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ABSTRACT

We study a multi-item inventory system with normally distributed demands in the presence of demand
parameter uncertainty – the uncertainty that stems from the estimation of the unknown demand parameters
necessitated by limited amounts of historical demand data. Using an asymptotic normality approximation,
we quantify the variance of the demand fulfillment probability (i.e., the probability that all item demands
will be satisfied from stock) that is due to demand parameter uncertainty. We use this quantification to
understand the impact of demand parameter uncertainty on the demand fulfillment probability and investigate
the sensitivity of the variance of the demand fulfillment probability to selected inventory model parameters.

1 INTRODUCTION

Most of the literature on multi-item inventory control assumes that the demand distributions and the values
of their parameters are known with certainty. However, this may not be the case in practice and the
unknown demand parameters may have to be estimated from finite historical data. Under the assumption
of a stationary demand process, the estimates of the demand parameters often converge to their true
counterparts as the length of the historical data stream approaches infinity. However, the inventory manager
is rarely fortunate enough to be in an asymptotic situation. Since there is often a short demand history,
the asymptotic properties of the demand parameter estimates do not hold and the uncertainty around the
demand parameter estimates (i.e., the demand parameter uncertainty) is not factored into the decisions
of the inventory manager. This practice leads to poor inventory decisions under high demand parameter
uncertainty. Our goal in this paper is to demonstrate the importance of accounting for this uncertainty in
the estimation of the demand fulfillment probability (i.e., the probability of satisfying all item demands
from stock) in a multi-item inventory setting in the presence of limited historical data.

What is important to recognize in this setting is that the demand fulfillment probability is a random
variable because it is a function of the unknown demand parameters estimated from limited demand data.
Therefore, we characterize the variance of the demand fulfillment probability due to the use of limited data
for demand parameter estimation. To do this, we first capture the demand parameter uncertainty with a
Bayesian model. Then, we combine the Bayesian model with a series of asymptotic normal approximations
to quantify the variance of the demand fulfillment probability.

It is important to note the simplifying assumptions made in this paper to obtain a closed-form expression
for the variance of the demand fulfillment probability due to demand parameter uncertainty. In particular, the
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product demands are assumed to be independent and normally distributed. This is the key assumption that
leads to the derivation of the asymptotic normal approximations for the mean and the variance of the demand
fulfillment probability. The motivation behind using the method of asymptotic normality approximation to
capture the demand parameter uncertainty is the difficulty in evaluating the exact analytical expressions
for the mean and the variance of the demand fulfillment probability in a multi-item inventory system. The
difficulty arises from the use of multiple integrals in these expressions. In this paper, however, we avoid
the need to evaluate multiple integrals and the computational issues associated with their evaluation in
high dimensions. This aspect of our work will be an advantage when the focus switches to solving an
multi-item inventory optimization problem under demand parameter uncertainty; we refer the reader to
Section 6 for a brief discussion on future work. Furthermore, the numerical study presented in Biller et
al. (2016) demonstrates how well our characterization of the demand parameter uncertainty based on the
asymptotic normality approximation represents the variance of the demand fulfillment probability computed
with respect to the joint posterior density function of the unknown demand parameters. Nevertheless, the
relaxation of the assumption of independent and normally distributed demands for non-stationary, multivariate
and autocorrelated demand processes will require to resort to numerically intensive methods to capture
multivariate demand parameter uncertainty. We refer the reader to Biller and Corlu (2011) for an example
method to represent multivariate demand parameter uncertainty in simulations wit stationary input processes.

The severe consequences of ignoring parameter uncertainty in stochastic systems has been discussed
by a considerable number of researchers including Cheng and Holland (1997, 1998, 2004), Chick (2001),
Barton and Schruben (1993, 2001), Zouaoui and Wilson (2003, 2004), Ng and Chick (2006), Barton (2007),
Batarseh and Wang (2008), Barton et al. (2010, 2014), Biller and Corlu (2011), Muñoz et al. (2013),
Corlu et al. (2015), and Biller et al. (2016). We refer the reader to Barton (2012) for an excellent review
of the literature on the severe consequences of ignoring parameter uncertainty in stochastic system design.
The distinguishing feature of our work is the characterization of the variance of the demand fulfillment
probability due to the use of limited data for demand parameter estimation in a multi-item inventory system.
Assuming a normal demand for each item, we show that with 99.8% probability the demand fulfillment
probability deviates from its expected value by up to 40% in the presence of a limited demand history. We
study the sensitivity of this quantification to several inventory model parameters including the number of
items in the system, the historical data length, and the prior parameters of the Bayesian model.

Under the assumption of independent demands, it can be easily deduced from its functional representation
that the demand fulfillment probability is a decreasing function of the number of items in the system (see
Section 2). In this case, a natural question to ask is whether the effect of the demand parameter uncertainty
disappears in large-scale inventory systems. We find that the answer to this question is no, and the demand
fulfillment probability still deviates from its mean by up to 18% (with 99.8% probability) when there are
300 items in the system. We also find that our solutions are robust to the selection of prior values for the
demand parameters, which are the key components of the Bayesian demand model.

We organize the remainder of the paper as follows. Section 2 presents our inventory model and a
functional form for the demand fulfillment probability. Section 3 provides the Bayesian model to account
for the demand parameter uncertainty and quantifies the variance around the demand fulfillment probability
due to demand parameter uncertainty. Section 4 provides a simulation algorithm that estimates the mean and
the variance of the demand fulfillment probability. Section 5 investigates the sensitivity of the variance of
the demand fulfillment probability with respect to several inventory model parameters. Section 6 concludes
with a summary of findings.

2 THE INVENTORY MODEL AND THE DEMAND FULFILLMENT PROBABILITY

We consider a P-item inventory setting where each item operates under a periodic-review independent
order-up-to policy. We assume deterministic lead times Li, i = 1,2, . . . ,P, and response time window k
satisfying Li ≥ k for i = 1,2, . . . ,P. The event sequence within a period consists of the inventory review,
the ordering decision, the receipt of the replenishment, and the arrival of the item demands. Unsatisfied
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demands in any period are completely backlogged. The system does not allocate any inventory to meet
the demands of a particular period unless all backlogs for the items due to earlier demands are satisfied.

We measure the level of service provided to the customers of our inventory system by the demand
fulfillment probability, i.e., the probability of filling all item demands in one period within a time window
of k periods. Thus, the focus is on covering the item demands with the current inventories and the
replenishments to arrive in the next k periods. To provide a characterization of the demand fulfillment
probability, we first define Di,t for the item-i demand. We then assume the item demand random variables
Di,t , i = 1,2, . . . ,P, to be independent both in the same time period t and across time. In addition, we use
Ai,t for the item-i replenishment arriving in period t and Xi,t for the net inventory level at the end of period
t. The probability that the period-t demands Di,t , i = 1,2, . . . ,P, are filled within k periods of arrival is then
given by

Pr

{
Xi,t +

t+k

∑
`=t+1

Ai,` ≥ 0, i = 1,2, . . . ,P

}
.

Using the relationship Xi,t+k = Xi,t +∑
t+k
`=t+1 Ai,`−∑

t+k
`=t+1 Di,`, we can write this probability as

Pr

{
Xi,t+k +

t+k

∑
`=t+1

Di,` ≥ 0, i = 1,2, . . . ,P

}
.

We further define Ii for the item-i inventory target, use the relation Xi,t = Ii−∑
t
`=t−Li

Di,` (Hadley and Whitin
1963) to represent Xi,t+k +∑

t+k
`=t+1 Di,` as Ii−∑

t
`=t−Li+k Di,`, and obtain the following characterization for

the demand fulfillment probability (Hausman et al. 1998, Lemma 1):

Pr

{
t

∑
`=t−Li+k

Di,` ≤ Ii, i = 1,2, . . . ,P

}
.

Under the assumption of independent and normally distributed demands with means µi, i = 1,2, . . . ,P,
and standard deviations σi, i = 1,2, . . . ,P, that are known with certainty, the demand fulfillment probability
takes the following form, where Φ denotes the standard normal cumulative distribution function:

P

∏
i=1

Φ

(
Ii− (Li− k+1)µi√

Li− k+1 σi

)
, (1)

Detailed presentation of this inventory model and measure of service can be found in Biller et al. (2016).
However, it is rarely the case in practice that the values of the demand parameters are known with

certainty. We consider the situation in which the parameters µi, i = 1,2, . . . ,P, and σi, i = 1,2, . . . ,P, in (1)
are unknown and they are estimated from historical demand data of finite length, say di,t , t = 1,2, . . . ,ni,
i= 1,2, . . . ,P, using the method of maximum likelihood estimation. Since the maximum likelihood estimates
converge to their true counterparts only as the length of the historical demand data approaches infinity,
their use for multi-item inventory control in the presence of limited data, as if they were the true parameter
values, ignores the demand parameter uncertainty. Our goal in this paper is to characterize the amount of
demand parameter uncertainty in the demand fulfillment probability due to the use of a limited amount of
data for demand parameter estimation.

3 BAYESIAN MODEL

The key to achieving our goal is to build a Bayesian model which recognizes the randomness in the unknown
demand parameters and propagates this randomness throughout the model to eventually capture it in the
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demand fulfillment probability. This section describes how to build such a Bayesian model for representing
the demand parameter uncertainty in the demand fulfillment probability.

First, we provide the likelihood function of the historical demand data di,t , t = 1,2, . . . ,ni, i = 1,2, . . . ,P,
for normally distributed demands with unknown means µi, i = 1,2, . . . ,P, and unknown variances σ2

i ,
i = 1,2, . . . ,P. We use θi for the two-dimensional vector of the demand parameters µi and σ2

i ; θ for the
vector of θi, i = 1,2, . . . ,P, consisting of the P-item normal demand parameters; and d for the vector of
the historical demand data di,t , t = 1,2, . . . ,ni, i = 1,2, . . . ,P:

f (d|θ) =
P

∏
i=1

(
2πσ

2
i
)−ni/2

exp

{
− 1

2σ2
i

ni

∑
t=1

(di,t −µi)
2

}
.

Next, we treat the unknown µi and σ2
i as random variables. We use the normal prior density function

with mean µi,0 and variance σ2
i /κi,0 to represent the mean µi conditional on the variance σ2

i ; i.e.,

µi | σ2
i ∝

(
σ

2
i
)−1/2

exp
{
− κi,0

2σ2
i
(µi−µi,0)

2
}
.

In addition, we choose an inverse gamma prior density function with shape parameter νi,0/2 and scale
parameter ζ 2

i,0/2 for modeling the variance σ2
i ; i.e.,

σ
2
i ∝

(
σ

2
i
)−(νi,0+2)/2

exp

{
−

ζ 2
i,0

2σ2
i

}
.

The hyperparameters µi,0, κi,0, νi,0, and ζ 2
i,0 are, respectively, the mean, shrinkage, degrees of freedom,

and scale parameters of the following joint prior density function, which we denote by πi(µi,σ
2
i ) for µi

and σ2
i (Fraley and Raftery 2007):

πi
(
µi,σ

2
i
)

∝
(
σ

2
i
)−(νi,0+3)/2

exp
{
− 1

2σ2
i

(
ζ

2
i,0 +κi,0 (µi−µi,0)

2
)}

.

The prior density function π(θ) for the unknown demand parameter vector θ is then given by

π(θ) =
P

∏
i=1

πi(µi,σ
2
i ) ∝

P

∏
i=1

(
σ

2
i
)−(νi,0+3)/2

exp
{
− 1

2σ2
i

(
ζ

2
i,0 +κi,0 (µi−µi,0)

2
)}

.

Using Bayes’ rule for combining the likelihood function f (d|θ) with the joint prior density function
π(θ) leads to a joint posterior density function h(θ |d):

h(θ |d) ∝

P

∏
i=1

(
σ

2
i
)−(νi,0+ni+3)/2

exp

{
− 1

2σ2
i

(
ζ

2
i,0 +κi,0 (µi−µi,0)

2 +
ni

∑
t=1

(di,t −µi)
2

)}
.

This density function can be alternatively written as

P

∏
i=1

(
σ

2
i
)−(νi,ni+3)/2

exp
{
− 1

2σ2
i

(
ζ

2
i,ni

+κi,ni (µi−µi,ni)
2
)}

with parameters µi,ni = (κi,0µi,0 +∑
ni
t=1 di,t)/(κi,0 +ni), κi,ni = κi,0 +ni, νi,ni = νi,0 +ni, and

ζ
2
i,ni

= ζ
2
i,0 +

κi,0ni

κi,0 +ni

(
ni

∑
t=1

di,t

ni
−µi,0

)2

+
ni

∑
t=1

(
di,t −

ni

∑
t=1

di,t

ni

)2

.
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Thus, the joint posterior density function of the demand parameters µi and σ2
i corresponds to a normal-

inverse gamma density function. Furthermore, σ2
i has the inverse gamma posterior density function with

the shape parameter νi,ni/2 and the scale parameter ζ 2
i,ni

/2, while µi, conditional on the variance σ2
i , has

the normal posterior density function with mean µi,ni and variance σ2
i /κi,ni .

Next, we use the joint posterior density function to identify the maximum a posteriori (MAP) estimates
of the unknown demand parameters. The MAP estimate µ̃i of the parameter µi is µi,ni , while ζ 2

i,ni
/(νi,ni +3)

is the MAP estimate σ̃2
i of the parameter σ2

i (Biller et al. 2016).
What is important to recognize is that as the length of the historical demand data set increases, the joint

posterior density function h(θ |d) of the normal demand parameter vector θ = (θ1,θ2, . . . ,θP)
′ converges to

a 2P-dimensional normal distribution with a mean vector of θ̃ = (θ̃1, θ̃2, . . . , θ̃P)
′ and a variance-covariance

matrix of Gn with n = (n1,n2, . . . ,nP)
′, where

Gn =


G1,n1 0 · · · 0

0 G2,n2 · · · 0
...

...
. . .

...
0 0 · · · GP,nP


with 0 as the 2×2 matrix of zeros and Gi,ni as the 2×2 matrix [ζ 2

i,ni
/(κi,ni(νi,ni +3)),0;0,2ζ 4

i,ni
/(νi,ni +3)3]

for i = 1,2, . . . ,P (Biller et al. 2016).
Next, we denote the product in (1) by y(I,θ) as a function of the inventory-target vector I consist-

ing of Ii, i = 1,2, . . . ,P, and the demand parameter vector θ composed of µi, i = 1,2, . . . ,P, and σ2
i ,

i = 1,2, . . . ,P. Using φ for the standard normal probability density function, we quantify the amount of de-
mand parameter uncertainty in y(I,θ) due to the use of limited data for normal demand parameter estimation.

Approximation. The demand fulfillment probability y(I,θ) is asymptotically normally distributed with a
mean of

E(y(I,θ)) =
P

∏
i=1

Φ

(
(Ii− (Li− k+1)µi,ni)(νi,ni +3)1/2

ζi,ni

√
Li− k+1

)

and a variance of V(y(I,θ)) = ∑
P
i=1Vi(y(I,θ)) with Vi(y(I,θ)) as

=

(
Li− k+1

κi,ni

+
(Ii− (Li− k+1)µi,ni)

2

2(Li− k+1)ζ 2
i,ni

)

×
P

∏
j=1, j 6=i

Φ
2

((
I j− (L j− k+1)µ j,n j

)
(ν j,n j +3)1/2

ζ j,n j

√
L j− k+1

)
φ

2

(
(Ii− (Li− k+1)µi,ni)(νi,ni +3)1/2

ζi,ni

√
Li− k+1

)
.

We refer the reader to Biller et al. (2016) for a proof of this approximation.

4 ESTIMATING MEAN AND VARIANCE OF THE DEMAND FULFILLMENT PROBABILITY

We provide a simulation algorithm in Figure 1 that evaluates the asymptotic approximations to the mean
and the variance of the demand fulfillment probability. In each macro-replication of the algorithm, we first
generate a demand data of length ni for each product with a given mean and standard deviation. Given
the prior density function parameters, we then estimate the posterior density function parameters using the
functional forms in Section 3. This follows the estimation of the mean and the variance of the demand
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fulfillment probability using the asymptotic approximations provided in Section 3. At the end of the macro-
replications, we compute the average expected demand fulfillment probability Ē and the average variance
of the demand fulfillment probability V̄. These are the values that will be used in the tables of the next section.

for r = 1,2, . . . ,R replications do

For given inventory targets Ii, i = 1,2, . . . ,P, lead time Li, i = 1,2, . . . ,P, time window k, and prior
density parameters µi0, νi0, κi0 and ζi0 for i = 1,2, . . . ,P,:

generate demand data of length ni for i = 1,2, . . . ,P with the true parameters;

calculate the posterior density parameters µi,ni , νi,ni , κi,ni and ζi,ni for i = 1,2, . . . ,P;

calculate the expectation Er(y(I,θ)) and the variance Vr(y(I,θ));
end for

compute Ē := ∑
R
r=1Er(y(I,θ))/R as an estimate of the mean of the demand fulfillment probability;

compute V̄ := ∑
R
r=1Vr(y(I,θ))/R as an estimate of the variance of the demand fulfillment probability.

Figure 1: A simulation algorithm for evaluation of the asymptotic approximations to the mean and the
variance of the demand fulfillment probability.

5 RESULTS AND INSIGHTS

The objective of this section is to gain insights into the amount of parameter uncertainty in the demand
fulfillment probability in the presence of limited data and to study the sensitivity of the quantified demand
parameter uncertainty in the demand fulfillment probability to the inventory model parameters. We design
our experiments by assuming ni ∈ {10,20,30,50} and Li = k for i = 1,2, . . . ,P. We also assume a mean
demand of 100+20(i−1) and a standard deviation of (0.25−(0.24/P)(i−1))µi for the normally distributed
item-i demand. We set the values of the inventory targets, Ii, i = 1,2, . . . ,P in such a way that they provide
a demand fulfillment probability of 80% under the assumption of known demand parameters. We further
select the prior density function parameters in such a way that the prior demand parameters deviate by
10% from their (true) counterparts, which are used to generate the limited historical demand data sets of
our experiments.

Allowing P, the number of items in the system, to change between 3 and 300, we investigate the
variance of the demand fulfillment probability due to demand parameter uncertainty as a function of the
number of items in Section 4.1, the length of the historical demand data in Section 4.2, and the prior
parameter selection in Section 4.3. The results provided in each of these sections are obtained from a
sufficiently large number of macro-replications of the algorithm in Figure 1.

5.1 The Number of Items

Table 1 summarizes our findings on the amount of parameter uncertainty in the fulfillment probability in
the form of a percentage of the expected demand fulfillment probability corresponding to the standard
deviation of the demand fulfillment probability for normally distributed demands. Therefore, each result
reported in Table 1 is obtained from

√
V̄/Ē×100%.

When there are 10 historical demand observations available for each item in the three-item inventory
setting, we observe the standard deviation of the demand fulfillment probability, due to demand parameter
uncertainty, to be 10.07% of its mean (Table 1). It is well known that 99.8% of all the values a normally
distributed random variable can take fall within four standard deviations of the mean. Therefore, the
following interpretation of the result “10.07%” provides a better illustration of the variability in the demand
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Table 1: The percentage of the expected demand fulfillment probability corresponding to the standard
deviation of the demand fulfillment probability.

Length of the Demand History
P 10 20 30 50
3 10.07 7.82 6.66 5.51
5 9.07 7.12 6.11 5.00
10 7.89 6.23 5.37 4.45
20 6.84 5.41 4.72 3.83
30 6.38 4.95 4.36 3.51
50 5.78 4.47 3.87 3.13
100 5.13 3.94 3.36 2.67
200 4.55 3.52 2.94 2.29
300 4.42 3.29 2.72 2.09

fulfillment probability due to parameter uncertainty: The demand fulfillment probability deviates from
its expected value by up to 40.28% (i.e., 10.07%× 4) with a probability of 99.8%. For five items (i.e.,
ni = 10 for i = 1,2, . . . ,P and P = 5 in Table 1), the effect of the demand parameter uncertainty on the
demand fulfillment probability decreases to 36.28% (i.e., 9.07%× 4), but still remains significant. This
quantification is halved by 200 items in the system; i.e., the demand fulfillment probability deviates from
its mean by up to 18.20% (i.e., 4.55%×4) with a probability of 99.8%.

It is plausible to expect that the effect of demand parameter uncertainty will increase with the number
of items in the system. Contrary to this expectation, the increasing values of P has a decreasing effect on
the amount of variability in the demand fulfillment probability. However, when we increase the number of
items in the system to 300, we still identify the standard deviation of the demand fulfillment probability to
be 4.42% of the expected demand fulfillment probability; i.e., the demand fulfillment probability deviates
from its mean by up to 17.68% (i.e., 4.42%× 4) with a probability of 99.8%. When the length of the
demand history increases to 50 observations in the 300-item inventory setting, this particular quantification
of the demand parameter uncertainty falls below 10%. In those cases with larger numbers of items, we
also find the variance of the demand fulfillment probability due to demand parameter uncertainty to be
rather insensitive to the further increase in the number of items in the system. For example, given that
there are already 200 items in the inventory system with a length of 10 historical data points for each item,
the consideration of an additional 100 items results in a reduction of only 0.13% (i.e., 4.55%−4.42%) in
the effect of the parameter uncertainty on the fulfillment probability.

5.2 The Length of the Demand History

As expected, the variance of the demand fulfillment probability due to demand parameter uncertainty
diminishes with the length of the demand history. However, in response to the increasing number of
demand observations, the rate of reduction in the values reported in Table 1 is rather slow. For example,
in the 10-item setting with historical data of length 10 (Table 1), we achieve a reduction of 21% in our
quantification of the demand parameter uncertainty in the demand fulfillment probability with an additional
10 demand observations, 32% reduction with an additional 20 demand observations, and a reduction of
approximately 44% with an additional 40 demand observations. Nevertheless, the need for a large historical
data set to reduce the variance of the demand fulfillment probability is offset, to an extent, by the increased
number of items in the system. Therefore, the answer to the question “what is a large data set?” depends
on the value of P. Table 1 shows an up to 18% (i.e., 4.45%× 4) deviation of the demand fulfillment
probability from its mean (with 99.8% probability) for 50 observations in the 10-item inventory setting.
We make a similar observation for 30 observations in the 30-item inventory setting and for 20 observations
in the 50-item inventory setting.
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5.3 The Prior Demand Parameter Selection

Table 2 presents the percentage of the expected demand fulfillment probability corresponding to the standard
deviation of the demand fulfillment probability as a function of the deviation of the demand parameters
of the prior density function from the true demand parameters; i.e., the values of the demand parameters
that are used to generate the historical data sets of our computational study. More precisely, the percentage
deviation of priors taking the values of 2%, 5%, 10%, and 20% in Table 2 indicates the discrepancy between
the opinions of the experts on the unknown demand parameters and the true distributional characteristics
of the demand parameters, which are unknown to the experts. We observe the quantification of the
demand parameter uncertainty in the demand fulfillment probability to be insensitive to the selection of
the prior parameters for the Bayesian demand model. In comparison to the 2% deviation of the prior
demand parameters from the true demand parameters, the 20% deviation has an effect of only 1.5% (i.e.,
8.84%− 7.34%) on the percentage standard deviation in the mean demand fulfillment probability when
there are 10 observations in the historical data set. When the historical demand data length increases to
20, 30 and 50, this effect falls below 1%, decreasing to 0.76%, 0.46% and 0.09%, respectively.

Table 2: The percentage of the expected demand fulfillment probability corresponding to the standard
deviation of the demand fulfillment probability as a function of the deviation of the prior demand parameters
from the true parameters in the 10-item inventory setting.

% Deviation of Priors
data length 2% 5% 10% 20%

10 7.34 7.59 7.89 8.84
20 5.87 6.03 6.23 6.63
30 5.15 5.32 5.37 5.61
50 4.42 4.43 4.45 4.51

6 CONCLUSION

We consider a multi-item inventory system with the objective of estimating the demand fulfillment probability
when the demand parameters are not known with certainty. There is only a limited amount of historical
demand data to provide statistically valid estimates of the demand parameters. However, the parameter
estimates converge to their true counterparts only in the presence of a sufficiently large amount of demand
data, which is rarely the case in practice. Therefore, the use of the demand parameter estimates for inventory
control ignores the demand parameter uncertainty.

Under certain assumptions on the underlying demand process, this paper characterizes the variance
of the demand fulfillment probability due to demand parameter uncertainty, and presents insights into
the sensitivity of this characterization to the model parameters including the historical data length, the
number of items in the system, and the prior demand parameters. In particular, we identify the variance
of the demand fulfillment probability to be a decreasing function of the number of items in the system.
Nevertheless, we find that with 99.8% probability the demand fulfillment probability to still deviates from
its mean by up to 18% when there are 300 items in the system. We also find that our results are robust to
the choice of the prior demand parameters of the Bayesian demand model.

A natural setting where the results of this paper can be useful is the budget-constrained inventory systems,
where the goal is to identify the optimal inventory targets that maximize the demand fulfillment probability
subject to a constraint on the total inventory investment. Such inventory systems have been studied in the
literature under the assumption that the demand parameters are known with certainty. Budget-constrained
multi-item inventory systems in the presence of limited history of demand is the subject of ongoing work.
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