 

 
1. the job is present at the server, 
2. the preceding job has released server capacity, 
3. the server is ready to process this job, or is ready to perform a product-induced setup, 
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where a product-induced setup occurs due to changes in the production process induced by switching 
products and it cannot be done in parallel with job processing. Although a product-induced setup 
consumes capacity of a server, it may not be true for a cascading machine. At a cascading machine, if 
setups can be done in parallel with the pre-bottleneck process steps and the setup time is shorter than the 
bottleneck service time, the product-induced setups will not consume system capacity in this situation. 
Hence, at a cascading machine, a job claims machine capacity if 

 
1. the job is present at the machine, 
2. the preceding job has released machine capacity, 
3. the machine is ready to process this job. 

 
Based on the above definition, generalized service time of a cascading machine is 
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1
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where 𝑆𝑆  is service time, 𝑁𝑁(𝑆𝑆) is the number of preemptive interruptions during S, and 𝐷𝐷𝑖𝑖  is the i-th 
downtime (Wu 2014).  

The following assumptions are made in the derivation of approximate models. 
 
1. The service times and exogenous inter-arrival times are independent and identically distributed 

(iid) sequences, and both are mutually independent,  
2. There is an unique bottleneck server in any cascading machine, and all jobs go through this 

bottleneck, 
3. The cascading machine suffers time-based preemptive-resume breakdowns (Wu 2014). When any 

of the servers suffers breakdowns, the cascading machine will switch to a non-production mode 
and all servers have to stop processing immediately (if they are processing jobs). A preempted job 
(if any) will resume its remaining process upon recovery.  

4. Transferring times between consecutive process steps are negligible. 
5. The service time at the bottleneck server is strictly longer than the service time at any other 

server. 
6. No breakdown occurs during the recovery of a breakdown. 
 
The first one is a common assumption in queueing models and should not be strict in practice. 

However, the second assumption may not hold if the cascading machine can process multiple products. In 
this situation, the presented model has to be modified. In this initial attempt to model a cascading machine 
with interruptions, we start with analyzing the impact from time-based breakdowns. For other types of 
interruptions, the queueing models have to be derived separately (Wu 2014).  

Since the transferring times between consecutive process steps are relatively shorter than the process 
time in general, we ignore the transferring times in the analysis. In practical manufacturing systems, to 
satisfy the requirements of quality and product reliability, service times are often required to be as regular 
as possible in order to meet the tight specifications. Hence, service time variability is usually small 
(Inman 1999). Hence, service times at different servers in a cascading machine can be assumed to be 
nonoverlapping, i.e., if 𝑖𝑖 ≠ 𝑗𝑗 , 𝑃𝑃�𝑆𝑆𝑗𝑗 ≥ 𝑆𝑆𝑖𝑖� = 1  (or 𝑃𝑃�𝑆𝑆𝑗𝑗 ≤ 𝑆𝑆𝑖𝑖� = 1) for all 𝑖𝑖  and 𝑗𝑗 , where 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗 are 
service time of server 𝑖𝑖 and 𝑗𝑗 respectively. This justifies the 5th assumption. 

3 THE APPROXIMATE MODEL 

Figure 2 demonstrates an ideal cascading machine subject to time-based preemptive resume breakdowns. 
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Assume the job mean arrival rate is λ. The service time at server 𝑖𝑖 is Si (𝑖𝑖 = 1,⋯ ,𝑀𝑀). 𝐷𝐷 is the duration of 
the breakdown.  𝜂𝜂  is the machine failure rate (and 1/𝜂𝜂  is the mean time to failure after repair). The 
availability of the system is 𝐴𝐴 = 1

1+𝜂𝜂𝜂𝜂(𝐷𝐷)
. The buffer capacity of the first buffer is infinite. The 

intermediate buffer capacity is finite. The buffers are modeled as servers with zero service times. 
 

 
Figure 2: An ideal cascading machine with breakdowns. 

When all service times are constant, Avi-Itzhak (1965) and Friedman (1965) found that the system 
queue time is determined solely by the bottleneck, and is the same as the queue time would be if the 
bottleneck sees the initial arrival process directly. Since a tandem queue can be reduced to a single server 
system, it was named reduction method by Friedman (1965). Furthermore, Avi-Itzhak (1965) showed that 
the reduction method is insensitive to the buffer size. Hence, when all service times are constant, an ideal 
cascading machine can be analyzed exactly by simply assuming it is equivalent to a single server, which 
is the bottleneck of the cascading machine. 

Tembe and Wolff (1974) extended Friedman’s work to tandem queues with nonoverlapping service 
times. They proved that if the bottleneck is the first server in a tandem queue, its cycle time (i.e., queue 
time plus service time) is the shortest among all arrangements. Wan and Wolff (1993) further showed that 
the largest difference among the cycle times of different arrangements of the tandem queues with 
nonoverlapping service time is the upper bound of the second-longest service time among those of all 
servers. Wu and Zhao (2015a) gave a tighter bound for tandem queues with nonoverlapping service time. 

To serve the needs of practical production lines, prior results have to be extended to the situations 
with breakdowns. Let 𝑇𝑇1 = (1,…, M) and 𝑇𝑇2= ([1], …, [M]) be two arbitrary arrangements of servers for 
an ideal cascading machine with M servers. Assume the longest, the second-longest and the least service 
time are at server a, b and c, respectively. Denote the cycle time in system 𝑇𝑇𝑖𝑖 by 𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖, 𝑖𝑖 = 1, 2. 

 
Theorem 1 (Bounds for ideal cascading machines with nonoverlapping service times subject to 
breakdowns) 
Let the service times Si (𝑖𝑖 = 1,⋯ ,𝑀𝑀) of an ideal cascading machine with time-based preemptive-resume 
breakdowns be nonoverlapping. If the random duration of the breakdown is 𝐷𝐷 and the machine failure 
rate is 𝜂𝜂, then 

 
(1) If 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇1)  and 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇2)  exist and are finite, |𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇1)− 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇2)| ≤ (sup(𝑆𝑆𝑏𝑏)− inf(𝑆𝑆𝑐𝑐))(1 +

𝜂𝜂𝐸𝐸(𝐷𝐷)).  
(2) lim

𝜌𝜌→1
�𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖)− 𝐸𝐸�𝐶𝐶𝑇𝑇𝑇𝑇𝑗𝑗�� 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖)⁄ → 0, 𝑖𝑖, 𝑗𝑗 = 1, 2, 

where 𝜌𝜌 is the utilization contributed by jobs at server a and 𝜌𝜌 = 𝜆𝜆𝐸𝐸(𝑆𝑆𝑎𝑎). 
 
Please see Appendix for the proof. Based on Theorem 1-(1), the bound is tighter if the upper limit of 

the second-longest service time is smaller or the lower limit of the least service time is greater. 
Furthermore, the bound will be tighter if machine failure rate and the mean time to repair are smaller. A 
nice property of the nonoverlapping service time cascading machine is its behavior in heavy traffics. The 
relative difference between the mean queue times of any two permutations converges to zero in heavy 
traffic.  
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An important observation is that in what conditions a cascading machine gives the shortest cycle time 
among all permutations. If the bottleneck is the first server, the queue time only occurs at the first server 
and the queue times at all non-bottleneck servers are zero, since the inter-departure times at the bottleneck 
are greater than the service times at the non-bottleneck servers. This coincides with the reduction method, 
where the system queue time is determined solely by the bottleneck.  Hence, when all service times are 
constant, the cascading machine also gives the shortest cycle time. The lower bound of an ideal cascading 
machine occurs when its first server is the bottleneck or all service times are constant. In this situation, the 
system queue time is simply determined by its bottleneck.  

Based on the above analysis, the lower bound of the queue time of an ideal cascading machine is the 
mean queue time of its bottleneck. Wu (2014) gave the mean cycle time approximation for a single server 
subject to time-based preemptive resume breakdowns. Since the cycle time of an ideal cascading machine 
includes its queue time, bottleneck service time and non-bottleneck service times, the lower bound of 
mean cycle time 𝐸𝐸(𝐶𝐶𝑇𝑇𝐿𝐿) can be approximated as follows. 

 

 𝐸𝐸(𝐶𝐶𝑇𝑇𝐿𝐿) =
𝜌𝜌𝐺𝐺𝐸𝐸(𝑅𝑅𝐺𝐺)
(1 − 𝜌𝜌𝐺𝐺) + (1 − 𝐴𝐴𝑁𝑁𝑁𝑁)𝐸𝐸(𝑅𝑅𝐷𝐷) + 𝐸𝐸(𝐺𝐺) + 𝐸𝐸(𝐺𝐺′), (3) 

 
 
where 𝜌𝜌𝐺𝐺 = 𝜆𝜆𝐸𝐸(𝐺𝐺) , 𝐸𝐸(𝑅𝑅𝐺𝐺) = 𝐸𝐸(𝐺𝐺2) 2𝐸𝐸(𝐺𝐺)⁄  , 𝐸𝐸(𝐺𝐺) = 𝐸𝐸(𝑆𝑆𝑎𝑎) 𝐴𝐴⁄ , 𝐸𝐸(𝐺𝐺2) = 𝐸𝐸(𝑆𝑆𝑎𝑎2)[1 + 𝜂𝜂𝐸𝐸(𝐷𝐷)]2 +
𝐸𝐸(𝑆𝑆𝑎𝑎)𝜂𝜂𝐸𝐸(𝐷𝐷2) , 𝐸𝐸(𝑅𝑅𝐷𝐷) = 𝐸𝐸(𝐷𝐷2) 2𝐸𝐸(𝐷𝐷) = 1+𝑐𝑐𝐷𝐷

2

2
� 𝐸𝐸(𝐷𝐷),  𝐴𝐴𝑁𝑁𝑁𝑁 = 1/(1 + 𝜂𝜂𝐸𝐸(𝐷𝐷)) , and  𝐸𝐸(𝐺𝐺′) =

∑ 𝐸𝐸(𝑆𝑆𝑖𝑖)𝑀𝑀
𝑖𝑖=1,𝑖𝑖≠𝑎𝑎 /𝐴𝐴. 

Based on the lower bound and Theorem 1, we can also get the upper bound of the mean cycle time 
𝐸𝐸(𝐶𝐶𝑇𝑇𝑈𝑈) by Eq. (4). 

 

 𝐸𝐸(𝐶𝐶𝑇𝑇𝑈𝑈) = 𝐸𝐸(𝐶𝐶𝑇𝑇𝐿𝐿) + (sup(𝑆𝑆𝑏𝑏) − inf(𝑆𝑆𝑐𝑐)) ∗ (1 + 𝜂𝜂𝐸𝐸(𝐷𝐷)). (4) 
 

 
Hence, we can simply approximate the mean cycle time 𝐸𝐸(𝐶𝐶𝑇𝑇) of an ideal cascading machine by 

taking the average of the lower and upper bounds. 
 

 𝐸𝐸(𝐶𝐶𝑇𝑇) ≅
𝐸𝐸(𝐶𝐶𝑇𝑇𝐿𝐿) + 𝐸𝐸(𝐶𝐶𝑇𝑇𝑈𝑈)

2
= 𝐸𝐸(𝐶𝐶𝑇𝑇𝐿𝐿) + (sup(𝑆𝑆𝑏𝑏)− inf(𝑆𝑆𝑐𝑐))(1 + 𝜂𝜂𝐸𝐸(𝐷𝐷))/2. 

(5) 
 

 
The above model should give reliable approximations when the bound is tight. This assumption 

should not be strict due to the requirements of quality and product reliability in practical manufacturing 
systems. 

4 SIMULATION VALIDATION 

In this section the mean cycle time approximation of Eq. (5) is validated by simulations. In Section 4.1, 
we examine the approximate model in an ideal situation where the cascading machine has nonoverlapping 
service times. In Section 4.2, we examine the model under more practical settings where the cascading 
machine has overlapping service times and product-induced setups. 

4.1 Cascading Machines with Nonoverlapping Service Times 

In the following, two cases are examined. The cascading machine in each case has five single servers in 
tandem. The settings are the same in both except for the service time distributions. Assume that both 
arrivals follow Poisson distributions. Uptimes between two consecutive breakdowns are exponentially 
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distributed with 1 ⁄ 𝜂𝜂 =72 hours. Downtimes follow Gamma distributions with mean 6 hours and squared 
coefficient of variation (SCV) 0.5, i.e., 𝐷𝐷~ Gamma(2,3).  
 
Case 1. In the first case, service times at each server of the cascading machine follow triangular 
distributions, and the probability density function of 𝑆𝑆𝑖𝑖 (𝑖𝑖 = 1,⋯ ,5) is 

 

𝑓𝑓(𝑥𝑥|𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧

2(𝑥𝑥 − 𝑎𝑎𝑖𝑖)
(𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖)(𝑐𝑐𝑖𝑖 − 𝑎𝑎𝑖𝑖)

,     𝑎𝑎𝑖𝑖 < 𝑥𝑥 ≤ 𝑐𝑐𝑖𝑖,

2(𝑏𝑏𝑖𝑖 − 𝑥𝑥)
(𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖)(𝑏𝑏𝑖𝑖 − 𝑐𝑐𝑖𝑖)

,     𝑐𝑐𝑖𝑖 < 𝑥𝑥 ≤ 𝑏𝑏𝑖𝑖,

0,                             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒,

 

 
where 𝑎𝑎1 = 14,  𝑏𝑏1 = 16,  𝑐𝑐1 = 15, 𝑎𝑎2 = 23,  𝑏𝑏2 = 27, 𝑐𝑐2 = 25,  𝑎𝑎3 = 28,  𝑏𝑏3 = 32,  𝑐𝑐3 = 30,  𝑎𝑎4 =
18,  𝑏𝑏4 = 22,  𝑐𝑐4 = 20, 𝑎𝑎5 = 9,𝑏𝑏5 = 11 and 𝑐𝑐5 = 10.  

The model is validated at 10 different utilizations (𝜌𝜌𝐺𝐺 ranges from 0.1 to 0.95). Thirty replications are 
conducted at each arrival rate. Each replication consists of 2,000,000 jobs after discarding the first 
4,000,000 jobs for warm-up.  

Table 1 compares the simulation cycle time (SCT) with approximate cycle time (ACT). The half-
width of the 95% confidence intervals of SCT is given after the mean. The sample size is sufficiently 
large so that the half width of 95% confidence intervals of the mean simulation cycle time (SCT) is less 
than 1%. The percentage difference between ACT and SCT (i.e., ACT/SCT – 1) is given in “Diff%”. It 
shows that Eq. (5) overestimates the mean cycle time across all utilizations. Diff% is the largest in light 
traffic and decreases as 𝜌𝜌𝐺𝐺 increases. The approximate error is 3.07% at 95% utilization. 

Table 1: Cycle time comparison for the cascading machine in Case 1. 

 
 
Case 2. In the second case, service times at each server of the cascading machine follow uniform 
distributions. The probability density function of 𝑆𝑆𝑖𝑖 (𝑖𝑖 = 1,⋯ ,5) is 

 

𝑓𝑓(𝑥𝑥|𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖) = �
1

𝛽𝛽𝑖𝑖 − 𝛼𝛼𝑖𝑖
,     𝛼𝛼𝑖𝑖 < 𝑥𝑥 ≤ 𝛽𝛽𝑖𝑖,

0,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒,
 

 

where 𝛼𝛼1 = 14, 𝛽𝛽1 = 16,𝛼𝛼2 = 23, 𝛽𝛽2 = 27, 𝛼𝛼3 = 28, 𝛽𝛽3 = 32, 𝛼𝛼4 = 18, 𝛽𝛽4 = 22, 𝛼𝛼5 = 9, 𝛽𝛽5 = 11.  

ACT Diff%
10% 110.528 ± 0.003 120.275 8.82%
20% 112.833 ± 0.006 122.582 8.64%
30% 115.805 ± 0.008 125.547 8.41%
40% 119.764 ± 0.012 129.502 8.13%
50% 125.297 ± 0.017 135.038 7.77%
60% 133.613 ± 0.033 143.342 7.28%
70% 147.340 ± 0.041 157.182 6.68%
80% 174.710 ± 0.117 184.862 5.81%
90% 256.660 ± 0.445 267.903 4.38%
95% 421.066 ± 2.527 433.985 3.07%

SCT
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Table 2: Cycle time comparison for the cascading machine in Case 2. 

 
 
Note that the mean service times of 𝑆𝑆𝑖𝑖 (𝑖𝑖=1, ⋯, 5) of Case 1 and 2 are equal. The model is validated at 

10 different utilizations as shown in Table 2. The Diff% is similar to that of Case 1. The approximate 
error is relatively small in heavy traffic. The approximate model performs well in heavy traffic in both 
Cases 1 and 2. 

4.2 Cascading Machines with Overlapping Service Times 

It is important to know if the model still performs well in practical manufacturing systems when the 
cascading machine faces overlapping service times and setups. In the following two cases, we are going 
to validate the model under those situations. The problem settings are similar to the ones in Section 4.1 
except for some minor adjustments to consider the overlapping service times and product-induced setups 
(i.e., changeovers). 
 
Case 3. In the third case, service times at each server follow triangular distributions. The parameters are 
as follows: 𝑎𝑎1 = 14,  𝑏𝑏1 = 16, 𝑐𝑐1 = 15, 𝑎𝑎2 = 21,  𝑏𝑏2 = 29, 𝑐𝑐2 = 25,  𝑎𝑎3 = 28,  𝑏𝑏3 = 32, 𝑐𝑐3 = 30,
𝑎𝑎4 = 18,  𝑏𝑏4 = 22, 𝑐𝑐4 = 20, 𝑎𝑎5 = 9,  𝑏𝑏5 = 11, and 𝑐𝑐5 = 10. When a new job is loaded, it may face a 
product-induced setup with constant duration 10 and probability 5%. 

The mean service time of 𝑆𝑆𝑖𝑖 is the same as that in Case 1 (𝑖𝑖 = 1,⋯ ,5). However, in Case 3, 𝑆𝑆2 and 𝑆𝑆3, 
and 𝑆𝑆2 and 𝑆𝑆4 are overlapping. The model is validated at 10 utilizations as shown in Table 3. Comparing 
Table 1 and Table 3, although the Diff% in Table 3 is also decreasing in 𝜌𝜌𝐺𝐺, the approximation error in 
Case 3 is a little bigger than that in Table 1.  

Table 3: Cycle time comparison for the cascading machine in Case 3. 

 
 

ACT Diff%
10% 110.533 ± 0.004 120.276 8.81%
20% 112.845 ± 0.004 122.585 8.63%
30% 115.824 ± 0.006 125.552 8.40%
40% 119.782 ± 0.009 129.510 8.12%
50% 125.327 ± 0.015 135.050 7.76%
60% 133.623 ± 0.028 143.360 7.29%
70% 147.424 ± 0.052 157.210 6.64%
80% 174.702 ± 0.134 184.910 5.84%
90% 256.853 ± 0.590 268.012 4.34%
95% 420.570 ± 2.373 434.214 3.24%

SCT

ACT Diff%
10% 111.093 ± 0.004 126.775 14.12%
20% 113.425 ± 0.005 129.082 13.80%
30% 116.422 ± 0.008 132.047 13.42%
40% 120.406 ± 0.010 136.002 12.95%
50% 125.965 ± 0.015 141.538 12.36%
60% 134.372 ± 0.025 149.842 11.51%
70% 148.173 ± 0.047 163.682 10.47%
80% 175.660 ± 0.126 191.362 8.94%
90% 258.401 ± 0.606 274.403 6.19%
95% 425.668 ± 2.297 440.485 3.48%
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Case 4. In the fourth case, service times at each server follow uniform distributions. Let 𝛼𝛼1 = 14, 𝛽𝛽1 =
16, 𝛼𝛼2 = 21, 𝛽𝛽2 = 29, 𝛼𝛼3 = 28, 𝛽𝛽3 = 32, 𝛼𝛼4 = 18, 𝛽𝛽4 = 22, 𝛼𝛼5 = 9, and 𝛽𝛽5 = 11. When a new job 
is loaded, it may face a product-induced setup with constant duration 10 and probability 5%. 

The mean service time of 𝑆𝑆𝑖𝑖 is the same as that in Case 2 (𝑖𝑖 = 1,⋯ ,5). However, in Case 4, 𝑆𝑆2 and 𝑆𝑆3, 
and 𝑆𝑆2 and 𝑆𝑆4 are overlapping. The model is validated at 10 utilizations as shown in Table 4. Although 
the Diff% in Table 4 is also decreasing in 𝜌𝜌𝐺𝐺, the approximation error in Table 4 is a little bigger than that 
in Table 2.  

Although there are overlapping service times and product-induced setups, the approximate model still 
performs well in heavy traffic in both Cases 3 and 4. 

Table 4: Cycle time comparison for the cascading machine in Case 4. 

 

5 CONCLUSION 

Based on the insight from the reduction method, we developed an approximate model for the mean queue 
time of a cascading machine. The approximate model performs well in heavy traffic. Due to the 
importance of cluster tools in flexible machine systems, the proposed model plays a critical role in the 
design and performance evaluation of contemporary production systems.  

In practice, each station of a cluster tool may consist of more than one server. While we focus on 
analyzing the ideal situations in this paper, the complications are left for future research.  

Inside a cascading machine, a job is commonly transferred from a server to another server by robots. 
The transferring time depends on the robot scheduling. We have seen many cases that a cascading 
machine suffers unnecessary delay due to inferior robot scheduling policies, which not only introduces 
variability into service times, but also increases the complexity of queue time analysis (Wu et al. 2016). 
Optimal robot scheduling is essential for both productivity enhancement and performance evaluation, and 
should be an important topic for future research. 

In practice, a machine may be capable to process multiple products with a complex product mix. 
Under different product mixes, the bottleneck server in a cascading machine may shift. Similar impacts 
can come from service time variations. If the bottleneck service time is not strictly longer than the non-
bottleneck service times, the bottleneck server will shift from time to time. These will inevitably increase 
the complexity of queue time analysis. 

In an ideal cascading machine, we assume there is a single server per station. However, to 
synchronize the production speed at different stations, the station with lower throughput rate usually has 
multiple parallel servers inside a cascading machine. This situation is not covered in this paper, and will 
be left for future research. 

ACT Diff%
10% 111.102 ± 0.004 126.776 14.11%
20% 113.453 ± 0.005 129.085 13.78%
30% 116.461 ± 0.008 132.052 13.39%
40% 120.459 ± 0.010 136.010 12.91%
50% 126.038 ± 0.014 141.550 12.31%
60% 134.381 ± 0.027 149.860 11.52%
70% 148.227 ± 0.045 163.710 10.45%
80% 175.723 ± 0.101 191.410 8.93%
90% 258.154 ± 0.580 274.512 6.34%
95% 424.883 ± 2.235 440.714 3.73%

SCT
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APPENDICES 

Proof Theorem 1 
For customer 𝐶𝐶𝑛𝑛 , n = 1, 2, …, let  
An = arrival epoch of 𝐶𝐶𝑛𝑛 into the system,  
Dn = departure epoch of 𝐶𝐶𝑛𝑛 from the system, 
𝑆𝑆𝑗𝑗,𝑛𝑛 = service time of 𝐶𝐶𝑛𝑛 at server j, j = 1, …, M, 
𝐶𝐶𝑇𝑇𝑛𝑛

𝑇𝑇𝑖𝑖 = cycle time of 𝐶𝐶𝑛𝑛 in system 𝑇𝑇𝑖𝑖, 𝑖𝑖 = 1, 2. 
(1) First, we consider an M-single-server cascading machine with nonoverlapping service times and 

without time-based breakdowns. From Tembe and Wolff (1974), the departure epochs of 𝐶𝐶𝑛𝑛 from the 
system in arrangement 𝑇𝑇1 and 𝑇𝑇2 are   

𝐷𝐷𝑛𝑛
𝑇𝑇1 = max

1≤𝑖𝑖1≤⋯≤𝑖𝑖𝑀𝑀≤𝑛𝑛
�𝐴𝐴𝑖𝑖1 + � 𝑆𝑆1,𝑘𝑘

𝑖𝑖2

𝑘𝑘=𝑖𝑖1
+ ⋯+ � 𝑆𝑆𝑀𝑀−1,𝑘𝑘

𝑖𝑖𝑀𝑀

𝑘𝑘=𝑖𝑖𝑀𝑀−1
+� 𝑆𝑆𝑀𝑀,𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖𝑀𝑀
� 

= max
1≤𝑖𝑖1≤𝑛𝑛

�𝐴𝐴𝑖𝑖1 + 𝑆𝑆1,𝑖𝑖1 + ⋯+ 𝑆𝑆𝑎𝑎−1,𝑖𝑖1 + � 𝑆𝑆𝑎𝑎,𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖1
+ 𝑆𝑆𝑎𝑎+1,𝑛𝑛 + ⋯+ 𝑆𝑆𝑀𝑀,𝑛𝑛�. 

𝐷𝐷𝑛𝑛
𝑇𝑇2 = max

1≤𝑖𝑖1≤⋯≤𝑖𝑖𝑀𝑀≤𝑛𝑛
�𝐴𝐴𝑖𝑖1 + � 𝑆𝑆[1],𝑘𝑘

𝑖𝑖2

𝑘𝑘=𝑖𝑖1
+ ⋯+ � 𝑆𝑆[𝑀𝑀−1],𝑘𝑘

𝑖𝑖𝑀𝑀

𝑘𝑘=𝑖𝑖𝑀𝑀−1
+� 𝑆𝑆[𝑀𝑀],𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖𝑀𝑀
� 

= max
1≤𝑖𝑖1≤𝑛𝑛

�𝐴𝐴𝑖𝑖1 + 𝑆𝑆[1],𝑖𝑖1 + ⋯+ 𝑆𝑆[𝑎𝑎−1],𝑖𝑖1 + � 𝑆𝑆[𝑎𝑎],𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖1
+ 𝑆𝑆[𝑎𝑎+1],𝑛𝑛 + ⋯+ 𝑆𝑆[𝑀𝑀],𝑛𝑛�. 

Because the service times among servers are not overlapping, for any i1, 

𝐴𝐴𝑖𝑖1 + 𝑆𝑆[1],𝑖𝑖1 + ⋯+ 𝑆𝑆[𝑎𝑎−1],𝑖𝑖1 + � 𝑆𝑆[𝑎𝑎],𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖1
+ 𝑆𝑆[𝑎𝑎+1],𝑛𝑛 + ⋯+ 𝑆𝑆[𝑀𝑀],𝑛𝑛 

≤ 𝐴𝐴𝑖𝑖1 + 𝑆𝑆1,𝑖𝑖1 + ⋯+ 𝑆𝑆𝑎𝑎−1,𝑖𝑖1 + � 𝑆𝑆𝑎𝑎,𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖1
+ 𝑆𝑆𝑎𝑎+1,𝑛𝑛 + ⋯+ 𝑆𝑆𝑀𝑀,𝑛𝑛 + sup(𝑆𝑆𝑏𝑏) − inf(𝑆𝑆𝑐𝑐). 

Then  𝐷𝐷𝑛𝑛
𝑇𝑇2 ≤ 𝐷𝐷𝑛𝑛

𝑇𝑇1 + sup(𝑆𝑆𝑏𝑏)− inf(𝑆𝑆𝑐𝑐) and 𝐶𝐶𝑇𝑇𝑛𝑛
𝑇𝑇2 ≤ 𝐶𝐶𝑇𝑇𝑛𝑛

𝑇𝑇1 + sup(𝑆𝑆𝑏𝑏)− inf (𝑆𝑆𝑐𝑐). 
Since 𝑇𝑇1 and 𝑇𝑇2 are arbitrary, we have  
�𝐶𝐶𝑇𝑇𝑛𝑛

𝑇𝑇1 − 𝐶𝐶𝑇𝑇𝑛𝑛
𝑇𝑇2� ≤ sup(𝑆𝑆𝑏𝑏)− inf (𝑆𝑆𝑐𝑐) for all 𝑛𝑛. 

Taking customer averages,  
|𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇1) − 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇2)| ≤ 𝐸𝐸��𝐶𝐶𝑇𝑇𝑛𝑛

𝑇𝑇1 − 𝐶𝐶𝑇𝑇𝑛𝑛
𝑇𝑇2�� ≤ sup(𝑆𝑆𝑏𝑏)− inf (𝑆𝑆𝑐𝑐) . 

If the time-based breakdowns exist, the availability of the system is A = 1 η⁄
1 η⁄ +E(D)

= 1
1+ηE(D)

. Then  
|𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇1) − 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇2)| ≤ (sup(𝑆𝑆𝑏𝑏)− inf (𝑆𝑆𝑐𝑐))(1 + 𝜂𝜂𝐸𝐸(𝐷𝐷)). 

(2) From Theorem 1-(1), |E�CTT1� − E�CTT2�| ≤ (sup(Sb) − inf(Sc))�1 + ηE(D)�.   
Since lim

𝜌𝜌→1
𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖) → ∞ , then lim

𝜌𝜌→1
|𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇1)− 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇2)| 𝐸𝐸(𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖)⁄ → 0, 𝑖𝑖 = 1, 2. 
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