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ABSTRACT

In this paper, we focus on a scenario in which a company or a set of companies conforming a supply
network must deliver a complex product (service) composed of several components (tasks) to be processed
on a set of parallel flow-shops with a common deadline. Each flow-shop represents the manufacturing of an
independent component of the product, or the set of activities of the service. We assume that the processing
times are random variables following a given probability distribution. In this scenario, the product (service)
is required to be finished by the deadline with a user-specified probability, and the decision-maker must
decide about the starting times of each component/task while minimizing one of the following alternative
goals: (a) the maximum completion time; or (b) the accumulated deviations with respect to the deadline.
A simheuristic-based methodology is proposed for solving this problem, and a series of computational
experiments are performed.

1 INTRODUCTION

The complexity of manufacturing has become increasingly higher due to the rise of supply chains where
different companies co-operate to manufacture a product for a final customer in a distributed manner. These
supply networks naturally appear as companies, in their fierce global competition, try to identify their core
competences and outsource/purchase those activities/services in which they do not excel. As a result, these
products (or services, as these words will be used interchangeably throughout the paper) can be decomposed
into a set of independent components/tasks –each one to be manufactured in a different facility– with a
common due date or deadline (Figure 1). In this paper, we assume that each of these components/tasks
has to be processed in a factory, which can be modeled as a permutation flow-shop problem with random
or stochastic processing times (PFSPST).

In each factory k of a set F (with k ∈ {1, ..., f}), a set Jk of n jobs has to be processed by a set M of m
machines, being Ti jk (abbreviated to Ti j when it does not lead to confusion) the random variable representing
the time it takes for job i of factory k to be processed by machine j (Figure 2). The PFSPST goal is to
find a sequence (permutation) of jobs that optimizes a given criterion (taking into account that all jobs are
processed by all machines in the order defined by the selected permutation). The most employed criterion
in the scientific literature is the minimization of the expected maximum completion time or expected
makespan, i.e., the average time it requires to process all the jobs throughout all the machines for the
selected permutation.

Additionally, the global product is required to be finished by the deadline with a user-specified probability,
p0 (from now on, we will assume that the global product is finished if, and only if, all its components/tasks are
finished). In this context, the decision-maker must decide about the starting times of each component, while
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Figure 1: A product requiring 3 independent flow-shops with a common deadline.

Figure 2: Example of a PFSP with 3 jobs and 3 machines.

minimizing one of the following alternative goals: (a) the maximum completion time of all components
(machine-booking goal), i.e., the sum of all expected makespans and buffers in the product; or (b) the
accumulated deviations with respect to the deadline (synchronization goal).

Our approach for solving this stochastic combinatorial optimization problem is based on the use of a
simheuristic algorithm combining simulation (Monte Carlo in this case) with a metaheuristic framework.
Some of the main benefits of our approach are the following ones: (i) it does not make any assumption on
the size of the instances, i.e., being based on a metaheuristic framework it can solve large-scale instances in
reasonable computing times; and (ii) it does not make any assumption either on the probability distributions
employed to model the random processing times, i.e., being based on simulation there is no need to assume
normality of processing times –any probability distribution can be used instead.

The rest of the paper is organized as follows: Section 2 provides a review of related work. Section 3
describes the main ideas behind our simulation-optimization approach. Some numerical experiments are
carried out in Section 4, and analyzed in Section 5. Finally, we conclude this paper by summarizing its
main findings and discussing future work in Section 6.

2 RELATED WORK

Different streams of the literature are related to the problem under consideration, namely assembly scheduling,
distributed flow-shop scheduling, and permutation flow-shop scheduling with stochastic processing times.
These are discussed in the next subsections.

2.1 Assembly scheduling

This problem is also denoted n-stage assembly or assembly flow-shop scheduling. In this problem, m
tandem lines are arranged prior to a single assembly station which is fed by the tandem lines. Using
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this layout, n different products (jobs) have to be manufactured, each one consisting of m components
manufactured in the tandem lines. The processing time of each component in each line is different. Some
authors distinguish among the fixed case (i.e., each component can be processed only in a given tandem
line), and the unfixed case (i.e., each component can be processed in different factories).

For these problems, different objectives are sought, such as makespan minimization (Sung and Juhn
2009), total flow-time (Al-Anzi and Allahverdi 2013, Sung and Kim 2008), due date fulfillment (Al-Anzi
and Allahverdi 2007), or the combination of several indicators (Seidgar et al. 2014).

Most references refer to the 2-stage case (production followed by assembly), so they assume that each
tandem line consists of a single machine. The underlying hypothesis is that there is a single processing
time for each component before the assembly process. For this problem, different exact and approximate
methods have been proposed, and some variants of the original problem have been tackled by Sung and
Juhn (2009), where two types of components –manufactured and imported– are considered, and by Liao
et al. (2015), where assembly batches are assumed.

Several other variants of the problem for three stages have been addressed in the literature (see
e.g. Koulamas and Kyparisis 2001), but in none of the different versions of the problem the processing
times have been assumed to be stochastic.

2.2 Distributed Flow-shop Scheduling Problem (DFSP)

This problem has several similarities with the one presented in this communication: there are m identical
permutation flow-shops where n jobs have to be processed. However, in the DFSP the jobs have not been
assigned to each flow-shop, so this assignment becomes part of the decision problem. Furthermore, the
DFSP has not been addressed with objectives related with due dates. In fact, the only objective addressed
so far refers to makespan minimization (Naderi and Ruiz 2010), for which the best available heuristic is
due to Fernandez-Viagas and Framinan (2015).

A particular case of the DFSP refers to the so-called Distributed Assembly Flow-shop Scheduling
Problem, which combines the DFSP with assembly scheduling. In this problem, a distributed flow-shop
composed of k identical flow-shops is followed by a single assembly operation. n jobs consisting each one of
k components have to be assembled after each component has been manufactured in one of the flow-shops.
This decision problem includes job assignment plus the scheduling of jobs in the assembly line. The main
references for this problem are Hatami et al. (2015) and Hatami et al. (2013). In the first reference, the
authors consider the objective of makespan minimisation, while in the second sequence-dependent setup
times are assumed. In both cases, the problem is addressed using approximate algorithms, and, as in the
assembly scheduling problems, we are not aware of references dealing with stochastic processing times.

2.3 Permutation Flow-shop Problem with Stochastic Processing Times

While the PFSP has been intensively studied during the last few decades, the PFSPST has received less
attention. Baker and Trietsch (2011) designed heuristics for addressing the 2-machine PFSPST, where the
processing times are independent random variables following specific probability distributions. Later, Baker
and Altheimer (2012) presented a methodology for the m-machine version. In addition, several variations
of the PFSPST have been analyzed. For instance, Allaoui et al. (2006) and Choi and Wang (2012) worked
on the stochastic hybrid flow-shop scheduling problem, aiming to minimize the expected makespan. The
same problem was tackled by Kianfar et al. (2012) with the goal of minimizing the average tardiness of
jobs. A novel approach is applied in Zhou and Cui (2008) for tackling the multi-objective stochastic PFSP,
where both the flow-time and delay time of jobs are minimized.

An interesting line is related to uncertainty. Basically, there are two categories: proactive (or robust)
scheduling and reactive scheduling. Works falling in the first category (Roy 2010) propose constructing
an original predictive schedule. The basic aim is to find schedules that do not require new schedules (or
significant changes) when confronting disruptions. These works may consider probability distributions or

2349



Calvet, Fernandez-Viagas, Framinan, and Juan

sets of scenarios. Al Kattan and Maragoud (2008), Ghezail et al. (2010) and Liu et al. (2011) addressed the
PFSP with uncertainty implementing proactive scheduling strategies. On the other hand, reactive scheduling
consists in revising and re-optimizing schedules when unexpected events take place. A classical option is
to obtain a predictive scheduling and then try to repair it according to the actual state of the system. A
comprehensive review on rescheduling under disruptions is provided by Katragjini et al. (2013).

Some authors employ exact methods for addressing the PFSPST. A disadvantage of many of these
methods is that they only work with a specific set of probability distributions and relatively small instances.
Moreover, it may be difficult to adapt them for handling dependencies among processing times. Simulation
techniques enable researchers to deal with these situations in a natural way. An interesting example is
the work of Baker and Altheimer (2012), which proposed a hybrid approach combining heuristics and
simulation. The authors tested three heuristic methods: two relying on the CDS heuristic (Campbell et al.
1970) and one on the NEH heuristic (Nawaz et al. 1983).

3 PROPOSED METHODOLOGY

Our methodology is based on a simheuristic approach (Juan et al. 2015), which relies on the Iterated Local
Search (ILS) metaheuristic (Lourenço et al. 2010) and Monte Carlo simulation (MCS) techniques. This
metaheuristic has been successfully applied to a wide range of combinatorial optimization problems and
is highly popular among researchers. Due to its modularity, it is relatively easy to implement. On the
other hand, MCS techniques enable the assessment of solutions in a dynamic environment by taking the
following steps: (1) simulate a number of scenarios, where each one is created by generating one value per
random variable; (2) apply a specific solution in each scenario and compute a measure of performance;
and (3) calculate the average performance.

The methodology is summarized in Algorithm 1 and described next. The inputs are the set F , the
deadline (d0), the probability p0, and the processing time of each trio of job, machine, and component
(Ti jk∀i∈ J, j ∈M and k ∈ F), which is assumed to follow a specific probability distribution (either theoretical
or empirical). Initially, the number of components (nComponents) is obtained. Then, a set of instructions
are performed for each component:

1. calculate the associated probability (p0k) in order to reach p0. p0k is computed as p1/nComponents
0

(note we assume that the components are independent);
2. solve the corresponding PFSPST (i.e., get the ‘best’ permutation);
3. employ MCS techniques to get a sample of makespans (of size r) for the solution obtained and use

it to build an empirical cumulative distribution function;
4. identify the makespan below which p0k percent of the observations may be found (i.e., the p0k

percentile); and
5. set the starting time as d0 minus the p0k percentile and store it.

Once all starting times are computed, the procedure returns them. In this work we define ‘best’ permutation
(bestSol) as the one minimizing the expected makespan.

Regarding steps 3 and 4, we will provide more details. There is a sample of makespans x1,x2, ...,xr,
which are observations of independent and identically distributed real random variables with a common
cumulative distribution function F(t), which is unknown. The empirical cumulative distribution function
is defined as:

F̂r(t) =
number of elements in the sample ≤ t

r
=

1
r

r

∑
i=1

1xi≤t (1)

By the strong law of large numbers, the estimator F̂r(t) converges to F(t) as almost surely, for every value
of t. As a consequence, the estimator F̂r(t) is consistent. Thus, we can obtain the value t ensuring that the
component k will have a makespan of t or lower with a probability of p0k by computing: t = F̂−1

r (p0k).

2350



Calvet, Fernandez-Viagas, Framinan, and Juan

Algorithm 1
1: procedure DISTRIBUTEDFLOWSHOPSCHEDULING(F,d0, p0,Ti jk)

d0: product deadline (common due date for all components)
p0: user-specified probability that the product finishes on or before d0
Ti jk: random processing time of job i in machine j for component k

2: nComponents← getNumberComponents(F)
3: for each component k in F do
4: p0k← calcProbabilityComponent(p0,k,nComponents)
5: bestSol(k)← solvePFSPST(k,Ti jk) . use a simulation-optimization algorithm
6: distFunction(k)← calcDistFuntion(bestSol(k)) . use observations from simulation
7: percentile(p0k)← calcPercentil(distFunction(k), p0k)
8: startingTime(k)← d0− percentil(p0k)
9: startingTimes← add(startingTime(k))

10: end for
11: return startingTimes
12: end procedure

In order to solve each of the PFSPST (i.e., step 4), we present a simheuristic methodology similar to
the one described in Juan et al. (2014). It relies on two components: an ILS metaheuristic that searches
promising solutions, and MCS techniques for assessing them. Figure 3 shows the basic scheme. The
first steps are to transform the original problem instance into a PFSP instance replacing random variables
by their means, and apply the aforementioned NEH heuristic for finding a solution (baseSol). Then,
MCS techniques are used to compute the expected makespan for that solution considering the stochastic
environment described by the original instance. A new solution (bestSol) is created to store the best
solution found, which is a copy of baseSol at this stage. Afterwards, the loop is started, which will execute
instructions during maxTime seconds. The first step is building a new solution (newSol) by perturbing
baseSol, which implies selecting randomly two jobs and interchanging their positions. A local search
based on the classical shift-to-left movement is applied to each job in a random order. The next step
checks whether the makespan of newSol is lower than or equal to that of baseSol. If this is not satisfied,
the solution is discarded and another iteration starts. Otherwise, the expected makespan (obtained using
MCS techniques) of newSol is computed. A variable delta contains the difference between the expected
makespan of newSol and baseSol. If delta is negative or 0 (i.e., there is an improvement) newSol replaces
baseSol and the variable credit (which is initially 0) is reset to −delta. Additionally, bestSol is updated
if its expected makespan is higher than the one of baseSol. If delta is positive but equal to or lower than
credit (i.e., it is only ‘slightly’ worse), baseSol is updated and credit is reset to 0. This acceptance criterion
that chooses whether baseSol is updated is known as Demon-like process (Talbi 2009) and is employed
to help avoiding local minima during the execution of the algorithm. Finally, bestSol is returned. It is
important to note the difference between the methodology described in Juan et al. (2014) and ours: while
the former is deterministic-driven (i.e., the replacement of the base solution depends on the makespan of
the transformed instance), the latter is stochastic-driven (i.e., stochastic makespans are employed). This
modification provides better solutions without requiring more computational time.

4 COMPUTATIONAL EXPERIMENTS

The methodology presented has been implemented as a Java application. A standard personal computer,
Intel Core i5 CPU at 3.2 GHz and 4 GB RAM with Windows 7 has been employed. We have experimented
with 4 instances with the parameters f ∈ {2,4} and m ∈ {5,10}, and with 20 jobs assigned to each line
k ∈ F . The processing times on each machine are taken from the PFSP instances introduced in Taillard
(1993). Table 1 describes the composition of the new instances and their main characteristics (d0, m, and
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Figure 3: Flowchart of the proposed methodology for the PFSPST.

f ) in the third, fourth and fifth columns, respectively. Second column indicates the instance of Taillard
(1993) from which the processing times are considered. The common due date has been generated by
doing d0 = h ·C, following a similar procedure to the ones described by Della Croce et al. (2000) and
Biskup and Feldmann (2001), where h is a parameter to indicate how loose/tight the common due date
is and C is the makespan of the line, i.e., the highest makespan among all the factories. Note that the
makespan of each line is the best known solution of the corresponding Taillard instance which is recorded
in http://mistic.heig-vd.ch/. To avoid unfeasible instances, we generate loose common due dates according
to a uniform distribution [1.2, 1.6] for the parameter h. All experiments have been run 5 times with different
seeds and only the best values are stored. The computational time allowed for each instance is the sum of
the time assigned to each production line, which is 0.03 ·m ·n seconds (as suggested in Juan et al. 2014).
For introducing the stochasticity of processing times, each one is defined as an independent random variable
following a logNormal distribution with a mean (µ) set to the processing time of the original instance and
a standard deviation (σ ) obtained from the coefficient of variation (c = σ/µ). Three values of c are tested:
0.1, 0.5, and 1 (proposed in Framinan and Perez-Gonzalez 2015), which represent a low, medium, and high

2352



Calvet, Fernandez-Viagas, Framinan, and Juan

level of stochasticity, respectively. Regarding the user-given probabilities, three levels are established: 0.8,
0.9, and 0.95.

First, we compare the performance of our algorithm following a stochastic approach (the described
in the previous section) with a deterministic one, which assumes zero variability. Table 2 displays the
booking times (i.e., the sum of all expected makespans and buffers, or percentiles) for the first instance
considering each one of the 9 scenarios defined by the probabilities and the levels of stochasticity. The
mean gaps between the booking times of both approaches for each level of stochasticity (from low to high)
are: −0.12%, −1.13%, and −1.77%, respectively. Similarly, for each level of probability (from low to
high), the mean gaps are: −0.89%, −0.99%, and −1.16%, respectively. Secondly, we analyze the booking
times and buffers for the same 9 scenarios studying all instances. Solutions are provided in Table 3. Figure
4 shows this information in boxplots. Finally, the relation between booking times and level of stochasticity
is studied for a high number of probability values. The patterns identified for the first instance are presented
in Figure 5.

Table 1: Description of the instances.

Instance Taillard’s instances d0 m f
ins1 ta001 ( f = 1), ta002 ( f = 2) 1841 5 2
ins2 ta003 ( f = 1), ta004 ( f = 2), ta005 ( f = 3), ta006 ( f = 4) 1620 5 4
ins3 ta011 ( f = 1), ta012 ( f = 2) 2409 10 2
ins4 ta013 ( f = 1), ta014 ( f = 2), ta015 ( f = 3), ta016 ( f = 4) 2372 10 4

Table 2: Booking times for “ins1” following the stochastic and the deterministic approach.

Stochastic approach Deterministic approach
Stochasticity Low Medium High Low Medium High Average

Probability
0.8 2671.96 2845.83 3086.30 2674.66 2876.29 3133.19 2881.37
0.9 2688.03 2944.64 3327.98 2691.21 2977.94 3386.28 3002.68
0.95 2701.60 3034.82 3571.91 2705.70 3072.52 3648.68 3122.54

Average 2687.19 2941.76 3328.73 2690.52 2975.58 3389.38

Table 3: Table of results.

Level of stochasticity
Low Medium High

Booking time Buffer Booking time Buffer Booking time Buffer
0.8 2671.96 24.95 2845.83 104.23 3086.30 204.88

ins1 0.9 2688.03 41.02 2944.64 203.04 3327.98 446.55
0.95 2701.60 54.59 3034.82 293.22 3571.91 690.49
0.8 4867.96 38.18 5287.05 215.53 5821.46 445.30

ins2 0.9 4896.62 66.85 5515.96 444.43 6346.50 970.34
0.95 4923.97 94.20 5736.55 665.02 6879.40 1503.25
0.8 3270.41 13.66 3478.39 98.77 3786.69 221.03

ins3 0.9 3282.55 25.80 3579.86 200.24 4041.78 476.12
0.95 3293.67 36.91 3680.14 300.53 4308.61 742.95
0.8 5748.58 29.41 6069.68 163.80 6544.70 358.62

ins4 0.9 5774.13 54.96 6251.65 345.78 7012.24 826.16
0.95 5797.32 78.15 6427.30 521.42 7485.07 1298.99
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Figure 4: Boxplots of booking times and buffers for several scenarios.

5 ANALYSIS OF RESULTS

It is important to start with the comparison between the stochastic and the deterministic approach, in order
to check whether introducing simulation in the solving methodology for the PFSPST is useful. The results
(Table 2) indicate that the improvement in terms of booking times is highly significant, with gaps increasing
with the levels of stochasticity and probability.

Focusing on the effect of these variables (stochasticity and probability) on booking times, it can
be observed (Table 3 and Figure 5) that the booking times increase with both the stochasticity and the
probability. While the differences among levels of stochasticity are relatively small for low probabilities
(below 0.8), they rapidly increase for higher values. As expected, when users require a high probability,
the booking time increases exponentially for all the levels of stochasticity considered.

According to the graphical results in Figure 4, which refer to all instances, both variables have a positive
effect on the booking time, being the level of variability more relevant. Regarding the buffers required,
they are much more volatile. For a low level of stochasticity, it is very small but rapidly increases as the
level grows. The effect of the probability is a bit smaller but also positive and growing.

6 CONCLUSIONS AND FURTHER RESEARCH

In this paper we have discussed how simulation can be combined with metaheuristics in order to deal
with stochastic multi-factory scheduling problems. In particular, we have studied a scheduling problem
composed of parallel and independent components/tasks with a common due date, the processing of each
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Figure 5: Relation between probability, booking time and level of stochasticity for “ins1”.

of these components being modeled as a permutation flow-shop problem with stochastic processing times.
In this context, a natural question arises: how to set starting times of each component in such a way that
the total machine-occupancy time is minimized while ensuring a user-given probability of finishing all
components in due time. The computational experiments carried out in this paper show how starting times
vary according to factors such as the variance level in the random processing times or the user-required
probability threshold for the product to finish on time. Other similar questions can be formulated, e.g.,
how to set starting times of each component in order to minimize total deviations from the common due
date while respecting the aforementioned constraint, etc. These are open research lines that must require
from similar approaches to the one introduced here.
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