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ABSTRACT

We consider a pharmaceutical company that sources a biological product from a set of unreliable contract
manufacturers. The likelihood of a manufacturer to successfully deliver the product is estimated via logistic
regression as a function of the product attributes. The assignment of a product to the right contract
manufacturers is of critical importance for the pharmaceutical company, and simulation-based optimization
is used to identify the optimal sourcing decision. However, the input uncertainty due to the uncertain
parameters of the logistic regression model often leads to poor sourcing decisions. We quantify the
decrease in the expected profit due to input uncertainty as a function of the size of the historical data set,
the level of dispersion in the historical data of a product attribute, and the number of products. We also
introduce a sampling-based algorithm that reduces the expected decrease in the expected profit.

1 INTRODUCTION

Pharmaceutical research and development is a long and complex process where a single drug might take
10 to 15 years on average to receive approval from the Food and Drug Administration (FDA). The drug
development process typically consists of preclinical studies (1 to 6 years), clinical trials (6 to 11 years)
and the application/approval process (0.5 to 2 years) which is then followed by post-market surveillance
(11 to 14 years). In addition to the long development lead times, the drug development process requires
expensive investments and involves high risk of failure. For example, market studies indicate that the
average cost of developing a single drug could reach approximately $1.2 billion (including failures) until
it gets the FDA approval (Long and Works 2013). It has also been estimated that less than 12% of drugs
entering the clinical trials eventually result in an approved medicine (PhRMA 2015). To hedge against the
risks associated with failures, long development lead times, and high manufacturing costs, pharmaceutical
companies often outsource the manufacturing of biological products (i.e., new molecules, proteins, active
ingredients, etc.) used in the preclinical studies to highly specialized contract manufacturers.

In this paper, we study the sourcing decisions of large pharmaceutical companies conducting preclinical
studies as part of the new drug development process. More specifically, the pharmaceutical company needs
to develop some biological products and can work with different contract manufacturers. The objective of
the pharmaceutical company is then to decide which biological products are sourced from which contract
manufacturers. Each contract manufacturer is highly specialized and works under an engineer-to-order
scheme. In the engineer-to-order scheme, each biological product is associated with a set of physical and
chemical attributes, such as purity, molecular mass, size, shape, hydrophobicity, endotoxicity, etc. Once
the contract manufacturer receives an order for a specific product, it needs to figure out new manufacturing
procedures that would enable the final product to meet its specified set of attributes. The contract manufacturer
often needs to deliver the product within a predetermined period of time requested by the pharmaceutical
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company. Once the product is delivered, the pharmaceutical company proceeds with the subsequent steps
scheduled in the new drug development pipeline.

If the attributes associated with the product are not satisfied within the specified period of time, then
the contract manufacturer is assumed to have failed. Such failures have significant financial implications
on the large pharmaceutical company, since it delays all the subsequent steps of the new drug development
pipeline. However, successfully manufacturing the biological products is often challenging for the contract
manufacturer since these products are manufactured as part of the preclinical studies. Therefore, the contract
manufacturer has no well-established manufacturing procedures for these biologicals, and often relies on
domain knowledge and expertise to successfully manufacture them. In order to avoid failures and delays in the
product-development pipeline, the large pharmaceutical company is concerned about working with reliable
contract manufacturers who have strong expertise and domain knowledge to successfully manufacture
the biological products of interest. We assume that the reliability (i.e., the probability of successfully
manufacturing the biological product) of each contract manufacturer is unknown to the pharmaceutical
company, but it is estimated via logistic regression from the historical performance of a manufacturer for
different products with specified attributes.

In practice, it is common to evaluate the performance of a sourcing decision via stochastic simulation
since a computationally tractable mathematical programming formulation is not available for the contract-
manufacturer selection problem in its most general form. The stochastic simulation relies on the generation
of input random variables from given input models. In our setting, it is necessary to generate a binary
input variable from the logistic regression model to represent whether a manufacturer is successful or not
in manufacturing a product at a given set of attributes. However, the finiteness of historical data leads to
uncertainty in the parameters of the logistic regression model, a problem known as input uncertainty in
stochastic simulations; see Barton, Nelson, and Xie (2010), Barton (2012), Barton, Nelson, and Xie (2014),
Xie, Nelson, and Barton (2014b), Song and Nelson (2015), and Lin, Song, and Nelson (2015) for examples
of tutorials and recent work on this area. Consequently, the input uncertainty due to the uncertain parameters
of the logistic regression model often leads to poor sourcing decisions if not explicitly considered in the
formulation of the contract-manufacturer selection problem by the pharmaceutical company. This brings
up the two research questions we address in this paper:

• What is the impact of the input uncertainty on the expected profit of the pharmaceutical company?
• How can the sourcing decisions be improved by accounting for the input uncertainty in the contract-

manufacturer selection problem?

We answer the first research question by representing the uncertainty in the logistic-regression parameters via
their joint posterior distribution and then quantifying the decrease in the expected profit of the pharmaceutical
company as a function of the size of the historical data set and the number of biological products to be
developed. In addition, we investigate how the dispersiveness of the attributes of the past products affects
the impact of the input uncertainty on the expected profit. We answer the second question by introducing
a sampling-based algorithm that aims to reduce the expected decrease in the expected profit caused by the
input uncertainty. Our numerical experiments show that the average value of the decrease in the expected
profit due to input uncertainty is reduced by up to 17% when the number of past products is small and the
product attributes vary considerably across these past products.

The remainder of the paper is organized as follows. Section 2 reviews the operations management
literature on problems involving optimal procurement decisions under supply uncertainty and the literature
on stochastic simulations facing input uncertainty. Section 3 presents the Bayesian logistic regression
model to represent the contract-manufacturer reliability as a function of the product attributes, and formally
states the contract-manufacturer selection problem in a discrete simulation-based optimization formulation.
Section 4 introduces a Markov Chain Monte Carlo (MCMC) algorithm to generate samples from the joint
posterior distribution of the logistic-regression parameters, and discusses the incorporation of the input
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uncertainty in the contract-manufacturer selection problem. Section 5 presents our numerical analysis, and
Section 6 provides concluding remarks with future research directions.

2 LITERATURE REVIEW

We group the related literature in two main research streams: Optimal procurement decisions under supply
uncertainty, and the analysis of input uncertainty in stochastic simulations.

Several studies in the supply chain management literature investigate the optimal sourcing and procure-
ment decision when suppliers are unreliable in various industry settings such as high-tech manufacturing,
process industry, and retail operations. For example, Chaturvedi and Martı́nez-de Albéniz (2011) consider
a buyer facing multiple unreliable suppliers, and analyze the optimal auction design based on the buyer’s
level of information about the cost and reliability of suppliers. Dada, Petruzzi, and Schwarz (2007) con-
sider a newsvendor setting and analyze the impact of supplier reliability on procurement decisions. On
the other hand, Swinney and Netessine (2009) study the long-term contracting decisions under supplier
uncertainty, and analyze two-period contracting games to coordinate the supply chain in the presence of
default risk. We note that the aforementioned studies implicitly assume that the suppliers’ yield distributions
are known with certainty, and mainly focus on analyzing the procurement decisions. In the presence of
incomplete information on supplier reliability, learning the supplier uncertainty and its implications on
sourcing decisions are first investigated in Tomlin (2009). More specifically, Tomlin (2009) proposes a
Bayesian model of supply learning where the decision maker has a forecast of suppliers’ yield distribution
and updates that forecast based on its experience with suppliers. The proposed Bayesian model is then
used to analyze the impact of supply learning on sourcing and inventory strategies. Subsequently, the
information collection mechanisms and the corresponding sourcing and inventory decisions are further
investigated by Pun and Heese (2014), Silbermayr and Minner (2016), and Saghafian and Tomlin (2016).
As a contribution to this research stream, we integrate the use of stochastic simulation for supplier (i.e.,
contract manufacturer) selection along with estimation of supplier reliability, and analyze the impact of
input uncertainty on the sourcing decisions in engineer-to-order pharmaceutical supply chains. We also
note that there are several studies on the engineer-to-order systems in the pharmaceutical industry which
use discrete-event simulation and stochastic optimization; see Saraph (2003), Johnston, Schruben, Yang,
and Zhang (2008), and Martagan, Krishnamurthy, and Maravelias (2016). However, these studies do not
consider the impact of input uncertainty in their modeling of pharmaceutical supply chains.

The problem of input uncertainty has been addressed in various ways in the literature on the design and
analysis of stochastic simulation experiments: (i) the adoption of Bayesian (e.g., Chick 2001, Biller and
Corlu 2011) or frequentist (e.g., Xie, Nelson, and Barton 2014a, Lin, Song, and Nelson 2015) views, and
(ii) whether the sampled values of the unknown input model components are fed into the simulation directly
(e.g., Ankenman and Nelson 2012, Song and Nelson 2015) or by means of a simulation metamodel (e.g.,
Barton, Nelson, and Xie 2014, Xie, Nelson, and Barton 2014b). We position our work as Bayesian with
direct resampling from the posterior distributions of the unknown input-model parameters. More recently,
Lam and Zhou (2015) and Zhou and Xie (2015) address the simulation-based optimization problems and
Corlu and Biller (2015) address the ranking and selection problems under input uncertainty. In this study,
we build on the ‘expectation’ risk formulation of simulation-based optimization introduced in Zhou and
Xie (2015), which is the Bayesian counterpart of the frequentist ‘expected total operating cost’ concept
proposed by Akcay, Biller, and Tayur (2011).

3 MODEL

We consider a large-scale pharmaceutical company which outsources the development of a set of biological
products to a group of smaller-scale and specialized contract manufacturers. Let K denote the number of
products to be developed and N denote the number of contract manufacturers. The product k comes with
a set of discrete- or continuous-valued features (e.g., purity, molecular mass, size, shape, hydrophobicity,
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endotoxicity) of size d denoted by xk = (x1k, . . . ,xdk) ∈X that affect the contract-manufacturer’s ability to
successfully deliver the product. We let Ynk be a binary variable that takes the value of 1 if the manufacturer
n successfully delivers the product k with characteristics xk, and 0 otherwise. Let Y = (Y1, . . . ,YN), where
Yn = (Yn1, . . . ,YnK)

′ is a collection of K independent random variables representing the success or failure
of manufacturer n. In particular, Ynk = 1 and Ynk = 0 denote the success and failure of the manufacturer n,
respectively, in developing the product k.

Let c(z;Y) denote the cost incurred by the pharmaceutical company as a result of the product-assignment
(or sourcing) scheme z = (z1, . . . ,zN), where zn = (zn1, . . . ,znK)

′ with znk equal to 1 if product k is assigned
to manufacturer n, and 0 otherwise. The objective of the pharmaceutical company is to solve the following
optimization problem:

min
z∈{0,1}N×K

C(z) = EY (c(z;Y)) . (1)

In its most general form, the expected cost function C(z) is intractable to evaluate analytically. Therefore,
stochastic simulation is used to generate random samples of the cost function c(z;Yi), i = 1, . . . ,M, at
different realizations of the product development outcomes and to perform simulation-based optimization.
We refer the reader to Nelson (2010) and Hong, Nelson, and Xu (2015) for surveys on optimization via
simulation over discrete decision variables. In Section 5, we perform our numerical experiments on the
quantification of input uncertainty by focusing on a specific functional form of the cost function.

The distribution of Y is often called the input distribution. Traditionally, the input distribution is
first estimated from historical data (i.e., the past performance of each manufacturer under various product
attributes). However, the finiteness of the historical data often leads to an uncertainty in the input-distribution
estimate, and the so-called input uncertainty is often ignored in simulation optimization (Zhou and Xie
2015); i.e., the simulation is driven by the realizations of the input random variables Y generated from the
estimated input distribution under the assumption that it is the correct input distribution.

3.1 Logistic Regression for Modeling Contract-Manufacturer Reliability

In this section, we present the details of the logistic regression approach used by the pharmaceutical
company to assess the success likelihood of each manufacturer at a specific biological product. Let pn(xk)
denote the probability that the manufacturer n successfully delivers the product with feature vector X = xk
to the pharmaceutical company; i.e., pn(xk) = P(Ynk = 1|X = xk). Noting that Ynk is a binary variable, the
estimation of pn(xk) can be turned into a two-class classification problem via logistic regression (Murphy
2012). In particular, given the feature vector xk, the probabilities of success and failure at the manufacturer
n are given by a conditional Bernoulli distribution such that

P(Ykn = 1|X = xk) =
exp
(
θ0n +∑

d
i=1 θinxik

)
1+ exp

(
θ0n +∑

d
i=1 θdnxik

) , (2)

and
P(Ykn = 0|X = xk) = 1−P(Ykn = 1|X = xk),

respectively, where θ n = (θ0n,θ1n, . . . ,θdn) is the (d + 1)-dimensional parameter vector associated with
the nth contract manufacturer. More specifically, the pharmaceutical company uses the logistic regression
model in (2) to assess the likelihood of the successful delivery of the product k with the feature vector xk
by the contract manufacturer n.

The pharmaceutical company can have product histories of different sizes from different manufacturers,
leading to a heterogeneous contract-manufacturer base in terms of product attributes and manufacturer
performance. We let Dn = {(xt

n,y
t
n) : t = 1, . . . ,mn} with xt

n = (xt
n1, . . . ,x

t
nd) denote the attributes (or

features) of the product t assigned by the pharmaceutical company to the contract manufacturer n; i.e., xt
ni

is the ith attribute of the tth product undertaken by the nth manufacturer, and yt
n is a binary variable that

takes the value of 1 if the contract manufacturer n successfully delivered product t and zero otherwise. We
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let D = {D1, . . . ,Dn} denote the collection of all the historical data. In Section 4.1, we present a MCMC
algorithm to approximate the posterior distribution of the unknown input-model parameters θ = (θ 1, . . . ,θ N)
from the historical data D .

3.2 Accounting for the Input Uncertainty in Contract-Manufacturer Selection

Notice that the parameter vector θ of the logistic regression model in (2) is unknown to the pharmaceutical
company, and hence, there is an inherent uncertainty in choosing the input model from which the random
samples of Y are generated while solving the simulation-optimization problem in (1). Traditionally, a
point-estimate of θ (e.g., maximum likelihood estimate) is plugged into the logistic regression model and
used as if it were equal to the the true value of θ . However, this approach ignores the input uncertainty
in the simulation output data. Instead, we adopt a Bayesian approach to capture the uncertainty in the
unknown parameters θ = (θ 1, . . . ,θ N). In particular, we pick a prior π(θ n) that represents the initial belief
of the pharmaceutical company about the logistic-regression parameters θ n = (θ0n,θ1n, . . . ,θdn) associated
with the nth contract manufacturer. By Bayesian updating, the posterior distribution of θ n can be obtained
as

π(θ n|Dn) ∝ π(θ n)
mn

∏
t=1

(
exp
(
θ0n +∑

d
i=1 θinxt

ni
)

1+ exp
(
θ0n +∑

d
i=1 θdnxt

ni

))yt
n
(

1
1+ exp

(
θ0n +∑

d
i=1 θdnxt

ni

))1−yt
n

, (3)

where the notation ∝ denotes equivalence up to a normalization constant. We note that the normalization
constant for the posterior in this model is analytically intractable. However, even without computing the
posterior distribution analytically, it is possible to generate a random sample of θ n from its posterior
distribution (see Section 4.1).

The posterior distribution π(θ n|Dn) represents the current belief of the pharmaceutical company about
the input-model parameters θ n associated with the manufacturer n. There are alternatives approaches for
incorporating the uncertainty around θ n into the simulation-optimization problem in (1); see Zhou and Xie
(2015). We adopt the notion of expected total operating cost formulation defined as

min
z∈{0,1}N×K

Eθ

(
EY|θ (c(z;Y))

)
, (4)

where the expectation EY|θ is with respect to the distribution of Y at a given value of θ and the expectation
Eθ is with respect to the posterior distribution of θ . It is important to note that this formulation is neutral
to the risk stemming from the uncertainty in the input-model parameters θ as well as the uncertainty
due to the randomness in the sampled input variables Y (i.e., the input uncertainty and the intrinsic
simulation uncertainty, respectively). The ‘expactation’ formulation in (4) has been used in the Bayesian
input-uncertainty modeling literature in stochastic simulations; e.g., Chick (2001), Zouaoui and Wilson
(2003), Zouaoui and Wilson (2004), and Biller and Corlu (2011). Zhou and Xie (2015) show that as the
size of the historical input data increases, the simulation-based optimization formulation in (4) converges
to the original simulation-optimization problem under the true input model.

4 SOLUTION APPROACH

In Section 4.1, we present a simulation-based algorithm to generate random samples from the posterior
distribution of the logistic-regression parameters θ n associated with the contract manufacturer n with history
Dn. The algorithm can be repeated for the other manufacturers separately. In Section 4.2, we discuss how
to solve the problem in (4) under a specific functional form of the cost function.

4.1 Sampling from the Posterior Distribution of the Logistic-Regression Parameters

We capture the uncertainty in the logistic-regression parameters θ n via its posterior distribution π(θ n|Dn).
It is known that, unlike the linear regression case (e.g., Azoury and Miyaoka 2009), this cannot be done
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exactly, since there is no convenient conjugate prior for the logistic regression. Therefore, we use a
MCMC approach to approximate the posterior distribution π(θ n|Dn). More specifically, even though we
cannot compute the posterior distribution π(θ n|Dn) analytically, we can generate random samples from
this posterior distribution, and then use the random variates of θ n to approximate the posterior distribution
itself or to calculate the posterior mean of the logistic-regression parameter vector θ n.

Algorithm 1 outlines how we generate a random sample from the posterior distribution of the logistic-
regression parameters θn. The algorithm builds on the idea of MCMC sampling, which generates a
sequence of realizations of θ whose stationary distribution is the posterior distribution π(θ n|Dn); see
Andrieu, De Freitas, Doucet, and Jordan (2003) for a survey on the MCMC algorithms. In particular,
we use the slice sampling algorithm in Neal (2003) that is designed to sample from a distribution with
an arbitrary density function, known only up to a constant of proportionality. Notice that this is what
is exactly needed for sampling the parameters of the logistic regression model from their complicated
joint posterior distribution with an unknown normalization constant. Slice sampling differs from other
well-known MCMC algorithms because only the scaled posterior needs to be specified – no proposal or
marginal distributions are needed. In addition, relative to other MCMC techniques, slice sampling allows
for larger moves, allowing us to reduce the autocorrelation in the samples of the Markov chain and thereby
explore the parameter space more efficiently (DuBois, Korattikara, Welling, Smyth, et al. 2014).

Algorithm 1 Sampling from the posterior distribution of the logistic-regression parameters θn.

1: Inputs: (i) The function π̂(θ n|Dn) proportional to the posterior density π(θ n|Dn); i.e., π̂(θ n|Dn)
denotes the right hand side of (3). (ii) The current point of θ n denoted by θ

s
n = (θ s

0n,θ
s
1n . . . ,θ

s
dn). (iii)

The width parameters w = (w0,w1 . . . ,wd)
2: Output: The new point θ

s+1
n = (θ s+1

0n ,θ s+1
1n . . . ,θ s+1

dn ).

3: Step 1: Generate a random variate τ from the Uniform (0, π̂(θ s
n|Dn)) distribution.

4: Step 2: Randomly position the hyperrectangle H = (L0,R0)× (L1,R1)× . . .× (Ld ,Rd):
5: for i = 0 to d do
6: Ui← Uniform (0,1); Li← θ s

in−wiUi; and Ri← Li +wi

7: end for
8: Step 3: Sample from H, shrinking when points are rejected:
9: Repeat:

10: for i = 0 to d do
11: Ui← Uniform (0,1); and θ

s+1
in ← Li +Ui(Ri−Li)

12: end for
13: if τ < π̂(θ s+1

n |Dn) then Exit loop
14: end if
15: for i = 0 to d do
16: if θ

s+1
in < θ s

in|Dn) then Li← θ
s+1
in

17: else Ri← θ
s+1
in

18: end if
19: end for

In general, any prior distribution π(θ n) can be used in (3), depending on the available prior information
about the reliability of the manufacturer n at certain product attributes. In our numerical experiments, we will
assume a flat noninformative prior by assuming that the prior distribution of θ in is uniform and independent
of each other for i = 0, . . . ,d. The width parameters in Algorithm 1 is the collection of positive scalars
that represent an interval around the current sample of the logistic-regression parameters. Algorithm 1
begins with this interval and searches for an appropriate region containing the points of the target function
π̂(θ n|Dn) that corresponds to a large enough value. In our implementation of Algorithm 1, we choose the
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initial point θ
1
n and the width parameters randomly from a specified region (see Section 5). It is also critical

to verify that the Markov Chain {θ s
n : s = 1,2, . . .} simulated via Algorithm 1 converges to its stationary

distribution. In our numerical experiments in Section 5, we observe in the marginal trace plots that the
stationary distribution is typically achieved for s equal to 1,000, which we assume as the end of burn-in
period; i.e., the samples during the burn-in period are discarded. To reduce the serial autocorrelation in
the samples, we set the thinning parameter equal to 10; i.e., we collect the samples at every 10 iterations
of Algorithm 1.

4.2 Minimization of the Expected Total Operating Cost

In this section, we consider a specific functional form for the expected cost function given by

K

∑
k=1

N

∑
n=1

cnkznk−EY|θ

[
K

∑
k=1

I

(
N

∑
n=1

znkYnk ≥ 1

)
πk

]
, (5)

where cik is the cost of assigning product k to contract manufacturer n, πk is the reward to the pharmaceutical
company if the product k is successfully developed by any of the contract manufacturer, and I(·) is the
indicator function that takes the value of 1 if the event · is correct and 0 otherwise. For N = 2, the expected
cost in (5) can be written as

g(z;p1,p2) :=
K

∑
k=1

2

∑
n=1

cnkznk−
K

∑
k=1

(p1kz1k + p2kz2k− z1kz2k p1k p2k)πk, (6)

where p1 = (p11, . . . , p1K) and p2 = (p21, . . . , p2K) with pnk is the likelihood of the manufacturer n in
successfully delivering product k. The expected total operating cost formulation (see (4)) associated with
the expected cost function in (6) can be approximated via sample average approximation as

min
z∈{0,1}2×K

1
Ω

Ω

∑
ω=1

g(z;pω
1 ,p

ω
2 ), (7)

where Ω is the number of random samples of the success probabilities calculated from the posterior samples
of the logistic-regression parameters obtained via Algorithm 1. Since (5) can be exactly evaluated via (6)
and does not require stochastic simulation, the formulation in (7) does not has the intrinsic simulation
uncertainty while capturing the input uncertainty via simulation. In the remainder of the paper, we assume
N = 2 and focus on quantifying the impact of input uncertainty in the absence of intrinsic simulation
uncertainty. The same approach has been adopted by Zhou and Xie (2015) in their assessment of the input
uncertainty associated with different risk formulations for simulation-based optimization problems facing
input uncertainty. Notice that (7) is a quadratic binary integer program, and we solve within seconds by
using the OPTI Toolbox for MATLAB developed by Currie and Wilson (2012).

5 NUMERICAL EXPERIMENTS

In this section, we consider the sourcing problem of a pharmaceutical company who works with N = 2
contract manufacturers on K products where K ∈ {1,2,4}. The objective of the pharmaceutical company
is to maximize its profit through identifying the optimal sourcing scheme for assigning a subset of these K
products to a subset of the contact manufacturers. The pharmaceutical company has limited historical data
about the past performance of each contract manufacturer, and makes the sourcing decisions based on its
assessment of each manufacturer’s success probability through the logistic regression model in (2). Each of
the K products represents an engineer-to-order protein manufactured using Chinese Hamster Ovary (CHO)
cell culture and has the purity characteristic as the product attribute (i.e., d = 1). The purity represents
the proportion of the protein amount (mg) to the total amount of protein and other byproducts (mg) in the
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production batch. Therefore, the purity is a unitless measure and takes values between 0 and 1. In practice,
depending on the product type, the desired purity level may range between 50% to 99.9% for preclinical
studies. The contract manufacturer is considered as failed if the requested purity level cannot be achieved
for a specific protein. We model the purity as the only product attribute associated with the proteins, and
focus on quantifying the impact of input uncertainty associated with the logistic-regression model on the
expected profit of the pharmaceutical company.

More specifically, we are interested in answering the following questions: (i) what fraction of time
would the pharmaceutical company make sub-optimal decisions if the input uncertainty was ignored? (ii)
what is the impact of the input uncertainty on the expected profit as a function of the length of the historical
data? (iii) what is the impact of the dispersiveness of the impurity data (i.e., the level of spread in the
past impurity requirements) and the number of proteins to be developed on the expected profit under input
uncertainty? (iv) what is the value of accounting for the input uncertainty in contract manufacturer selection
via the ETOC formulation in (7)?

The following parameters are used in the numerical experiments: cn1 = 20, cn2 = 30, cn3 = 35, cn4 = 40
for n ∈ {1,2}; πk = 50 for k ∈ {1,2,3,4}. Since d = 1, there are two unknown parameters θ0n and θ1n
for the logistic regression model of manufacturer n. In our numerical experiments, the purity levels in the
past products vary between 0.5 and 1, and we suppose that θ0n and θ0n are uniformly distributed between
0 and 5, and between -5 and 0, respectively (this implies that the probability of success can take values as
low as zero and as high as one for each manufacturer). We consider that the pharmaceutical company can
have two types of historical data: In the dispersed purity data, the purity requirements of the past products
assigned to a particular manufacturer vary considerably between 0.5 and 1. In the concentrated purity data,
on the other hand, the purity requirements of the past products assigned to a particular manufacturer take
similar values. In the numerical experiments, we generate the dispersed purity data by sampling all the
purity data from Uniform(0.5,1). We generate the concentrated data by generating a first purity sample
from Uniform(0.5,1) and then all the other purity data randomly from ±%1 of the first sample.

Table 1 summarizes the results obtained for the case of single product, K = 1. The rows in Table 1
correspond to the length of historical data, m1 and m2, associated with the first and second contract
manufacturer, respectively. In Table 1, two critical performance measures are reported to assess the impact
of input uncertainty on the expected profit of the pharmaceutical company: Average Difference in Expected
Profit (ADEP) and Percentage of Time with Incorrect Solution (PTIS). ADEP represents the reduction in
the expected profit due to input uncertainty (i.e., the difference between the optimal expected profit without
input uncertainty and the expected profit associated with the sourcing decision that is “optimal” under a
point estimate of the logistic regression parameters) averaged over 100 independent macro-replications.
We use the posterior mean of the logistic-regression parameters as their point estimates. In each macro-
replication, we randomly draw the true value of the logistic-regression parameters from their aforementioned
ranges, and assume a uniform prior for each parameter. Comparing the optimal sourcing decisions without
input uncertainty against the ones under input uncertainty, PTIS represents the percentage of the time the
pharmaceutical company adopts a sub-optimal decision because of the input uncertainty.

Table 1: K = 1; expected profit without input uncertainty is 25.270.

Dispersed purity data Concentrated purity data

(m1, m2) ADEP PTIS ADEP PTIS

(5,5) 3.168 31% 7.061 54%
(10,10) 1.330 20% 7.941 54%
(25,25) 0.759 14% 9.153 55%
(50,50) 0.305 13% 8.631 51%

(100,100) 0.111 7% 8.461 57%
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Table 2: K = 2; expected profit without input uncertainty is 37.741.

Dispersed purity data Concentrated purity data

(m1, m2) ADEP PTIS ADEP PTIS

(5,5) 6.492 55% 11.212 63%
(10,10) 5.063 45% 14.381 68%
(25,25) 2.225 31% 17.609 81%
(50,50) 0.951 23% 16.380 75%

(100,100) 0.627 21% 18.449 77%

Table 3: K = 4; expected profit without input uncertainty is 53.213.

Dispersed purity data Concentrated purity data

(m1, m2) ADEP PTIS ADEP PTIS

(5,5) 17.280 79% 24.256 75%
(10,10) 6.837 61% 34.373 87%
(25,25) 3.698 59% 38.923 90%
(50,50) 1.752 41% 36.016 89%

(100,100) 0.657 30% 34.378 90%

For the case with dispersed purity data, Table 1 shows that the impact of input uncertainty is highest
with a small number of products developed in the past, and it decreases as more products are assigned
to each manufacturer. For example, PTIS decreases from 31% to 7% and ADEP decreases from 3.168
to 0.111 as the amount of historical data (m1,m2) gets larger. On the other hand, the same observation
is not true for the concentrated purity data. Table 1 shows that there is no monotonic reduction in the
ADEP and the PTIS as the amount of historical data increases. The underlying reason for this observation
is the fact that high amount of concentrated purity data is not necessarily informative enough to be able
to successfully estimate the supplier reliability based on the purity attribute. The concentrated purity data
does not adequately explore the space of the purity attribute, and hence higher amount of data does not
necessarily translate into a better inference about a supplier’s reliability. When we compare the ADEP and
PTIS obtained under disperse purity data and concentrated purity data, we observe that the impact of input
uncertainty is lower under disperse data.

Table 2 and Table 3 report the impact of input uncertainty on ADEP and PTIS when there are K = 2
and K = 4 products, respectively. Managerial insights from Table 2 and Table 3 align with the ones from
Table 1. For example, we observe that assigning a manufacturer more products of disperse purity attributes
alleviates the impact of input uncertainty on the expected profit as evidenced by the decreasing ADEP and
PTIS values. Table 2 and Table 3 also show that the negative impact of the input uncertainty on the expected
profit typically becomes more evident as the number of products K increases. For example, the percentage
reduction in the expected profit due to input uncertainty (i.e., ADEP/expected profit without input uncertainty)
increases from 3.168/25.270 = 12.5% to 6.492/37.741 = 17.2% and to 17.280/53.213 = 32.47% as K
increases from 1 to 2 and to 4, respectively. This observation can be explained by the fact that the number
of possible sourcing decisions increases as the amount of products increases, and the uncertainty in the
logistic-regression parameters is more likely to cause a sub-optimal sourcing decision.

Table 4 reports the ADEP values associated with the sourcing decisions reached by the ETOC formulation
in (7) for the dispersed purity data (i.e., minimization of ETOC corresponds to minimizing the negative
profit in this setting). We observe that the sourcing decisions associated with the ETOC formulation may
reduce ADEP up to (17.280−14.337)/17.280 = 17% when the amount of historical data (m1,m2) = (5,5).
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Table 4: The value of accounting for the input uncertainty.

K (m1,m2) ADEP % of scenarios with higher EP % of scenarios with less EP

4 (5,5) 14.337 21% 5%
(10,10) 6.595 9% 8%
(25,25) 3.647 7% 5%

2 (5,5) 5.396 12% 5%
(10,10) 4.789 3% 2%
(25,25) 2.084 1% 2%

Table 4 also reports the percentage of macro-replications in which the Expected Profit (EP) at the solution
of the ETOC formulation is higher (and less) than the expected profit at the solution associated with treating
the point estimate of the logistic-regression parameters as their true values. We note that the value of the
ETOC formulation is the most apparent for small amount of historical data, and it decreases as the amount
of historical data increases.

6 CONCLUSION

We study the sourcing decisions of a pharmaceutical company who works with a set of contract manufacturers
for product development. In this setting, the products are engineer-to-order biologicals (i.e., proteins, active
ingredients, etc.) having some predetermined set of attributes. The pharmaceutical company has limited
historical data about the past performance of the contract manufacturers, and makes inferences about
the success likelihood of the contract manufacturers through a logistic regression model. However, the
pharmaceutical company faces with the problem of input uncertainty due to unknown parameters of the
logistic regression model, affecting the performance of the resulting sourcing decisions. In this paper,
we represent the uncertainty in the logistic-regression parameters by approximating their joint posterior
distribution via a MCMC algorithm, and then investigate the impact of input uncertainty on the sourcing
decisions and the expected profit of the pharmaceutical company. In addition, we introduce a sampling-
based algorithm that aims to reduce the negative impact of input uncertainty on the expected profit of the
pharmaceutical company.

Managerial insights generated from the numerical analysis can be summarized as follows: First, we
observe that ignoring the input uncertainty often leads to sub-optimal decisions and could financially hurt
the pharmaceutical company. For example, ignoring the input uncertainty in the numerical experiments
resulted in sub-optimal decisions for 7% to 90% of the time. We find that assigning more products to
a particular manufacturer leads to a decrease in both the ADEP and the PTIS if the purity requirements
of the products vary considerably. However, this is not necessarily the case if the purity requirements of
the products are not significantly different. Secondly, we observe that the negative impact of the input
uncertainty on the expected profit becomes more evident as the number of products, K, increases. That
is, it becomes more critical to account for the input uncertainty as the product portfolio becomes larger.
Lastly, we observe that the average value of the decrease in the expected profit due to the input uncertainty
is reduced up to 11% through accounting for the input uncertainty in our numerical experiments. As future
work, the proposed model can be extended to capture the risk averseness of the pharmaceutical company
using the formulations in Zhou and Xie (2015). It is also possible to extend the proposed model as a
stochastic game in order to identify the optimal pricing decisions that coordinate the supply chain.
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