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ABSTRACT 

We consider the problem of managing output in semiconductor wafer fabrication facilities when a new 
product is introduced alongside a current product. We propose a mathematical model of the impact of the 
new product on the distribution of the effective processing time, and use a simple Excel simulation to 
illustrate the impact of different release control policies on output under product transitions. 

1 INTRODUCTION 

The introduction of new products is an important basis for competition in many industries (Levinthal and 
Purohit 1989; Padmanabhan et al. 1997). A new product often competes with earlier ones for customers in 
the marketplace, production and distribution capacity in the supply chain, and resources in the 
development organization. An unsuccessful product transition, or rollover, can severely affect a firm's 
performance, sometimes driving it out of business entirely (Billington et al. 1998; Erhun et al. 2007; 
Bilginer and Erhun 2010). The introduction of new manufacturing processes is critical to the introduction 
of new products, but disrupts production and product development. We will refer to product and process 
transitions collectively as technology transitions. Decisions are made under market uncertainties in the 
demand for new products, and hence processes; and technological uncertainties in the time and resources 
required to bring products and processes into high volume manufacturing.  

The literature has treated management of technology transitions as a strategic problem, viewing them 
as infrequent events that can be managed as an exception to routine operations and planning, and in 
isolation from product lines not involved in the transition. In contrast, high tech industries such as 
semiconductor manufacturing face significant adverse impact on plant productivity from technology 
transitions (Leachman 1996; Gopal et al. 2011) which must be considered in operational decision making, 
with frequent product transitions being the norm rather than the exception. In 
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these transitions a new device is introduced into a fab where it shares equipment capacity with previously 
introduced devices currently in demand in the market.  

The adverse impact of new product introductions on the performance of semiconductor wafer 
fabrication facilities (fabs) is widely acknowledged. In an extensive study of competitive practices in the 
industry, Leachman (1996) identifies effective management of new product introductions as a major 
contributor to overall fab productivity. In this paper we focus on the operational problem of managing the 
release of wafers into the fab during a product transition, where an older product is being replaced in the 
market by a newer one. In general, newer products have higher profit margins than older ones, due either 
to reduced manufacturing cost achieved through die shrinkage, or additional features that command a 
price premium. Since the market price of new devices generally decreases rapidly over time as 
competitors introduce competing devices, maximizing the output of the new device early in the product 
lifecycle has important implications for revenue (Leachman 1996; Akcali et al. 2000; Leachman and Ding 
2007). However, the transition from the older product to the newer one must proceed gradually for several 
reasons. First, the manufacturer's customers will  not all adopt the new device simultaneously, but rather 
switch at different points in  time as they exhaust inventories of the older product, incorporate the new 
device into their product designs, and observe the performance of the new device in the market. Hence 
demand for the new device will increase gradually over time. Second, introduction of the new device into 
the fab alongside the older device may have significant adverse effect on the output of both devices due to 
their sharing capacity. Thus increasing the starts of the new device too rapidly may result in excessive 
output of the new device early in its life cycle where its price is high but its demand is low, while 
reducing output of the older device that is still profitable and makes up most of the firm's demand. Thus 
the manner in which the mix of wafers of the two devices released into the fab is managed over time is 
critical to effective management of revenue during the transition. 

In this paper we propose a simple probabilistic model of the interaction between old and new devices 
based on the effective processing time approach suggested by Hopp and Spearman (2008). In contrast to 
previous models of learning in semiconductor manufacturing, which have generally focused on the 
improvement of yield and throughput for either an individual device or a number of devices produced 
using the same process, this model explicitly captures the adverse impact of the new device on older 
devices whose learning has already taken place. We then use this model to simulate the impact of 
different release management policies to examine their impact on fab performance. We find that release 
policies based on maintaining a constant WIP level in the fab, such as CONWIP (Spearman et al. 1990) 
and Drum-Buffer-Rope (Goldratt and Fox 1986), may result in reduced output of both old and new 
devices during the transition. This suggests the need for optimization of the releases over time to 
maximize revenue while also meeting existing demand commitments. 

In the following section we briefly review previous related work on the management of new product 
introductions and learning in manufacturing systems. Section 3 presents the model, and Section 4 
implements it in a simple simulation of an aggregated wafer fab which must introduce a new device while 
ramping down another. Section 5 concludes the paper with a summary of the insights from this initial 
work and directions for future research. 

2 PREVIOUS RELATED WORK 

In this section we briefly review several streams of research related to the introduction of new products 
into manufacturing facilities.  

2.1 Modeling Product Transitions 

A growing body of research addresses the management of product transitions (Billington et al. 1998; Lim 
and Tang 2006; Erhun et al. 2007; Bilginer and Erhun 2010), examining different aspects of the problem. 
These models all study a centralized firm using aggregate formulations that do not consider the complex 
technical constraints faced by different units. They also do not consider the collateral impact of product 
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transitions on products that are not involved in the transition, but share development or manufacturing 
resources with the transitioning product. In industrial practice, Intel's Copy Exactly technology transfer 
method (McDonald 1998) and the Tick-Tock cadence in which new device architectures and silicon 
compaction alternate have the effect of reducing the number of uncertainties to which a factory 
introducing a new product or process is exposed (Shenoy and Daniel 2006). Leachman (1996) presents 
industrial data supporting the effectiveness of this policy and the benefits of careful coordination between 
product development and manufacturing organizations in product transitions.  

2.2 Manufacturing Systems with Learning 

The initial effect of a product or process transition is usually a significant reduction in the throughput of 
the facility. Queueing models (Buzacott and Shanthikumar 1993; Hopp and Spearman 2008) and 
industrial experience both suggest that in multiproduct facilities, not only the products undergoing the 
technology transition but others sharing resources with them will be adversely affected. Over time, as 
experience with the new product or process accumulates, performance improves. Much existing work 
(Liao 1979; Reeves and Sweigart 1981; Hiller and Shapiro 1986) does not distinguish between production 
and engineering activity, but assumes that the resources required to produce a unit of good product will 
decline over time as a function of cumulative production. Later authors (Fine 1986; Fine 1988; Chand et 
al. 1996; Terwiesch and Bohn 2001) consider learning as a process of experimentation that uses 
production capacity to improve process capability. Leachman (1996) gives industrial data indicating that 
learning by doing in semiconductor manufacturing can be increased by allocation of engineering 
resources and organized problem-solving activities that reduce defect densities.  

3 IMPACT OF NEW PRODUCT INTRODUCTIONS ON FAB THROUGHPUT 

3.1 Modeling and Analysis 

To motivate our approach, we shall treat the overall wafer fab as a single resource whose output can be 
modeled using a clearing function (Graves 1986; Karmarkar 1989). A clearing function (CF) represents 
the relation between the expected output of the production system it represents in a planning period as a 
function of some measure of the expected workload during that period. In this paper we follow previous 
production planning research (Kacar and Uzsoy 2010; Kacar et al. 2012; Kacar et al. 2013; Kacar et al. 
2016) in using the expected workload, given by , where Wt-1 denotes the amount of work in 
process available to the resource at the start of planning period t, and Rt the amount of work planned to be 
released to the resource during period t. If we treat the fab as a single resource that can be modelled as an 
M/G/1 queue, Missbauer (2002) has shown that the expected output Xt in period t, expressed in units of 
time, can be written as 

 
.
  (1) 

where ∆ denotes the length of the planning period and 

  , (2) 

where at and  denote the mean and variance of the effective processing time in period t, 
respectively. The expected number of units produced in a period will then be  

   (3) 

Thus we can model the effect of new product introductions on the expected throughput of the fab 
through changes in the distribution of the effective processing time over time, represented by its mean at 
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and its variance . This will result in a new clearing function for each planning period t, defining the 
expected output of the system in that period as a function of the workload  available to the system in 
that period. Kim and Uzsoy (2008; 2013) use a similar approach to represent the impact of learning over 
the product life cycle on the expected throughput of a production system. However, that work examined 
the impact of learning on process improvement benefiting all products in the system in a similar manner. 
This paper examines the impact of product mix on effective processing times, where the two products 
have different processing characteristics.   

The objective of this work is to model a system into which a new product is introduced, changing the 
distribution of the effective processing time. We assume that all wafer lots of different products have a 
common underlying distribution of their natural processing time, which represents the behavior of the 
shared manufacturing technology. Based on our industrial observations as well as studies of industrial 
practice (Leachman 1996), we assume that differences between products arise from the disruptions they 
induce in the fab. Specifically, the impact of a new product on factory throughput is due to the increased 
level of engineering intervention it requires. Early in its life cycle, a new product will require frequent 
engineering interventions where problems are encountered performing a specific operation on a particular 
piece of equipment for one or more lots of the new product. This results in the equipment being placed on 
engineering hold, making it unavailable for regular production until manufacturing engineers have 
identified and resolved the issue. We will represent these engineering holds as non-preemptive disruptions 
that reduce the availability of the equipment and thus alter the distribution of the effective processing 
time. Specifically, when a new product is first introduced, it will require frequent engineering 
interventions, resulting in an abrupt increase in the mean and variance of the effective processing time. 
However, as manufacturing engineers identify and resolve problems with the new product, the frequency 
of engineering interventions will decrease over time, reducing the mean and variance of the effective 
processing time as continuous improvement activities are implemented.   

We hasten to point out that engineering holds are by no means the only impact of the new product 
introduction. Individual lots of both old and new products, as opposed to equipment, may be placed on 
hold, altering the effective processing time distribution. Setups, equipment failures and yield excursions 
may also differ between the two products, again altering the effective processing time distribution. In 
general it is likely that the distributions of these parameters will have higher means and variances for the 
new product relative to the current one, and hence their impact on the effective processing time should be 
similar to that of engineering holds.  

Let t0 denote the expected natural processing time of a lot of wafers, and  its variance. Let the 
system encounter an engineering hold with mean duration Pt and variance  on average once every Qt 
lots in period t. Then the mean and variance of the effective processing time are given by te = t0 + Pt/Qt 

and , respectively (Hopp and Spearman 2008). The impact of new product 

introductions on output can then be captured through sequences Pt ,  and Qt, t = 1,...,T that determine 
the CF describing the output of the factory over time. Initially we will treat these sequences as scenarios 
exogenous to the planning models, yielding a CF of the form (1) with at = t0 + Pt/Qt and  

   (4) 

where  denotes the squared coefficient of variation of the interarrival times, which we assume to be 
1 in this paper. For our initial analysis we assume that the distribution of the time required to address a 
process problem, represented by Pt  and , is independent of the product causing them; the impact of 
new product introductions is isolated in the expected frequency 1/Qt of engineering holds, which depends 
on the cumulative production of each product to date. Let Qit(Xit) denote the mean number of lots between 
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engineering holds for a product i whose cumulative production up to this time is Xit units. Let Qs denote 
the expected number of lots between engineering holds for a stable product whose process is completely 
debugged. A model of the learning as a function of cumulative production is then given by  

   (5) 
where  is a parameter determining the rate of improvement in the system, i.e., the rate at which 
problems with the new product are discovered and eliminated. We estimate the average number of lots 
between engineering holds for a system with N products as the weighted average of the mix of products 
making up the current workload Λt, given by 

   (6) 

 The following section presents a series of simple simulation experiments that examine the 
implications of this model for the management of wafer fabs in the presence of product transitions, 
particularly for different release control policies that may be viable under different situations. 

4 SIMULATION EXPERIMENTS 

In order to illustrate the performance of the model proposed above, we implement the model in a system 
dynamics simulation of a wafer fab represented with a single aggregate clearing function. We consider a 
sequence of discrete time periods t = 1,...,T, and two products whose natural processing time and initial 
engineering holds (non-preemptive disruptions) occur following the distributions in Table 1. We consider 
a planning period of three months (129,600 minutes), due to the substantial amount of time involved in 
identifying problems with a new product, implementing remedial actions and observing results. Hence the 
system can produce an average of 1524 lots in each period.   

Table 1: Product data for simulation examples. 

 Parameter Value 

Natural Processing 
Time 

Mean t0 85 mins. 

 Std. Dev. σ0 68 mins. 
 Coeff. of Variation c0 0.8 

Engineering Hold Mean Duration P 900 mins. 
 Std. Dev. σP 720 mins. 
 Coeff. of Variation cP 0.8 

 We assume that engineering holds for each of the two products occur following a Poisson process, 
with the mean number of lots between consecutive holds for Product 1, the older, stable product, given by 
Q1 = 50 lots. Engineering holds for Product 2, the new product that is to be debugged, initially occur with 
a mean frequency of once every Q2(0) = 10 lots, eventually improving to Q2(∞) = Qs = 50 lots. In all 
experiments we fix the value of the improvement rate parameter to α = 0.0001 and simulate for a horizon 
of 65 periods. This results in the mean number of lots between engineering holds for Product 2, Q2(t), 
evolving over time as shown in Figure 1. 
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Figure 1: Evolution of number of lots between engineering holds. 

 The simulation is implemented in Microsoft Excel with no random variables. The number of 
unprocessed lots Wit of each product i in the system at the end of period t is given by the balance equation 

                     (7) 

where Rit denotes the number of lots of product i released in period t and Xit the output of product i in 
period t. The total workload of the system at the start if each period is given by 

   (8) 
i.e., the total number of lots of both products available in WIP at the end of the previous period and the 
total planned releases of both products. The clearing function (1) is then used to compute the total output 
Xt of the system in period t in units of lots, assuming that the mix of output matches the mix of workload. 

4.1 Base Experiment 

In our base experiment we adopt an intuitive but non-optimized release policy of the type described to us 
by several industrial collaborators. For the first ten periods Product 1 is released at the rate of 1200 lots 
per period, giving a utilization of approximately 0.93. Starting in period 11, the releases of Product 1 are 
reduced by 7% (approximately 78 lots) in each period and replaced by a similar number of Product 2 lots 
such that the total releases into the system remain constant, with no restriction on the amount of WIP that 
may accumulate in the line. This profile under which the releases of Product 1 are replaced by releases of 
Product 2 between periods 11 and 25 defines the transition profile between the two products. The results 
of this run are shown in Figures 2 and 3. 

Figure 2 shows that once lots of Product 2 begin to enter the fab in period 11, output begins to decline 
at an increasing rate due to the increased mean and variance of the effective processing time caused by the 
engineering holds on Product 2. After some time the rate of decrease begins to slow as manufacturing 
engineering reduces the frequency of engineering holds for Product 2. Eventually, in period 23, the 
engineering improvements overcome the negative effect of the additional engineering holds to the point 
that additional releases of Product 2 increase output rather than reducing it. Fab output increases past the 
initial level of 1200 lots, due to the accumulation of WIP in the fab caused by the increased effective 
processing time. Eventually the distribution of the effective processing time for the fab returns to the 
original value, as Q2 reaches its final value of Qs = 50, attaining the same level of engineering control as 
Product 1. 
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Figure 2: Evolution of fab output over time in baseline experiment. 

 

 
Figure 3: Evolution of WIP over time in baseline experiment. 

It is interesting to note that although fab throughput initially decreases well below the initial level of 
1200 lots per period with the introduction of Product 2, between periods 11 and 29, it eventually exceeds 
it quite significantly for an extended period of time, between periods 29 and 55. This behavior is due to 
the accumulated WIP in the fab raising its throughput by reducing idle time at bottleneck resources. 
Hence if cycle time is not a major issue, the total revenue from both products delivered by the end of the 
simulation may be satisfactory.  
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4.2 Controlled Release Policies - CONWIP 

The behavior of the WIP over time is shown in Figure 3, which would cause concern to most fab 
managers - a very significant accumulation of WIP takes place between periods 11 and 30, which is not 
completely eliminated until period 55. By Little's Law (Hopp and Spearman 2008), this temporary 
increase in WIP implies a major increase in cycle time, with potential adverse consequences for delivery 
performance of both products. This is caused by the increase in both the mean and variance of the 
effective processing time in the fab due to the introduction of Product 2 and the increased engineering 
hold episodes it causes. In fact, the utilization of the system is very close to 1 between periods 13 and 51 
for this reason. Most current fabs are managed with release policies that try to maintain stable cycle times 
by monitoring the current WIP level in the fab. Examples of such policies are the Workload Regulating 
policy(Wein 1988; Lu et al. 1994), the Bottleneck Starvation Avoidance policy (Glassey and Resende 
1988), CONWIP (Spearman et al. 1989; Spearman et al. 1990) and Drum-Buffer-Rope (Goldratt and Fox 
1986). In this paper we implement the CONWIP policy of Spearman et al. (1990) due to its simplicity and 
the fact that it captures the basic logic of several such approaches: to maintain constant average cycle 
times by maintaining constant WIP levels as far as possible.  

Under the CONWIP system, a target workload level for the system is specified in units of time, 
representing the maximum workload at the bottleneck resource allowed to enter the fab. This target 
workload level is held constant by releasing a number of lots into the fab whose workload is exactly equal 
to that of the lots completed in the previous period. To accomplish this, the total workload, in units of 
time, whose processing was completed in the previous period is calculated to obtain the workload of new 
lots that can be released into the fab in the next period. The mix of lots of each product to enter the fab is 
determined based on the transition trajectory, the effective processing time parameters for the next period 
are calculated, and the system output in time units determined by the clearing function (1). In this 
experiment we explore the behavior of the system under this policy where we set a target workload of 
123,600 minutes, corresponding to releasing 1173 lots of Product 1 in each period, and allow the system 
to reach steady state. Starting in period 11, we  maintain the target workload level by releasing lots equal 
to the total output Xt-1 of the system, in time units, in the previous period. The number R2t of lots of 
Product 2 required by the transition profile are released in period t, together with as many lots of Product 
1 as the target workload can accommodate. Hence under CONWIP the releases of Product 2 required by 
the transition profile are maintained while those of Product 1 are reduced. Clearly the use of a single 
target workload level for the entire planning horizon is not optimal, given the changing distribution of the 
effective processing times. However, our purpose in this experiment is to examine the basic behavior of 
policies of this type, which we plan to refine in future work. We consider two different CONWIP policies 
in our experiments, denoted by CONWIP Low and CONWIP High, in which we set the target workload 
levels to 123,600 and 133,900 minutes, respectively, to show the impact of different target workload 
levels. Since the throughput of the individual products is determined by the transition profile and is thus 
quite intuitive, we focus on the total throughput of both products in our discussion of this experiment.  

Figure 4 compares the total output of the fab over time under the two CONWIP policies and the 
baseline experiment discussed above. It is apparent that CONWIP Low restricts throughput to a lower 
level than the other policies, and is outperformed in terms of throughput by the baseline policy. Increasing 
the target workload level under CONWIP High yields higher throughput than CONWIP Low.  

Figure 5 shows the evolution of the WIP over time. The baseline policy results in a very large 
increase in WIP between periods 11 and 53, which is greatly reduced by the CONWIP policies. CONWIP 
Low is clearly sacrificing output by keeping the target workload level too low. CONWIP High, in 
contrast, achieves somewhat higher output than CONWIP Low, and recovers from the new product 
introduction more rapidly,  stabilizing at a higher throughput than the Base case. Figure 6 clearly shows 
that the Base case results in unacceptable levels of WIP, and, by implication, cycle time; utilization is 
close to 1 for the greater part of the simulation horizon. Both CONWIP policies result in a slight decrease 
in utilization as the new product begins to enter the system, as throughput is reduced, but both recover 
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quite rapidly. The interesting result is the comparison of the Base case and CONWIP High. CONWIP 
High represents a higher initial release rate of work into the fab than the Base Case, resulting in higher 
utilization in the early periods. However, once Product 2 begins to be released, CONWIP High 
experiences a slight decrease in utilization while that of Base increases dramatically. The decrease in 
output is due to the releases for each period being computed based on the mean effective processing time 
in the previous period, which will exceed that of the current period. Thus, for all practical purposes, 
CONWIP High maintains almost constant utilization, avoiding the excessive WIP of the Base case. It 
yields lower throughput than Base through period 53, but then stabilizes at a higher throughput.  

 

 
Figure 4: Throughput comparison of CONWIP and base policies. 

5 CONCLUSIONS AND FUTURE DIRECTIONS 

The preliminary models and experiments presented above produce results consistent with industrial 
observation. Undoubtedly the mechanism we model is only one of several that may be active in the fab at 
the same time, including equipment-related improvements that affect all products using the equipment in 
a similar manner and the acquisition of manufacturing knowledge by equipment operators and 
manufacturing engineers. The important insight is that the introduction of a new product alters the 
distribution of the effective processing time of lots at the processing equipment, both in expectation and 
in variance, requiring this change to be taken into account in the release of work into the fab. In particular, 
maintaining a constant release rate while replacing lots of the older, more stable product with those of a 
newer, less stable one in some proportion will lead to reduced throughput and increased cycle times and 
WIP in the short term, suggesting the need for careful management of releases during product transitions. 

The release control policies explored in this paper are simplistic in nature, but suggest several 
directions for future research. The time-varying nature of the effective processing time distribution 
suggests the use of CONWIP policies with time-varying target workload levels that allow the impact of 
the product mix to be taken into account. We conjecture that such a CONWIP policy would initially raise 
the target workload level to allow increased throughput with an increase in cycle time, reducing it 
gradually in subsequent periods as the learning takes place and the effective processing time distribution 
returns to normal. Finally, the mathematical model can be used to develop clearing functions that can 
incorporate the changing impact of product mix and engineering improvements over time, allowing 
optimization models of the type suggested by Asmundsson et al. (2009) and tested by Kacar et al. (2013; 
2016) to incorporate these effects in at least an approximate manner. The explicit control of the cycle time 
of individual products, as might be required in high variety fabs, constitutes an additional extension. 
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Figure 5: WIP comparison for CONWIP and baseline policies. 
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