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ABSTRACT

We consider an optimization problem in radiotherapy, where the goal is to maximize the biological effect on
the tumor of radiation intensity profiles across multiple treatment sessions, while limiting their toxic effects
on nearby healthy tissues. We utilize the standard linear-quadratic dose-response model, which yields
a nonconvex quadratically constrained quadratic programming (QCQP) formulation. Since nonconvex
QCQPs are in general computationally difficult, recent work on this problem has only considered stationary
solutions. This restriction allows a convex reformulation, enabling efficient solution. All other generic
convexification methods for nonconvex QCQPs also yield a stationary solution in our case. While stationary
solutions could be sub-optimal, currently there is no efficient method for finding nonstationary solutions.
We propose a model predictive control approach that can, in principle, efficiently discover nonstationary
solutions. We demonstrate via numerical experiments on head-and-neck cancer that these nonstationary
solutions could produce a larger biological effect on the tumor than stationary.

1 INTRODUCTION

In external beam photon radiotherapy for cancer, the goal is to maximize the so-called therapeutic ratio, that
is, the differential between tumor-damage and toxic effects of radiation on nearby organs-at-risk (OAR).
This is achieved via a two-pronged approach: spatial localization and temporal dispersion (also called
fractionation) of radiation dose.

In the traditional view of spatial localization, a high radiation dose is prescribed to the tumor and upper
bounds are forced on OAR-dose. An optimization problem is then solved to find a radiation intensity
profile (also called a fluence-map) that delivers dose adhering to this protocol as closely as possible. The
now prevalent Intensity Modulated Radiation Therapy (IMRT) technology and several well-established
optimization models and algorithms are capable of finding highly conformal fluence-maps (Ehrgott et al.
2008; Romeijn et al. 2006; Romeijn and Dempsey 2008; Shepard et al. 1999; Webb 2010). In practice,
the desired radiation dose (as found by spatial localization) is administered in a pre-determined number of
multiple equal-dosage sessions. For example, for head-and-neck cancer, a dose of 70 Gy is administered
in 35 sessions of 2 Gy each (Marks et al. 2010). Healthy cells often have better damage-repair capabilities
than tumor cells. Temporal dispersion of dose therefore gives healthy cells some time to recover from
radiation-damage between sessions, thus increasing the therapeutic ratio.

There has been a recent surge of interest in a biological view of spatial localization. Instead of finding a
fluence-map that delivers a tumor-dose close to the prescription in a pre-determined number of equal-dosage
sessions, the goal in the biological approach often is to find a fluence-map that maximizes the so-called
biological effect (BE) on tumor over a pre-determined number of equal-dosage sessions. Similarly, instead
of putting upper bounds on the total dose to OAR, upper bounds are forced on the so-called biologically
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effective dose (BED) to OAR. The hope in this line of research is that such biological objectives and
constraints might better-capture tumor- and OAR-response to radiation and hence increase survival rates.

The most well-known radiobiological model of dose-response is the linear-quadratic (LQ) model (Hall
and Giaccia 2005). The tumor-BE and OAR-BED in biological optimization are commonly calculated
using this LQ model. The reader is referred to Armpilia et al. (2004), Bertuzzi et al. (2013), Fowler (1990,
2001, 2007, 2008), Fowler and Ritter (1995), Jones et al. (1995), Keller et al. (2012), Saberian, Ghate, and
Kim (2016, 2015a), Unkelbach et al. (2013, 2013), and references therein, for examples of such biological
formulations, their analyses, and solution methods. In this LQ dose-response framework, the tumor-BE and
the OAR-BED are both quadratic functions of dose. The aforementioned biological formulations thus call
for maximizing a convex quadratic function subject to convex quadratic constraints. As such, they belong
to the class of nonconvex quadratically constrained quadratic programs (QCQPs). Nonconvex QCQPs are
in general NP-hard (Luo et al. 2010). Research in this area therefore has mainly progressed under two
restrictive assumptions.

A large group of papers assumes that a fluence-map is available a priori via a traditional IMRT spatial
treatment planning system that does not use biological objectives or constraints. According to the standard
linear dose-deposition model, radiation dose is a linear function of fluence-map (Jeraj and Keall 1999;
Siebers et al. 2001; Spirou and Chui 1998; Tian et al. 2013; Webb and Oldham 1996). Thus, a desired
dose in one session can be administered by scaling the pre-determined fluence-map. Under the additional
assumption of equal-dosage, i.e., stationary fractionation, this approach reduces the biological optimization
formulation to a problem where the decision variable equals the identical dose to be administered in every
session. This single-variable problem can be solved in closed-form. This class of stylized formulations
is often called separated models, because they separate the spatial and the biological components of the
problem. Three recent papers in this area have shown via a toy counterexample and/or supporting rigorous
analyses that equal-dosage fractionation may not be optimal even when dose-response parameters do not
change over time (Mizuta et al. 2012; Saberian, Ghate, and Kim 2015c, 2016). Another paper proved
that unequal-dosage fractionation may be optimal when dose-response parameters do change over time
(Unkelbach et al. 2013).

Two papers took an alternative integrated view whereby they attempted to directly optimize fluence-
maps using biological formulations (Saberian, Ghate, and Kim 2015a; Unkelbach et al. 2013). The resulting
formulations were computationally difficult. One of the papers (Saberian, Ghate, and Kim 2015a) therefore
simplified the formulation by assuming that fluence-maps do not vary across sessions, i.e., a stationary
solution. This significantly reduced the dimension of the problem, and in fact, allowed them to reformulate
it as a convex program that enabled efficient solution. That paper numerically demonstrated that this
integrated approach with stationary solutions can lead to higher tumor-BE compared to earlier stylized
separated models. The other paper (Unkelbach et al. 2013) constructed a small toy example to show that
a stationary solution need not be optimal. However, they did not provide a detailed algorithm, a rigorous
analysis of its behavior, or computational results for finding nonstationary fluence-maps for nonconvex
QCQPs. Two other papers numerically demonstrated that unequal-dosage fractionation could be optimal
when dose-response parameters changed stochastically over time (Kim, Ghate, and Phillips 2012; Saberian,
Ghate, and Kim 2015b).

This literature survey exposes the following two research questions: (1) could nonstationary fluence-
maps be superior to stationary ones in integrated biological formulations of clinically realistic test-cases
even when dose-response parameters do not vary over time? and (2) can we devise an efficient algorithm
to discover such nonstationary fluence-maps? In this paper, we answer these questions in the affirmative.

The paper is organized as follows: a precise problem description and its mathematical formulation is
presented in the next section; Section 3 describes an approximate solution algorithm for this formulation;
numerical experiments in Section 4 demonstrate that it does indeed discover nonstationary solutions in
some test-cases; we end with a few concluding remarks.
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2 PROBLEM DESCRIPTION

The notation below is standard in the literature and is borrowed, for instance, from Saberian, Ghate, and Kim
(2015a). Let n denote the number of tumor voxels. The radiation field is discretized into small segments
called beamlets. Let k denote the number of beamlets. Let ut ∈ ℜk

+ denote the k-dimensional beamlet
intensity vector (fluence-map) employed in treatment session t. The fixed number of treatment sessions,
administered one-a-day, is denoted by N. Let A denote the n×k nonnegative tumor dose-deposition matrix;
Ai denotes its ith row, which corresponds to the ith tumor voxel. According to the linear dose-deposition

model, Aiut is the dose delivered to the ith tumor voxel in session t. Let Ā =
n
∑

i=1
Ai/n; then, Āut is the

average dose delivered to the tumor in session t. Let S denote the matrix employed in writing smoothness
constraints on ut . Let α0 and β0 denote the dose-response parameters for the tumor’s LQ model. A
tumor proliferation term is also included in our model; it is defined by τ(N) ,

[(N−1)−Tlag]
+ ln2

Tdouble
, where

[(N−1)−Tlag]
+ = max((N−1)−Tlag,0). In this formula, Tlag represents the time (in days) after which the

tumor starts proliferating following the start of treatment and Tdouble is the tumor doubling time (in days). The
goal is to maximize the tumor-BE of average dose for the sequence of fluence-maps (u1;u2; . . . ;ut ; . . . ;uN).
This tumor-BE objective is given by

N

∑
t=1

(α0Āut +β0(Āut)2)− τ(N). (1)

The set of OAR is denoted by M ,M1∪M2; here, M1 and M2 are mutually exclusive sets of OAR
with maximum dose and mean dose constraints, respectively. OAR in M1 are often called serial, whereas
those in M2 parallel. We use the subscript/superscript m to index quantities related to OAR m ∈M .
The set of voxels in OAR m is denoted by Nm , {1,2, . . . ,nm}. Let Am denote the nm× k nonnegative
dose-deposition matrix for OAR m, with Am

j being its jth row. Thus, the dose delivered to the jth voxel
in Nm in the tth session is Am

j ut . Let ρm , βm/αm denote the inverse alpha-over-beta ratio of the α and
β parameters of the LQ dose-response model for OAR m. Suppose for OAR m ∈M1 that a total dose
Dm

max is known to be tolerated by each voxel if administered in Nm
conv equal-dose fractions. Similarly,

suppose for OAR m ∈M2 that total mean dose Dm
mean is known to be tolerated if administered in Nm

conv
equal-dose fractions. Let BEDm

� = Dm
�+ρm(Dm

�)
2/Nm

conv be the BED of total dose Dm
� if administered in

Nm
conv equal-dose fractions, where � represents either max or mean depending on the type of OAR.

Consider the following optimization problem:

(P) F∗ = max
N

∑
t=1

(α0Āut +β0(Āut)2)− τ(N),

subject to
N

∑
t=1

(Am
j ut)+

N

∑
t=1

ρm(Am
j ut)2 ≤ BEDm

max, ∀ j ∈Nm, m ∈M1,

N

∑
t=1

nm

∑
j=1

(Am
j ut)+

N

∑
t=1

ρm

nm

∑
j=1

(Am
j ut)2 ≤ nmBEDm

mean, m ∈M2,

Sut ≤ 0, t = 1,2, . . . ,N,

ut ≥ 0, t = 1,2, . . . ,N.

Since τ(N) is fixed and it does not affect optimal solutions of (P), we will ignore it in the rest of this paper.
The first constraints enforce that the BED to each voxel in a serial OAR is no more than the conventional
BED; these are called the maximum dose constraints. The second constraints ensure that the average
BED of doses administered to different voxels of a parallel OAR is bounded above by the conventional
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BED; these are the mean dose constraints. The third constraints ensure, via an appropriate smoothness
matrix S, that the relative absolute difference between geometrically adjacent components of ut is within
a range attainable by IMRT. The feasible region of (P) is bounded and thus it has an optimal solution.
All constraints in (P) are convex in the concatenated fluence-map vector u, (u1;u2; . . . ;uN) ∈ℜk×N . The
objective is also convex in u, but since we wish to maximize this function, (P) is not a convex problem.
Specifically, it is a nonconvex QCQP. If we restricted consideration to stationary fluence-maps by setting
u1 = u2 = . . .= uN , v as in Saberian, Ghate, and Kim (2015a), the objective function becomes monotone
in Āv and thus the problem can be reformulated as an equivalent convex one. In this paper, we compare
our nonstationary solutions against an optimal (stationary) solution to that convex problem.

To get a sense of the large scale of (P), note that for head-and-neck cancer, the typical number of
beamlets, k, is about 3000 and the number of sessions N is 35. Thus, the dimension of u is about a 100,000.
The number of voxels in a serial OAR can be about a 1000. As such, the total number of constraints
in (P) can be as high as several thousand. Thus, efficient exact solution of this nonconvex QCQP is
computationally difficult in practice.

First note that the objective and constraint functions in (P) are symmetric with respect to permutations
over t. Second, standard approaches for approximate solution of large-scale nonconvex QCQPs call for
convexification (Luo et al. 2010). For (P), since the objective function is the only source of nonconvexity,
these approximation methods would amount to replacing the objective with a concave function that is
additively separable and symmetric over t. This would create a symmetric, convex optimization problem.
Such problems are known to possess symmetric, that is, stationary optimal solutions (Waterhouse 1983).
Thus, standard convexification methods for (P) would not produce nonstationary fluence-maps. We thus
borrow an approach called model predictive control (MPC) from the literature on finite-horizon, discrete-time,
deterministic, constrained, non-linear control theory (Bertsekas 2007).

3 MODEL PREDICTIVE CONTROL

The idea in MPC, for a problem with N sessions such as (P), is simple. Beginning with the initial “state”
of the problem, we first solve an N-session problem assuming stationary fluence-maps. Suppose an optimal
stationary sequence of fluence-maps for this problem is

(u1
∗;u1
∗; . . . ;u1

∗︸ ︷︷ ︸
N times

).

Implement fluence-map u1
∗ in the first session only. This transforms the state of the problem to a new

state at the beginning of the second session. Now solve an N−1- session problem to obtain an optimal
stationary sequence of fluence-maps

(u2
∗;u2
∗; . . . ;u2

∗︸ ︷︷ ︸
N−1 times

)

and implement the fluence-map u2
∗ in the second session only. Repeat this process until the last session,

where a single-period problem is solved and the resulting optimal fluence-map is implemented.
To implement MPC on (P), we first need to define the “state” of the problem at the beginning of

sessions t ≥ 1. Toward this end, for each serial OAR m ∈M1 and for each voxel j ∈Nm in this OAR, let
zt,m

j denote the total BED administered in the first t−1 treatment sessions. Let zt,m , (zt,m
1 ,zt,m

1 , . . . ,zt,m
nm ),

and zt be the vector formed by concatenating vectors zt,m for all m ∈M1. Similarly, for each parallel
OAR m ∈M2, let wt,m denote the total average (over all voxels in Nm) BED administered in the first t−1
sessions. Let wt be the vector formed by concatenating vectors wt,m for all m ∈M2. Then we define the
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state as [zt ,wt ]. We will need the optimization problem

(Pt) max
N

∑
t=1

(α0Āut +β0(Āut)2)

N

∑
l=t

(Am
j ul +ρm(Am

j ul)2)≤ BEDm
max− zt,m

j , ∀ j ∈Nm, m ∈M1,

nm

∑
j=1

N

∑
l=t

((Am
j ul)+ρm(Am

j ut)2)≤ nmBEDm
mean−nmwt,m, m ∈M2,

Sul ≤ 0, l = t, t +1, . . . ,N,

ul ≥ 0, l = t, t +1, . . . ,N

in our precise listing of the MPC algorithm below.

The MPC Algorithm

1. Set t = 1, and begin with the initial state [z1,w1] = [~0,~0].
2. WHILE t ≤ N

A. Let ut = ut+1 = . . . = uN in (Pt) and solve it. Let (ut
∗;ut
∗; . . . ;ut

∗︸ ︷︷ ︸
N−t+1 times

) denote a stationary optimal

solution of (Pt) obtained in this manner.
B. Implement fluence-map ut

∗ in session t and update the state as

zt+1,m
j = zt

j +Am
j ut
∗+ρm(Am

j ut
∗)

2, j = 1,2, . . . ,nm, m ∈M1,

wt+1,m = wt,m +

nm

∑
j=1

[
Am

j ut
∗+ρm(Am

j ut
∗)

2
]

nm
, m ∈M2.

C. set t = t +1 and go back to Step 2.
3. END WHILE

This algorithm delivers the sequence of fluence-maps (u1
∗,u

2
∗, . . . ,u

N
∗ ) that is feasible to problem (P).

It seems plausible that this sequence could be nonstationary. The next theorem dashes this hope.
Theorem 1 Consider an optimization problem of the form

max
N

∑
t=1

(α0Āut +β0(Āut)2),

gm(u1,u2, . . . ,uN)≤ bm, m = 1,2, . . . ,M.

Suppose that functions gm are convex and symmetric. When MPC is implemented on this problem, it
cannot deliver a nonstationary solution that is strictly better than all stationary solutions. In particular,
since the constraint functions in (P) are convex and symmetric, this stationarity property holds for our
MPC implementation on problem (P).

Proof. We provide a proof by contradiction. Suppose that MPC delivers a nonstationary solution of the
form

uN =
(

u1, . . . ,u1︸ ︷︷ ︸
K1 times

,u2, . . . ,u2︸ ︷︷ ︸
K2 times

, . . . ,uN , . . . ,uN︸ ︷︷ ︸
KN times

)
,
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where ui 6= u j for i 6= j. Here, K1 +K2 + . . . ,KN = N. Then MPC must have returned

uN-1 =
(

u1, . . . ,u1︸ ︷︷ ︸
K1 times

,u2, . . . ,u2︸ ︷︷ ︸
K2 times

, . . . ,uN−1, . . . ,uN−1︸ ︷︷ ︸
KN−1+KN times

)
when t = 1+K1 +K2 + . . .+KN−2. Continuing backwards, MPC must have returned

u2 =
(

u1, . . . ,u1︸ ︷︷ ︸
K1 times

, u2, . . . ,u2︸ ︷︷ ︸
K2+K3...+KN times

)
when t = 1+K1. Finally, MPC must have delivered

u1 = (u1, . . . ,u1︸ ︷︷ ︸
N times

)

when t = 1. We define the notation F t(u1,u2, . . . ,uN) =
N
∑
l=t

f (ul), where f (ul) = α0Āul + β0(Āul)2 for

l = 1,2, . . . ,N. Now consider the following three cases.

Case 1: Āu1 > Āu2. In this case, f (u1)> f (u2). Then

F1+K1(u1) = (K2 + . . .+KN) f (u1)> (K2 +K3 . . .+KN) f (u2) = F1+K1(u2).

Since
u1 = (u1,u1, . . . ,u1︸ ︷︷ ︸

N times

)

is a feasible solution to the N-session problem, this strict inequality contradicts the optimality of

( u2, . . . ,u2︸ ︷︷ ︸
K2+K3...+KN times

)

in session t = 1+K1.
Case 2: Āu1 < Āu2. Let

v =
K1u1 +(K2 +K3 . . .KN)u2

N
,

and consider the alternative solution
ualt = (v,v, . . . ,v︸ ︷︷ ︸

N times

).

Now, since constraints gm are convex and symmetric, Jensen’s inequality can be employed to show that
this alternative solution is feasible to the N-session problem. Moreover,

Āv =
Ā(K1u1 +(K2 + . . .+KN)u2)

N
=

K1Āu1 +(K2 + . . .+KN)Āu2

N
>

K1Āu1 +(K2 + . . .+KN)Āu1

N
= Āu1.

Therefore, f (v)> f (u1). Consequently,

F(ualt) =
N

∑
t=1

f (v)>
N

∑
t=1

f (u1) = F(u1).

This contradicts the optimality of u1 when t = 1.
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Case 3: Āu1 = Āu2. In this case, f (u1) = f (u2) and hence F(u1) = F(u2). Therefore, we can replace u2
with u1 when t = 1+K1.

Applying this argument recursively, we see that MPC cannot return a nonstationary solution that is
strictly better than all stationary solutions.

In view of this theorem, in order to force MPC to return a nonstationary sequence of fluence-maps
with a high tumor-BE than any stationary fluence-map, we need to use a surrogate objective for which
the conclusion of the theorem fails. We propose the total number of tumor cells remaining (TNTCR)
objective from (Kim, Ghate, and Phillips 2012; Saberian, Ghate, and Kim 2015b) for this purpose. TNTCR

is given by
n
∑

i=1
xN+1

i , where xt
i denotes the total number of remaining tumor cells at the beginning of the

tth session with dynamics xt+1
i = xt

i exp(−α0(Aiut)−β0(Aiut)2) for i = 1,2, . . . ,n. In the next section, we
study whether or not this surrogate objective induces MPC to return nonstationary fluence-maps with a
higher tumor-BE than the best stationary fluence-map.

4 NUMERICAL RESULTS

We conducted numerical experiments on five different head-and-neck test cases from Saberian, Ghate,
and Kim (2015b). These cases included four OAR: spinal cord (serial), brainstem (serial), left and right
parotids (parallel; parotid glands are salivary glands located just in front of the two ears). Parameters ρm
were fixed at 1/3 for all OAR as is common in the clinical literature (Fowler 1990, 2001, 2007, 2008). All
tolerance doses were set as in Saberian, Ghate, and Kim (2015a), which were in turn taken from a standard
head-and-neck treatment protocol (Marks et al. 2010). The number of sessions was fixed at N = 35. We
also included a maximum BED constraint (corresponding to a total dose of 90 Gy in 35 sessions) on the
tumor to facilitate dose homogeneity. We fixed α0 = 0.35 Gy−1 and β0 = 0.035 Gy−2 as is standard in the
clinical literature (Fowler 1990, 2001, 2007, 2008). The initial cell density was assumed to be homogeneous
over all tumor voxels. All computer simulations were performed on a 3.1 GHz iMac desktop with 16 GB
RAM using MATLAB.

We used the TNTCR objective function to search for nonstationary solutions via MPC, and compared
them with optimal solutions to the stationary version of problem (P). This comparison was based on the
tumor-BE objective values in problem (P). The results showed that MPC was able to discover nonstationary
solutions better than stationary solutions in three of the five cases. The percentage improvements attained
by a nonstationary solution over the best stationary solution were 5.2%, 3.2%, and 2.1% for these three
cases. In the other two cases, stationary solutions turned out to be superior than the nonstationary solutions
returned by MPC by 3.2% and 0.92%. Figure 1 shows the tumor-BE for every voxel averaged over 35
sessions delivered by the nonstationary and best stationary solution for the first test-case. It illustrates
that the nonstationary tumor-BE seems higher than the best stationary tumor-BE in this case. Figure 2
shows the nonstationary intensity profiles administered by MPC for ten sample tumor voxels for the same
test-case. Figure 3 shows the nonstationary doses delivered to 500 sample tumor voxels by MPC. It also
illustrates the average dose over all tumor voxels for this nonstationary solution (red line) as well as for
the best stationary one (light blue line).

We also numerically optimized N for one of the cases, both for the stationary and MPC methods. This
was achieved by fixing N at all its possible values {1,2, . . . ,50}, solving the problem for each fixed N, and
comparing the tumor-BE. Parameters Tlag and Tdouble were fixed at 2 and 10 days, respectively, for both
methods. The optimal number of treatment session were 28 and 31 for the stationary and MPC methods,
respectively. Moreover, the nonstationary solution delivered 8.7% more tumor-BE in optimality than the
stationary solution. A 5-10% increase in tumor-BE is comparable to other results reported in the existing
literature on the stationary fractionation problem (Saberian, Ghate, and Kim 2015a). Another interesting
result was that the tumor-BE using the MPC method behaved similar to the one previously observed with
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Figure 1: Tumor-BE averaged over 35 sessions administered by the nonstationary (left panel) and best
stationary (right panel) solutions for test-case 1.

the stationary method (Saberian, Ghate, and Kim 2015a). That is, the tumor-BE increases with increasing
N, reaches its maximum value, and then decreases.

In summary, we conclude that MPC may be able to discover nonstationary fluence-maps with a higher
tumor-BE than stationary ones. An interesting direction for future research would be to optimize the number
of treatment sessions N by using nonstationary fluence-maps.
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