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ABSTRACT 

Bone is one of the most implanted tissues worldwide. Bone tissue engineering deals with the replacement 
and regeneration of bone tissue; outcomes are determined by complex biological interactions, making it 
difficult to design an optimal tissue growth environment. Agent-Based Modeling (ABM) is a powerful 
tool to simulate such a system. We present a simulation of engineered bone tissue growth using the 
Repast HPC toolkit, an ABM tool for high-performance computing environments. We use this example to 
provide preliminary performance tests on new features (not yet publicly released) of Repast HPC that 
accommodate operations common to biological modeling: 3-Dimensional parallelized spatial simulation 
and diffusion in 3 dimensions. Repast HPC is a general ABM toolkit, and the performance documented 
here should be representative of performance on other simulations. Using the baseline Repast HPC tools 
provides flexibility for continued model development and improvement. 

1 INTRODUCTION 

Bone is one of the most implanted tissues worldwide. Bone tissue engineering deals with the replacement 
and regeneration of bone tissue; outcomes are determined by complex biological interactions, making it 
difficult to design an optimal tissue growth environment. Agent-Based Modeling (ABM) is a powerful 
tool to simulate such a system. We present in this paper a simulation of engineered bone tissue growth 
using the Repast HPC toolkit (http://repast.sourceforge.net), a free and open-source ABM tool for high-
performance computing environments. We focus on new features in the Repast HPC package that are 
designed to accommodate operations that may be common in biological agent-based modeling. Our intent 
is to provide a basic overview of these features, their application in a specific simulation, and their rough 
performance estimates. Importantly, we do not claim that this implementation is highly optimized. Repast 
HPC is designed to be a flexible and easy-to-use toolkit that emphasizes simplicity over performance. The 
existence of these features and their potential for application in other biologically motivated simulations is 
promising, and our hope is to facilitate the use of these tools in future work. 

We begin our discussion by presenting the motivation for the simulation and an overview of the 
biological processes we will examine. We then turn to the Repast HPC toolkit and the newly implemented 
features that enable the biological simulation to be performed. We next present the simulation in more 
specific detail, and elucidate the specific model components and their roles in the simulation. We follow 
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this with a description of the specific sets of test runs performed, the results of those tests, and a 
discussion of our intended next steps both for the bone model simulation and for Repast HPC. 

2 MOTIVATION: ENGINEERED BONE TISSUE 

The loss or failure of an organ or tissue is highly frequent, devastating problem with a substantial cost in 
human health care (Langer 1999). Bone is one of the most implanted tissue worldwide since bone defects 
above a critical size do not heal by itself. Bone tissue engineering deals with the replacement and 
regeneration of bone tissue with practical approaches (Amini et al. 2012). Use of synthetic or natural 
biomaterial scaffolds that supports the migration, proliferation, and differentiation into bone cells is one 
approach in bone tissue engineering (Damien and Parsons 1991; Langer and Vacanti 1993). However, the 
success of these biomaterials in repairing large size bone defects is limited due to their lack of the 
osteogenic and properties (Petite et al. 2000). A promising alternative is using the cells with osteogenic 
potential in these biomaterials to promote bone formation. Mesenchymal stem cells (MSC) have been 
widely used in bone regeneration applications (Manassero et al. 2013). 

One of the challenges in the field of bone tissue engineering is exploring the complex interactions 
behind biological events and utilizing this knowledge to design an optimal tissue growth environment. 
Animal studies may represent the system adequately however they often fall short due to long time frame 
and difficult data collection resulting with sacrificing the animal. Computational models when they are 
properly developed can offer the ability to perform experiments in silico and accurately predict the 
interplay between the cells, biomaterial and signaling molecules. The number of variables that contribute 
to the formation of engineered tissues and the multicellular response to these signals present a challenging 
optimization problem that must be addressed for the ultimate success of tissue engineering.  

Agent-Based Modeling (ABM) is a powerful tool to simulate main actors of a system based on their 
interactions with their local environment. It has great advantages including simulating of each individual's 
behavior, holding their history, allowing them to adapt and learn complex behavior. It is a natural choice 
and has been widely used to model biological systems (Qutub et al. 2009; Bayrak et al. 2015b). One main 
concern of the modelers is the computational heaviness of ABMs that limits the use of this technique in 
biological systems where one cubic centimeter of tissue can encompass approximately one billion cells.  

Discovering the full potential of agent-based simulation models depends on the computational power 
available. Recent advances in the capacity and availability of high-performance computing resources and 
platforms have expanded the ability of agent-based models of biological systems to accomplish 
simulation in more realistic scales. Cockrell et al. (2015) implemented a model of gut which extends an 
previous model of gut epithelium using a custom parallel computational approach to run anatomic scales 
simulations. Perrin et al. (2010) developed a large-scale agent-based model, with explicit implementation 
of lymph nodes to investigate changes in the dynamics of HIV disease progression. In another work, two 
multi-scale existing model od in-stent restenosis and cerebrovascular blood flow was combined using 
HPC approach to run larger scales up to peta scale, incurring a coupling overhead of 1–10% of the total 
execution time (Groen et al. 2013). This paper focuses on use of Repast HPC for the development of a 
high performance agent-based modeling (ABM) framework that describes integrated cell behavior 
(vascularization and tissue growth) in a system based on interactions with its environment (degradable 
scaffold), other cells, and its own intracellular decisions/states.  

3 REPAST HPC: OVERVIEW AND ENHANCEMENTS 

Repast HPC is a toolkit for Agent-Based Modeling that is specifically designed for high-performance 
computing applications (Collier and North 2012). Internally, model construction can follow a paradigm 
that mirrors that of the Repast Simphony toolkit (North et al. 2013) on which Repast HPC is based. In 
both tools, a central collection called a ‘context’ contains the agents in the model. Contexts also contain 
‘projections’, which structure agent interactions and relationships; the two kinds of projections are spaces 
and networks. 
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In Repast HPC, contexts and projections work together to parallelize the simulation. The assumption 
is that all agent interaction will be with agents that are adjacent to one another in at least one projection. 
Typically a spatial projection is used to divide the simulation to achieve load balancing; as part of the 
parallelization strategy, agents that were on adjacent processes and that are positioned within a ‘buffer 
zone’ a small distance from the boundary between processes were copied as non-local or ‘ghost’ agents, 
thereby making their information available to the adjacent process. Changes to ‘ghost’ agents cannot 
propagate back to the ‘real’ copy of the agent, but by appearing as copies on the adjacent process, the 
information in non-local agents was available for local agents to consider and act upon. Network 
projections are not typically used for load balancing- no automated way to do so is currently in Repast 
HPC- but the principle of adjacency applies, and agents connected by a network link, no matter how 
distant they may be according to a spatial projection, are copied onto each other’s processes and can 
interact in this way. 

For use in this simulation, two features not previously available in Repast HPC were required: the 
ability to construct 3-Dimensional spaces in which agents could move and interact, and the ability to 
easily calculate diffusion of chemicals through the simulation space. 

3.1 N-Dimensional Spaces 

Previous releases of Repast HPC have been limited to 2-Dimensional spaces. While adequate for many 
agent-based models, a large class of additional models based on real-world dynamics would require 3-
Dimensional spaces (e.g. fish in schools, birds in flocks, etc.). Perhaps less intuitively, some agent-based 
models might require higher dimensionality (N-Dimensional) spaces; one common application would be 
‘opinion spaces,’ where an individual’s location represents not a physical position but rather a point along 
multiple axes representing some measure of sentiment toward N independent topics. 

The MPI specification (MPI Forum 1994) already incorporates the capability to define 
communicators that arrange the processes in an abstract N-Dimensional Cartesian topology. Moreover, 
the underlying ‘Point’ object in Repast HPC has, since the original release, had the ability to represent 
points in an N-Dimensional space. What was lacking, however, was an ability to use a higher-dimensional 
space as a basis of synchronization.  

To achieve this, the new code implemented a more generalized algorithm for calculating buffer zones 
and passing agent information to adjacent processes. This more generalized algorithm is capable of 
handling any arbitrary number of dimensions. A number of restrictions remain: space must be evenly 
divided in each dimension across the n processes in that dimension, and the overall space must be a N-
Dimensional rectangle. However, N may be any number. Note that although special-purpose algorithms 
could theoretically achieve a performance benefit for common values of N (2 and 3), no such 
implementation is provided; instead, the generalized algorithm is now used for all spaces. 

3.2 Diffusion 

As described below, the simulation of bone model angiogenesis requires that cell movement be driven by 
the gradient in the concentration of a chemical secreted by certain specific kinds of cells. To achieve this 
diffusion, a special ‘diffusion’ module was added to Repast HPC. This new model defines a storage array 
that consists fundamentally of an array of values; it is not, therefore, a collection of agents or pointers to 
agents. The diffusion implementation works with N-Dimensional spaces; this matches the agent spaces 
described in the previous section. 

The implementation of  N-Dimensional spaces exchanges values across processes from regions of the 
space that abut each process. It relies on customized MPI data types that are defined recursively across the 
N dimensions. The implementation should therefore inherit whatever optimization the MPI 
implementation offers on the system on which the simulation is run. 

The diffusion calculations are not optimized for performance; instead, they are optimized for ease of 
use and extension to specific applications. A DiffusionLayer class stores the values and provides 
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synchronization across processes using the recursive MPI data types. An abstract Diffusor class is 
provided that can be extended, and the specific diffusion algorithm required can be implemented in the 
child class. When the DiffusionLayer class is asked to perform diffusion, it loops through the collection of 
cells in the N-Dimensional space and at each point passes a block of cells with radius r on all dimensions 
to the Diffusor class; these cells are indexed in a standard way that allows the Diffusor class to access any 
that are needed (and omit any that are not), and to perform whatever operation has been specified to 
calculate the value that should replace the current value at the central cell. At the boundaries of the space, 
the block of cells used may be truncated; the diffusor class must be crafted to deal with this, but the 
indexing scheme for the block of cells provided to it will make any truncations clear. 

It should be clear that for any specific diffusion algorithm a more efficient strategy for performing the 
diffusion calculations could be created. The implementation here trades efficiency in model execution for 
ease of use and simplicity in implementation: in keeping with traditional Repast HPC practice, the user is 
not required to write any MPI code, and instead need only implement the diffusion algorithm via a 
Diffusor class, and Repast HPC handles all diffusion calculations and cross-process synchronization. 

4 MODEL STRUCTURE 

The Repast HPC model described here is being conducted in parallel with laboratory research described 
in (Somo et al. 2015). A Java version of the simulation model has already been created (Bayrak et al. 
2015a), and work to validate the Java model against the empirical data is in progress. 

4.1 Vascular Bone Formation 

Bone is a highly vascularized tissue. Angiogenesis, the process of growing new blood vessels from 
preexisting ones, is the main mechanism vascularization of biomaterial scaffold . Angiogenesis is driven 
by chemical cues including vascular endothelial growth factor (VEGF). The main steps involved in the 
process of angiogenesis can be summarized as (Adams and Alitalo 2007): (1) Expression of a pro-
angiogenic factors in the tissue in response to local stimuli, (2) angiogenic factors diffuse through tissues 
and reach the blood vessels, (3) cells lining the walls of capillaries (Endothelial Cells), become activated 
and migrate towards the higher angiogenic factor concentrations, (4) ECs behind the leading cell start 
proliferation in order to expedite extending the newly formed sprout. When these sprouts grow, they fuse 
together to stabilize and form loops that can carry blood, a process known as anastomosis (Paweletz and 
Knierim 1989). 

MSCs are pluripotent adult stem cells that can differentiate into different cell types and widely used 
in bone tissue engineering (Arvidson et al. 2011). One of the rationales for the use of MSCs in bone tissue 
engineering is their ability to release factors such as VEGF that influence cell survival, proliferation and 
promote angiogenesis (Giuliani et al. 2013). Several data indicate that MSCs can provide a local 
microenvironment that supports bone regeneration and angiogenesis.  

4.2 Cell Types and Simulation Environment 

Endothelial cells (ECs) are the main actors in angiogenesis process, and are responsible for capillary 
growth. The angiogenesis simulation model is constructed based on the EC actions, given the biomaterial 
microenvironment. Behavior of ECs has been abstracted in a rule-base from the real angiogenesis process 
observed in experimental studies. ECs become activated with the presence of a certain amount of 
angiogenic growth factor (i.e. VEGF) concentration in their local environment. Activated ECs (tip cell) 
migrate through the gradient of VEGF. While the EC is migrating, it elongates until it reaches the 
maximum observable size of a single EC. Elongation results in proliferation of ECs (stalk cells), which 
eventually form the capillary network. VEGF is needed for newly formed capillary survival as well. 
Endothelial cells may apoptose due to growth factor deficiency and results in capillary regression (Tang 
et al. 2004). A VEGF threshold is implemented in the ABM to account for the capillary regression during 
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vascularization process. The regions occupied by the scaffold are not allowed to EC invasion, when an 
EC encounters part of a scaffold, it searches new routes to keep moving through the gradient. Parameters 
and detailed rule base governing the EC behavior are derived from the literature and reported elsewhere 
(Bayrak et al. 2015a). The flow chart for the main methods is illustrated in Figure 1.  
 

Figure 1: EC agent rule-base. 

MSCs are the cells that form bone tissue after a differentiation process. A rule base is derived for 
tissue formation from stem cell differentiation based on a comprehensive literature survey (Bayrak et al. 
2014). The MSC agent is capable of sensing the VEGF concentration in its neighborhood, migrating 
towards its gradient, going through cell cycle, growing in size, proliferating and releasing VEGF in the 
environment. MSC agent first searches the space and calculates the distance to the closest stable blood 
vessel(i.e anastomosed) since only  anastomosed capillaries are considered as having blood flow and a 
source for oxygen and nutrition. If there is no blood vessel in the close vicinity (0-100μm), the cell agent 
will update its state to quiescent phase (G0). Hypoxic cell state (H) will be assigned to the MSC cell if 
there is no stable blood vessel in a further distance (100-200μm),and will start releasing VEGF. The time 
that cells can spend under hypoxia is limited (Deschepper et al. 2011). If no blood vessel reaches the close 
vicinity of a hypoxic cell, it will go through cell apoptosis. The oxygen and nutrition distribution is not 
explicitly modeled in space, however oxygen diffusion from the blood vessel is assumed to be a few 
hundred microns. If the cell is in the vicinity of a stable blood vessel, then it will go through the cell cycle 
and spend the required time at each state and complete the actions before it proceeds to the next state in 
the cycle.  

The three-dimensional scaffold model with spherical pores were generated computationally  and 
described elsewhere (Somo et al. 2015). For weak scaling studies larger size of scaffolds were created by 
reflecting the scaffolds at the original boundary in one dimension to keep the pore openings and porosity 
(pore volume divided by the total volume) consistent. 

The VEGF concentration values were implemented using the new DiffusionLayer functionality 
described above; the diffusion algorithm used was a sum of the current grid cell’s concentration minus the 
amount it would diffuse outward plus the amount it would receive from the immediately adjacent grid 
cells (radius 1, maximum of 26 adjacent cells, with fewer at the edges of the space). Simulation 
visualization for tissue growth is illustrated in Figure 2. 
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Figure 2: Simulation visualization for 2-week vascularization (red) and tissue growth (pink). 

4.3 Repast HPC Projections 

The Bone Tissue simulation model includes three projections: a fine-resolution discrete space, a coarse-
resolution discrete space, and a network projection. The simulation is parallelized by dividing the physical 
space represented across multiple processes. Each process runs independently until there is a need to 
ensure that the information across processes is brought up to date and synchronized. Synchronization of 
the simulation is required when agents that might interact across processes have changed their internal 
states, or when some agents may have moved from one processor to another or been removed from the 
simulation environment. In Figure 1, black rectangles show the algorithm’s synchronization points. 

4.3.1 3-D Spaces 

The requirement that MSC agents search for nearby cells can potentially lead to a high computational 
cost. If the agents’ locations were only maintained in a continuous space, it would be necessary to 
calculate the distance from the active agent to all potential partner agents, and, unless some additional 
storage strategy were used, to do this for each active agent at each search. This simulation uses a discrete 
space, and in a discrete space the individual cells that are potentially within the search radius can be 
extracted. The discrete space provides a list of agents within these specific cells, and all agents outside 
this region are ignored. Despite this, for this simulation the search radius is large enough compared to the 
smallest spatial unit that the number of potential matching cells is very high: typically a region of 
40x40x40 = 64,000 cells is needed, leading to a high computational demand.  

To avoid this, Repast HPC uses multiple spaces: the positions of agents are maintained in both a fine-
scaled space and much coarser space. Instead of 40x40x40, this coarser grid covers the same volume, but 
using only 3x3x3=27 cells. The resulting indexing permits much faster search. The only additional burden 
on the simulation is the need to ensure that all agent movement is done in both spaces, not just one. 

4.3.2 Networks 

The simulation also tracks blood vessels using a network projection; in this network projection, blood 
vessels are represented as linked cells forming a chain. This chain can cross process boundaries using 
Repast HPC’s built-in functions, so no additional burden on the user is required.  
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5 PERFORMANCE TESTING 

5.1 Test Design: Strong and Weak Scaling 

Tests were performed in two ways. Strong scaling was tested by establishing a baseline simulation with 
1,024,000 MSC agents in a space that measured 320 x 800 x 200, and then increasing the number of 
processes in the Z, X, and Y dimensions and further subdividing the space, as given in Table 1: 

Table 1: Strong scaling design of runs. 

Number of Processes Procs: Z Procs: X Procs:Y MSC Agent Count Total MSC Agents 
32 4 4 2 32000 1024000 
64 8 4 2 16000 1024000 
128 8 8 2 8000 1024000 
256 8 8 4 4000 1024000 
512 8 8 8 2000 1024000 
1024 8 16 8 1000 1024000 

 
For weak scaling tests, the size of the space was extended by expanding the Z dimension, and the 

number of agents were increased from a baseline, as given in Table 2: 

Table 2: Weak scaling design of runs. 

Number of Processes Procs: Z Procs: X Procs:Y MSC Agent Count Total MSC Agents zdim 
16 4 2 2 12800 204800 100 
32 8 2 2 12800 409600 200 
64 16 2 2 12800 819200 400 
128 32 2 2 12800 1638400 800 
256 64 2 2 12800 3276800 1600 
512 128 2 2 12800 6553600 3200 
1024 256 2 2 12800 13107200 6400 

5.2 Operations Tested 

The performance tests given here report the performance for both the entire cycle of each simulation time 
step and for specific subcomponents of that time step. The results may be divided broadly into 
‘processing’ and ‘communication’; the former refers to the action of the bone model simulation, and the 
latter to the exchange of cross-process information handled by Repast HPC. Processing includes 
searching for stable vessels, MSC Agents movement and growth, and MSC Agents releasing GF; 
communication includes calls to three Repast HPC core functions:  

 
• Synchronize balance: marking agents that need to be shared across processes 
• Synchronize agent states: copying current agent state variables to non-local copies 
• Synchronize agent status: updating all non-local agents to reflect movement of agents 

across processes or removal from the simulation 
 

Additionally, total communication time, including Repast HPC’s ‘Synchronize projection 
information’ operation, is assessed. 

In addition to these, the diffusion operation described above was also assessed separately; this 
operation, ‘updateVegFMap’ includes both the calculation of the new values to represent diffusion and 
the communication of those values to adjacent processes via MPI. 
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Runs on the Vesta system (see below) are time-limited; consequently, we have considered all runs by 
limiting them to match the results obtained from the run with the fewest completed time ticks. For all 
results here we consider only the first 23 ticks of simulation time, for which we calculate averages for all 
operations listed. In practice, the time per tick for the simulation may change greatly as the simulation 
progresses due to the number and positions of the agents and the increased demand for processing and 
communication time. However, the initial period is comparable across all runs presented here.  

5.3 Resources Used 

All performance tests were done on the BG/Q Vesta system at the Argonne Leadership Class Facility, 
Argonne National Laboratory (USA) (https://www.alcf.anl.gov/cetus-and-vesta). Processors on the Vesta 
system are equipped with PowerPC A2 1600 MHz processors (1.6 GHz) and include 16 GB of memory. 
One core per processor was used for all text, and no multithreading was used. 

6 RESULTS 

6.1 Weak Scaling 

Results from weak scaling tests are given in Figure 3 (left column). Overall times, shown at the top left, 
exhibit little increase as the size of the problem is increased. Of the simulated biological processes, the 
somewhat unusual curve for mscMoveAndGrow, and an anomalous value at 128 processes in 
mscRelease, are unexplained at this time. Of the Repast HPC communication processes, synchronization 
balancing is essentially unaffected by increasing the scale, but both synchronization of agent status and 
agent state climb. These, however, are small components  of  the overall  communication costs,  much  of  
which occurs  in  the  synchronize projection information task. The updateVegfMap call performing 
diffusion is essentially unchanged by increasing scale. 

6.2 Strong Scaling 

The right column of Figure 3 presents the results from the strong scaling runs as described in Table 1. 
Communication and Processing times are presented independently, and their total is also shown. The 
increase in processors by a factor of 32x improves performance by approximately 10x. As might be 
expected, the improvement is more marked in the processing time than in the communication time. 

Performance for individual processes of mscSearchForStableVessel, mscMoveAndGrow, and 
mscRelease show improvement is apparent for all cases, though an anomalous uptick for 
mscMoveAndGrow at 256 processes is unexplained. 

Performance for Repast HPC core functions are also given in Figure 3 (right column). 
SynchronizeProjectionInfo is the most expensive operation but scales well. Most of the performance costs 
from scaling are incurred in synchronizeAgentStatus, which trends upward as the scale increases, likely 
because this operation is the most highly affected by increasing the number of inter-process 
communications needed. Even though the size of each interprocess operation may be reduced, the number 
of these operations is increased, leading to a slightly higher performance cost as scaling is increased. 

Performance for Repast HPC core functions are also given in Figure 3 (right column). 
SynchronizeProjectionInfo is the most expensive operation but scales well. Most of the performance costs 
from scaling are incurred in synchronizeAgentStatus, which trends upward as the scale increases, likely 
because this operation is the most highly affected by increasing the number of inter-process 
communications needed. Even though the size of each interprocess operation may be reduced, the number 
of these operations is increased, leading to a slightly higher performance cost as scaling is increased. 

The performance of the diffusion routines (updateVegfMap) shows a speedup of almost exactly 32x, 
from a slowest speed of more than 10.85 seconds per operation to a fastest of under .35 seconds. 
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Total Communication & Processing Times                                        

 
 

MSC Method Times                                        

 
 

Repast HPC Method Times                           

 
Figure 3: Weak Scaling Results (L) and Strong Scaling Results (R). 

7 CONCLUSIONS AND NEXT STEPS 

These initial tests are at considerably smaller scales than will be needed for biologically valid and 
medically relevant simulations. However, the capabilities of both Strong and Weak scaling will be 
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valuable when the simulations are scaled to real-world sizes: weak scaling will allow the problem size to 
be expanded to scales that include a much larger volume, approaching the sizes of bone grafts in use in 
medical contexts today; strong scaling can allow these larger simulations to make use of much higher 
numbers of processes- moving, for example, from 1024 processes on Vesta to ALCF’s Mira, which can 
run simulations with as many as 786,432 processes (https://www.alcf.anl.gov/mira ).  

The choice to continue using Repast HPC’s baseline and generic functionality, instead of customized 
and highly optimized code, is deliberate. The cell agents and biological processes used in these 
simulations represent only a small and preliminary part of a picture that is known to be richer.  Repast 
HPC makes it easy to add new behaviors to existing cells and to expand the kinds of cells incorporated 
into the simulation, without the need to extensively revise the code or write custom MPI calls. This 
carries a recognized cost in terms of performance, but preserves flexibility appropriate to this stage of our 
project’s development. The ability to rapidly develop new variants, and to test them first in small runs and 
then at larger scales quickly, will be key.  

Repast HPC will enable further exploration and modeling of the biological processes in bone tissue 
growth. Expected next steps include the addition of different type of bone cell agents and growth factors 
released by these cells. The new 3-Dimensional spaces, and diffusion within those spaces, allow Repast 
HPC to put these additional biological avenues within easy reach. 
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