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ABSTRACT

E-commerce has become an increasingly relevant business in Southeast Asia. Effective warehouse man-
agement in terms of order picking is a key competitive advantage in this industry. Fashion products are
particularly difficult to efficiently manage in a warehouse as they have high demand variability, with a short
shelf-life and very little replenishment. In this work, after a detailed analysis of demand and physical layout
of the warehouse, we propose: (1) a new pick list generation algorithm considering aspects such as work
balancing and picking time minimization, and (2) a family of picking strategies accounting for possible
order configurations and warehouse layout. The main contribution of this work is in the development
of hybrid order picking strategies: a combination of zone-based and order-based picking with batching.
Simulation is used to assess the performance of these strategies. We have found that these hybrid strategies
outperform FIFO order picking often employed in industry.

1 INTRODUCTION

The fast fashion e-commerce industry has been booming in recent years especially in Southeast Asia, with
many players in the industry ranging from large corporations to small start-ups and online shops owned
by individuals. In large fast fashion e-commerce corporations, stocks are kept in large warehouses. Such
warehouses not only act as an inventory buffer in order to ensure availability but are, in fact, crucial to
meet service levels in terms of delivery time. As such, the efficient management of such a warehouse
- in terms of supply, order picking and location - represent a key competitive advantage to a company
competing in this industry. Moreover, fast fashion products have unique characteristics which make them
more challenging to manage efficiently in a warehouse. Their demand is highly variable and unpredictable,
both in terms of volume and value, their short shelf-life makes obsolescence a vital concern, and they are
seldom replenished where out-of-stock items are usually replaced with new collections instead of restocked.
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As a result of these characteristics, warehouse management becomes challenging due to the difficulty
in identifying highly frequent or stable inventory, deciding on the inventory put-away (i.e. assignment
of inventory to locations), and order picking strategy to generate pick lists for the pickers to fulfill the
orders. In such a volatile and highly-variable environment, a single order picking strategy is unlikely to
satisfy the demand profile faced by such an e-commerce company. After an initial analysis of the demand
profiles and the physical layout of the warehouse, we realize that the warehouse operations and, especially,
the picking process represent the most significant component in the warehouse operating costs. With the
aim of improving the picking process, we propose an approach which relies on the characteristics of the
orders faced by the company. Since the picking process is an operational issue, our algorithm needs to
be implementable in a short time, thus hindering the possibility of using mathematical programming and
traditional optimization techniques to assign picking jobs to the warehouse operators.

Therefore, in this paper, we propose (1) a new fast algorithm to generate pick lists which takes into
consideration various aspects such as work balancing and pick time minimization, and (2) a family of picking
strategies taking into account the possible order configurations as well as the physical warehouse layout.
In order to assess and evaluate the performance of the various order picking strategies, we propose the use
of a discrete-event simulation as a general approach which can easily be extended to more complicated
and specialized warehouse layout.

2 WAREHOUSE OPERATIONS: A REVIEW

Warehouse operations and management as been a relevant research area for a considerable time and is
still relevant today. Gu, Goetschalckx, and McGinnis (2007) and Gu, Goetschalckx, and McGinnis (2010)
provide detailed reviews on warehouse operations including order picking. Order picking is the most
expensive operations in a warehouse as it is very labor and time consuming (Frazelle 2001). The objective
of the order picking system (OPS) is to maximize the service level (e.g. in terms of order lead time) subject
to resource constraints, given the warehouse layout and inventory storage locations. Since the bulk of the
OPS time is spent on traveling, minimizing item pick cycle time (i.e. item and order retrieval time) is an
equivalent objective (de Koster, Le-Duc, and Roodbergen 2007). It has also been found that the throughput
of the overall OPS is inversely proportional to the cycle time (Manzini, Gamberi, Persona, and Regattieri
2007). Hence the problem becomes providing the optimal wave size, batching, item-picker assignment and
routing for these pickers to retrieve the assigned items such that the item cycle time is minimized.

While optimal routing is desirable, this may not be suitable in practice as some pickers might find
the optimal routing illogical or counter-intuitive (Gademann and Velde 2005). Moreover, when there are
multiple candidate locations for a single item, a multitude of complications arise in determining the optimal
routing and that there are scare research done on this issue even though this scenario is often found in
practice. With a more complex warehouse structure and inventory locations, routing heuristics such as
S-shaped, return, mid-point, largest gap, and combined (hybrid) are more popular especially in practice
where a solution has to be obtained quickly and that a satisfactory solution is sufficient. Note that many
of these previous study assume a unit load. Moving forward, the rise of e-commerce poses a renewed
challenge to optimize warehouse picking operations where less-than-unit-load picking (or even single-item
picking) becomes very common. Since heuristics is preferred in practice, the routing used in this work is
based on the nomenclature of the inventory locations, resulting in a routing which is similar to the return
and S-shaped heuristics.

Order batching is often done to release a wave of orders to be picked. The batching problem in itself
is a complex problem which can significantly impact the performance of the OPS. This batching creates
a partition either between orders or between pickers/storage locations (otherwise known as zoning). The
difficulty in optimizing the batches comes from the fact that the cycle time is not known until the batch has
been created and the routing assigned (Gu, Goetschalckx, and McGinnis 2007). These batching problems
are often solved with heuristics with a variation of order-closeness metric, with the objective of batching
similar or close orders together (Elsayed and Unal 1989). The order proximity batching problem is studied
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by Gademann, Van Den Berg, and Van Der Hoff (2001), Hwang and Kim (2005), and de Koster, Van der
Poort, and Wolters (1999). In terms of performance, Petersen, Aase, and Heiser (2004) compared various
order picking strategies and found that batching often yields the lowest cycle time especially when the
order sizes are small. de Koster, Van der Poort, and Wolters (1999) compared various seed and savings
heuristics for manual warehouses and concluded that even a simple order batching method yields significant
improvement from FIFO order picking and that the performance of these heuristics depends largely on the
capacity of the carts utilized.

Simulation has often been used to optimize warehouse design and operations. A high-level manual
order-picking warehouse design has been analysed through simulation by Altarazi, Ammouri, and Alzubi
(2012). In terms of operations, simulation has been used to evaluate order-picking models solved with genetic
algorithm (Chang, Liu, Liu, and Xin 2007). Yoo, Cho, and Yücesan (2010) employ nested partitioning
and optimal computing budget allocation methods with simulation to optimize supply chain performance
on a strategic level while reducing computational loads. Gagliardi, Renaud, and Ruiz (2007) developed
a discrete-event simulation model to evaluate storage space strategies in a high-throughput warehouse.
Similarly, Faria and Reis (2015) employed a discrete-event simulation model to evaluate various storage
and routing strategies to improve order picking performance. Following these works, we have developed
a discrete-event simulation model to evaluate the proposed hybrid picking strategies.

3 METHODOLOGY

We first analyzed the demand profile of the company and noticed that, in the scope of choosing the picking
policy, it is important to understand how orders are characterized in terms of number of items and, in case
of multi-item orders, how these are distributed throughout the warehouse.

Assuming a randomized put-away strategy, which is sensible for a fashion warehouse, we analyzed
the warehouse density looking at the different zones (the zones referred to in this paper do not reflect
the real warehouse). As a result of the randomized put-away strategy, SKUs may have several physical
locations. Table 1 shows the distribution of the items in the warehouse. In particular, we can see that
the majority of the orders are single item orders and therefore we should design picking strategies which
improve the efficiency in fulfilling these orders. Nevertheless, a remarkable number of orders is multi-item
and these form the largest picking volume in terms of units of items. Moreover, it looks clear how most
of the orders are spread in different zones. Consequently, the picking has to consider an efficient way to
manage multi-zone items. A possibility, as two of the strategies indeed propose, is to use a sorting station
to consolidate orders from different zones, nevertheless, in this case we will need to control the maximum
number of orders released for picking at any one time (called batch of incoming orders later on) in order
to control the loading and waiting time at the sorting station.

Table 1: Orders Characterization.

Item Type %items %orders

Single Zone 6.182 5.995
Multi-Zone 76.781 50.99
Single Item 17.037 43.006

This work considers a manual picker-to-part order picking system where a picker collects a batch of
orders instead of a single order or item as in single-command operations. We assume that a layout of the
warehouse exists, along with the inventory locations, and that a list of orders is available and ready to be
picked. The pick list generation procedure generates a master pick list which is the set of picking lists
for single pickers. The pick list generation process is detailed in section 3.1. Four picking strategies are
compared using a discrete-event simulation. A simple First-In-First-Out (FIFO) strategy acts as the base
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case as this the strategy commonly implemented in industry to simplify the order picking process. The
four picking strategies are detailed in section 3.2. The overall proposed process is as such:

1. Batch incoming orders.
2. Group orders into three types: (1) multi-item single-zone, (2) multi-item multi-zone, and (3)

single-item.
3. If the picking strategy is not the FIFO base case, generate order queues corresponding to the three

order types.
4. Implement picking process and generate pick list based on the picking selected strategy.

3.1 Pick List Generation

In this section, we describe the pick list generation process through the phases of order batching, queue
generation and order assignment, and finally picker routing and pick list generation.

Batch Creation Receives input of orders and generates the batches of orders. Simulation will be
employed as a method to study the impact of batch size on performance and establish the optimal
batch size. The batch size is a function of tote capacity, number of orders and system capacity
(number of pickers, etc.) such that the batch size results in 3 hours’ worth of picking activities.
This is also known as the pick wave. The difficulty is that it is not known how to determine this
batch size a priori.

Queue Generation Receives the orders, number of pickers, number of totes, totes capacity, and inventory
locations. The output of this phase is the queue which associates the inventory location (UID)
with the items in the orders. The criteria for the queue generation are as such: (1) ”Queue
Dependency”: inventory in similar locations (zones, floor, etc.) are assigned to the same queue;
(2) Order characteristics: express (high priority), single-item and multi-item orders are placed
in separate queues; (3) ”Virtual Backlog”: items in locations are virtually reserved through the
assignment process in order to prevent pickers from being directed to an eventually empty location.
This process can be thought of as an order classification process which generates three types of
order based on the three criteria above. The three types of queue generated are Type 1: multi-item
single-zone, Type 2: multi-item multi-zone, and Type 3: single-item.

Inventory Reservation Procedure Locations containing the desired item are identified and the first
location UID is assigned. Virtual reservation is done by decrementing the availability of the item
in that location.

Pick List Generation Receives as input the picking strategy, queues generated, number of pickers and
the tote capacity (which determines the maximum size of the pick list). The output is then the
master pick lists which is the set of pick lists for individual pickers, complete with routing (items
sequencing).

In essence, after order batching, the orders are grouped into queues based on their characteristics and
the master pick list is generated by cutting each queue based on the suggested location UID (through the
inventory reservation procedure) according to the picker capacity. Algorithm 1 details these procedures.

3.2 Picking Strategies

The picking strategy is incorporated into the pick list generation. We propose four different picking
strategies. Strategy A represents the reference base case as it does not actually rely on any pick list
generation algorithm but simply pick the orders in a FIFO manner.

Strategy A (Pure Order Picking) In this base case strategy, we adopt an “order-based” picking
where orders are processed and picked sequentially in a FIFO manner, without any type of queue generation
or order classification.

2253



Pedrielli, Duri, Vinsensius, Chew, Lee, and Li

Algorithm 1 Queue and pick list generation algorithm.
Queue Generation (Allocation)

Identify item locations
Type 1 orders Create list of multi-item single-zone orders. Each order reports all possible fulfilment

zones.
Type 2 orders Create list of multi-item multi-zone orders. Each order is characterized by an array of

pairs of zones and items.
Type 3 orders Create list of single-item orders and find zones fulfilling single-item orders.

Pick List Generation (Assignment)

Type 1 orders

For each order in Type 1
While(not all items assigned && zones not empty)

If(item is available in zone)
Inventory reservation procedure

Else
Eliminate zone and check next zone

End If
End While
If(zone is empty)

Add order to Type 2
End If

End For

Type 2 orders

For each order in Type 2
For each item in order

Select zone with most number of items for the same order
While(item not assigned)

If(item available in zone)
Inventory reservation procedure

Else
Eliminate zone and check next zone

End If
End While

End For
End For

Type 3 orders

For each order in Type 3
Select zone with lowest load
If(item available in zone)

Inventory reservation procedure
Else

Eliminate zone and check zone with next lowest load
End If

End For

Strategy B (Hybrid Order Picking) In this strategy, each order is picked by a single picker and
the pickers have to travel across zones to fulfill the orders and, as such, there is no sorting required after
the picking. In literature, this is often identified as a pick-and-pass and sort-while-picking order picking.

• Type 3 orders: Single-item orders are separated into a special queue for fast processing.
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• Type 1 orders: Multi-item orders which can be fulfilled in the same zone are grouped together
under queues corresponding to a particular zone. A master pick list based on the tote capacity
and the suggested picking route (item sequence) is generated. The location assignment and path
generation is performed by Algorithm 1. Note that orders are not broken up into individual items
(i.e. sorting happens on the tote itself) and completed orders are sent directly to the outbound.

• Type 2 orders: Multi-item orders which cannot be fulfilled in the same zone (hence multi-zone) are
grouped into another queue. They are partially picked in a zone before moving on to subsequent
zone(s) until completion.

Strategy C (Hybrid Zone Picking) In this strategy, orders in the batch is broken up into items which
are located in the same zones such that each picker stays in a particular zone. At the end of the picking
process, the picked items are sorted to the corresponding orders. In literature, this is often identified as
a pick-then-sort order picking. The complication with this strategy is that there exists another sub-batch
which controls the granularity of the sorting process. A larger sub-batch results in a higher pick density
(hence potentially lower picking cycle time) but a longer consolidation and sorting time.

• Type 3 orders: Single-item orders are separated into a special queue for fast processing.
• Type 1 orders: Multi-item orders which can be fulfilled in the same zone are grouped together

under queues corresponding to a particular zone. A master pick list based on the tote capacity
and the suggested picking route (item sequence) is generated. The location assignment and path
generation is performed by Algorithm 1. Note that orders are not broken up into individual items
(i.e. sorting happens on the tote itself) and completed orders are sent directly to the outbound.

• Type 2 orders: Multi-item orders which cannot be fulfilled in the same zone (hence multi-zone)
are batched into sub-batches of predefined size and broken up into individual items which are then
grouped into their fulfillment zones. The queues generated correspond to the zones. The pickers
stay in a particular zone during picking. These orders will be consolidated and then sorted after
picking.

Strategy D (Pure Zone Picking) This strategy is similar to the hybrid zone picking but does not
differentiate between multi-items orders which can be fulfilled in a single zone and those which can only
be fulfilled by multiple zones. Sorting after picking is also required for this strategy.

• Type 3 orders: Single-item orders are separated into a special queue for fast processing.
• Type 1 and Type 2 orders: Multi-item orders are batched into sub-batches of predefined size and

broken up into individual items which are then grouped into their fulfilment zones. The queues
generated correspond to the zones. The pickers stay in a particular zone during picking. These
orders will be consolidated and then sorted after picking.

4 SIMULATION MODEL

The simulation model employed is a discrete-event simulation based on the Object-Oriented Discrete-Event
Simulation (subsequently referred to as “O2DES”) framework, developed by one of the authors, written in
C# on Microsoft Visual Studio IDE. In this framework, the simulation entities are partitioned into three major
categories namely Dynamics, Events and Statics. Static elements have constant properties which describe
the fixed physical warehouse layout. Dynamic elements have modifiable properties describing mutable
entities such as pickers, SKUs, and picking lists. Finally, Events modify the states of the Dynamic entities
and are executed sequentially according to a Future-Events List. This O2DES framework allows us to
comply closely to the widely-accepted discrete-event simulation framework while exploiting object-oriented
programming features such as inheritance and dynamic binding for flexibility.

The pick list generation module, which implements the proposed picking strategies, as well as the
shortest-path routing module, based on Dijkstra’s algorithm, are also integrated into the simulation model.

2255



Pedrielli, Duri, Vinsensius, Chew, Lee, and Li

The pick list generation module takes in the orders and generates the batches and pick lists based on the
selected strategy parameters. The routing module determines the travel time required based on the locations
of the items in the pick list. These two modules combined result in routes which are similar to those
generated with a return and S-shaped heuristics for order picking routing.

The discrete-event simulation model is used to evaluate and compare the various strategies. Firstly,
actual demand data and inventory locations are obtained. Two weeks of demand data is used; this forms
the source of stochasticity in the experiment. The physical layout of the warehouse is also translated into
the simulation model; this physical layout is constant throughout all the experimental runs. For each set of
demand data, the simulation is run using each of the picking strategies to obtain the desired output statistics
(described in detail in Section 5). Parameters such as tote capacity, batch size, pickers, and sorting rate are
subjected to a design of experiment as described in Section 5.2. Figure 1 illustrates the experiment flow.

Discrete-Event
Simulation Model

Inventory Locations

Demand Data

Physical Layout

Selected ParametersSelected Strategy

Output
Statistics

influences
decision on

Figure 1: Simulation Experiment Flowchart.

5 FASHION WAREHOUSE CASE STUDY

ZALORA is one of the main e-commerce companies in Southeast Asia. A complexity for ZALORA is
caused by the fact that the content of the customers’ orders is particularly variable. As a consequence, as
opposed to most of the warehouse in other sectors, it is difficult to identify fast-moving items and perform
categorizations of the inventory using traditional ABC techniques. As a result, for the experiments, we
consider a randomized inventory storage, i.e. SKUs are allocated to multiple and randomly positioned
inventory locations. In the case constructed with the company, we consider a warehouse with 8 zones.
The density per zone resulting from the random put-away is derived as the ratio between the number of
items in a zone to the total number of items (in all zones). We took as a reference a specific warehouse
and studied the order profile for two weeks. From this study, we were able to identify the profile in terms
of single-item orders, multi-item orders and, within the multi-item orders, the single-zone and multi-zone
orders. This information is very important for the allocation of operators to the different order types and
also to establish the capacity of the different types of totes.

The simulation is constructed based on a real warehouse layout, inventory locations and demand data.
The simulation model is validated against the real-world picking cycle time and pick list size based on the
FIFO strategy. The warehouse layout evaluated consists of 725 rows, 68886 racks (i.e. possible storage
locations), and 132378 items. The number of daily orders evaluated is in the range of 3000 and 6000
orders and the number of pickers available is as high as 150 operators. For confidentiality, these values
do not reflect the actual values implemented in the company but are in the same order of magnitude. In
essence, the stochasticity in this simulation comes from a sample of the real-world demand data as well
as the real-world randomized inventory locations.

The objectives of the experimentation phase are presented in two stages:

1. Size the system capacity in terms of manpower required to complete the regular daily demand;
2. Given the manpower available, identify a good setting in terms of policy parameters. In particular,

we are interested in:
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•Capacity of the totes bringing items;
•Capacity of the carts bringing orders;
•Master Batch size, representing the number of orders the system processes simultaneously to
perform the assignment to the operators in the warehouse (i.e., to form the pick lists). This
parameter has a lower bound (degenerate, which is the number of operators) and an upper bound
corresponding to the capacity given by the number of deployed operators and the capacity of
the carts/totes. If the batch size is below the capacity in terms of totes, we will have idle
operators which is something we need to avoid. Therefore, there is a strong correlation between
the Master Batch Size and the capacities aforementioned;
•Sorting Rate: represents the number of items per time unit that a sorter is able to produce;
•Number of Sorters: represents the number of operators at the sorting station;
•Maximum Order Batch Size, which defines how many orders destined to the sorting station
can be simultaneously put in the picking system. This parameter is important to control the
waiting time at the sorting station and it is highly correlated to the number of sorting stations
and the sorting rate.

When dealing with the second objective, we established with the company three main performance measures
which are important to consider:

• Picking Cycle Time [sec/item]: represents the average time for an item to be picked. It is important
to notice that the larger the capacity of the totes/carts, the larger will be the cycle time;

• Average Tote Utilization [
average items per tote

tote capacity %]: represents the ratio between the capacity of
the tote and the number of items carried. This represents a good indicator of the work balance.
Low saturation implies that some operators will be idle or finish ahead of time;

• Average Cart Utilization [
average orders per cart

cart capacity %]: this is the same as the previous indicator but
for orders.

In the following section (5.1) we show the performance of the strategies with respect to the Stage 1 problem,
i.e. the manpower sizing, while in the subsequent section (5.2) we use the input information related to the
operators to perform a policy parameters optimization. Specifically, the second stage task was performed
using Design of Experiment since the company was able to provide us with the possible values of the
policy parameters due to technical and physical constraints over the parameters.

5.1 Manpower Allocation

Since labor cost constitute a significant portion of warehouse operating costs, we try to minimize the number
of pickers for each of the strategies. The first issue that has to be solved for the allocation problem was
the assignment of operators to each order type. The idea is to assign workers to the different order types
based on the average total relative cycle cycle time required by each type with respect to the total average
cycle time. In order to evaluate these average cycle times, we ran simulation by considering an over-sized
system. The results are displayed in Table 2 below.

Considering the ratios in the last column of Table 2, we performed a simple enumeration over the
total number of available operators according to the data provided by the company. Based on the data of
11 days of demand, we bootstrapped the data using an empirical discrete density in order to generate a
statistically significant input. Under the advice of the company, we ensured that the allocated manpower is
able to complete all the picking tasks for each day within 10 hours with a 95% probability. As suggested
by the company, we started with 40 pickers and derived the following allocation shown in Table 3 below.

It is noteworthy that Strategy C and D, despite requiring a lower number of operators, necessitate sorting.
As a result, at this point of the analysis we cannot conclude which strategy is superior considering the
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Table 2: Average Picking Cycle Time Estimation.

Strategy Order Type Cycle time [min/item] Cycle Time Multiplier
ci/∑i=1,...3 ci

A Order 1.127 1.000

B
Multi-Item Single Zone 0.874 0.293
Multi-Item Multi Zone 1.008 0.338

Single Item 1.101 0.369

C
Multi-Item Single Zone 0.874 0.293
Multi-Item Multi Zone 0.583 0.195

Single Item 1.095 0.367

D
Multi-Item 0.752 0.252
Single Item 1.101 0.369

Table 3: Required Manpower.

Strategy Order Type # Workers

A Order 26

B
Multi-Item Single Zone 2
Multi-Item Multi Zone 17

Single Item 4

C
Multi-Item Single Zone 1
Multi-Item Multi Zone 15

Single Item 4

D
Multi-Item 16

Single 3

manpower requirements; only Strategy A appears to be dominated. In the next part of the experimentation,
we will focus on this comparison by considering the remaining picking policy parameters in order to provide
insights on dominance of the different strategies.

5.2 Strategy Comparison

Based on discussions with the company, we were able to identify a relatively small discrete set of possible
feasible policy parametrization. Therefore, we constructed a Design of Experiment as depicted in Table
4 below (note that the values do not refer to the actual values implemented in the company). In the
experimental runs, we collect the following output as Key Performance Indicators (KPIs):

• Cycle Time: for the example case, the company established a threshold for the cycle time for each
item i, ci = 54 [sec/item];

• Average Tote Utilization: this indicator determines the productivity of the tote equipment and
measures the efficiency of warehouse operations. This KPI is not applicable for Strategy A. For
the company, the threshold average tote utilization should be at least 75%;

• Average Cart Utilization: this KPI determines the productivity of cart equipment. This KPI is not
applicable for Strategy D. For this indicator, the optimal average cart utilization should be at least
90%.
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The aforementioned design of experiment aims to determine the set of parameters for which the desired
level of performance is achieved. In Table 5, the average results across all experimental conditions using a
particular demand data for each strategy are reported. In particular, the “Satisfactory Performance Level”
indicates the proportion (in terms of percentage) of tested experimental conditions in which a strategy is
able to meet all the thresholds suggested by the company. We observe that the only strategy that meets all
the requirements is Strategy D, under the settings with maximum item totes capacity 40 and maximum
order batch size of 70.

Table 4: Testing Configurations (factors levels for a full factorial design).

Item Totes Order Totes Master Batch Max Orders Sorting No. of
Capacity Capacity Size Batch Size Rate Sorters

(20,40) (6,12) (500,700) (30,70) (3,7) (1,3)

Table 5: Average Strategy Performance Over All Configurations.

Archived Percentage Strategy A Strategy B Strategy C Strategy D

Average Cycle Time [sec/item] 70 62.75 52.46 51.88
Average Tote Utilization N.A. 92% 58% 58%
Average Cart Utilization 99.70% 86.80% 46.70% N.A.

Satisfactory Performance Level 0% 0% 0% 12.5%

Although Strategy A performs the best in terms of cart utilization, it does not meet the requirement
for average cycle time, which is around 70 seconds per item picked on average. For Strategy B, it does
not meet requirement of the total cycle time, which is nearly 63 seconds per item picked on average. It is
apparent how strategy A and B require a larger number of operators in order to reach the same performance
of the other two strategies (considering also the operators at the sorting station). Therefore, at this phase
of the experiment these two strategies are dominated by C and D. For Strategy C, it meets requirement for
total cycle time with 52 seconds per item (still higher than that of Strategy D) but none of the simulation
cases satisfies the requirement for cart utilization, which is only 47% on average.

Observing the effects analysis from the performed experiments, we found that:

• The cart (tote) capacity has an important impact over the system performance: a smaller capacity
requires pickers to run more times to fulfill total orders picking, thus increasing the picking time.
As a result, we should maximize the capacity provided that the picker can handle the cart in the
same amount of time.

• The master-batch size is a key for the balance between picking and sorting. A very large batch
size, will provide larger saturation, but results in longer waiting times at the sorting station. As a
consequence, this size has to be set carefully.

Considering the results, after taking the desired KPIs and manpower allocation into consideration,
Strategy D is the best strategy for the company based on this example scenario. In terms of the KPIs,
Strategy D yields a significant reduction in average cycle time while not being absolutely disadvantaged
in terms of tote utilization. As for manpower allocation, Strategy D requires less manpower to handle the
same warehouse operations and thus reduces the related labor cost. Nevertheless, we need to consider that
at this stage of development of the simulation model, we are considering the sorting process simply as a
delay, i.e., the detailed sorting process is not modeled within the simulator. Nevertheless, sorting a large
number of items, as strategy D requires, can be particularly problematic, due to the complexity for the
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operator to identify and match items. For this reason, strategy C should be considered since it lowers the
number of items directed to sorting.

Another important aspect resides in the low saturation obtained both in strategy C and D. This result is
due to the sorting station which represents the system bottleneck. Due to the presence of the order batch,
the pickers cannot load to many items to avoid congestion at the sorting and this generates waiting times.
Again, the efficiency of the sorting station is relevant for both strategies and we are currently in the process
of designing a sorting process and the required technology.

6 CONCLUSION

This work contributes in the proposal of four innovative picking strategies, which were designed for an
e-commerce company under the consideration that the main impact for the picking process resides in trying
to pool together orders which are located in the same zone independently from the volume. The proposed
approach has been rigorously evaluated using simulation, thus providing a tool to the company to evaluate
the different strategies and we have found that the pure zone picking is the best.

From this work, we see that there is an indication that having a high picking density results in a
higher picking performance. As such, future work is being performed to use learning techniques in order
to maximize the inventory density by performing inventory put-away based on correlation between items
instead of volume (differently from typical ABC classification).
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