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ABSTRACT

Getting seasonal flu vaccines and seeking medical treatments are two effective strategies to prevent the
spread of seasonal influenza. However, less than half of Americans received flu vaccines in the 2014-
2015 flu season. A high cost-sharing rate in healthcare insurance policies results in few patients to visit
doctors, leading to slow recovery rate. In this paper, we design insurance policies, including vaccination
incentives and cost-sharing, to encourage the insurants to receive a flu vaccine and prevent the spread of
seasonal influenza. Dynamic interaction between a single insurer and multiple insurants is formulated as
a Stackelberg vaccination game and agent-based modeling is implemented to simulate the spread of flu
in a population under different insurance policies. Simulation and experimental results indicate that the
proposed mechanism can effectively improve vaccination behavior and maintain low infection rates even
with a highly contagious flu.

1 INTRODUCTION

Influenza vaccination is the most effective way to reduce the spread of influenza in flu season. The Centers
for Disease Control and Prevention (CDC) recommends a annual flu vaccine as the first and most important
step in preventing the flu. Flu vaccination is able to reduce the chance of contracting seasonal flu and the
probability of disease transmission to vulnerable populations such as infants and elderly. Each vaccinated
individual confers some protection to the general population since those they would have infected are now
less likely to catch the flu. If a significant portion of the population is vaccinated, community immunity,
also called “herd immunity”, protects the unvaccinated masses by decreasing the circulation of the flu virus.
Another benefit to getting vaccinated is to consider the medical cost if you do get the flu and lost income
from work if you take sick leave, not to mention the potential cost of hospitalizations. Moreover, under
the Affordable Care Act, flu vaccination is covered at no out-of-pocket expense as long as you have health
insurance. Despite all of that, only 47.1% of Americans received flu vaccines in the 2014-2015 flu season
(Centers for Disease Control and Prevention (CDC) 2015).
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Once being infected, the CDC recommends a doctor visit. Medical treatments like antiviral drugs
can be used to treat the flu and further prevent influenza spreading (Goldman and Joyce 2007). Increased
out-of-pocket expenses (known as “cost-sharing”) for an insurant are associated with lower rates of drug
treatments; on the other hand, lower cost-sharing will result in a lower vaccination rate because of the
relatively low medical cost. That is, an insurant tends to go to a doctor once being infected instead of
receiving flu vaccines in advance, leading to exorbitant medical costs for a healthcare insurance company
or public payer. Therefore, in order to prevent influenza spreading, a mechanism between the insurer/public
payer (e.g., Medicare or Medicaid) and the insurant is needed to allow the insurer/public payer to set a
reasonable cost-sharing policy while improving the vaccination coverage rate.

In this paper, we propose a mechanism to aid in preventing the spread of seasonal influenza for a
single insurer and multiple insurants that enables the health insurer to provide incentives for the vaccine
and set an appropriate cost-sharing rate. In the past decades, there is an extensive literature studying how
to simulate the spread of influenza and promote vaccination policy with analysis of game theory. However,
most of the extant literature considers only an individual’s perspective or decision making. Model-based
analysis of vaccination and certain theories have often suggested that eradicating an infectious disease
which is preventable by adopting a vaccine is difficult or impossible (Bauch and Earn 2004; Galvani et al.
2007; Barrett 2007; Vardavas et al. 2007). Stone et al. (2000) analyzed the rational of a compulsory
vaccination strategy in the SIR (Susceptible-Infectious-Recovered) model using measles infection as an
example. Schimit and Monteiro (2011) studied the effect of an immunization program promoted by the
government against the propagation of a contagious infection. Bauch et al. (2003) concentrated on smallpox
and studied the conflict between self-interest and group interest. Reluga and Galvani (2011) applied the
proposed general approach for population game to various simple vaccination games. Fu et al. (2010)
studied the roles of individual imitation behavior and population structure in vaccination. Not only has the
prior research focused on the individual, not including the cost for the healthcare insurance, but it has not
addressed the populations’ behaviors once implemented. We use Agent-Based Modeling (ABM) coupled
with a game-theoretic method, to capture these effects.

The CDC encourages incentives for flu vaccination uptake to increase participation of vaccination,
such as offering vaccine at low cost or providing refreshments at the clinic. In addition, Vardavas et al.
(2007) found that severe epidemics are unable to be prevented unless vaccination incentives are offered
and Betsch et al. (2015) suggested that adding incentives is an effective intervention to overcome hesitancy
to get vaccinated. Incentives, either rewards or punishments, associated with vaccination decisions have
been shown to significantly improve vaccination rate. Bronchetti et al. (2015) showed that college students
were more willing to get a flu vaccine when offered a US$20 reward (19% vs. 9%). Another possibility
to change incentives is to reduce costs. Briss et al. (2000) prevented convincing evidence that reducing
out-of-pocket costs improve vaccination coverage in children, adolescents, and adults. Francis (2004)
explored the conditions under which the free-rider problem can actually be overcome without compulsory
vaccination, through the use of taxes and subsidies. Chapman et al. (2012) conducted a game-theory
experiment to examine the effect of payout structure on individual vaccination.

Medical treatment, e.g., antiviral drugs prescribed by doctors, can be a second-line of defense against
the spread of seasonal flu. Medical treatments are able to prevent serious flu complications and shorten the
flu time. However, a high cost-sharing policy in healthcare insurance may reduce the chance that individuals
will make a doctor visit. Cost sharing in healthcare insurance is used to change the utilization of services
or prescription drugs for the enrollee of public or private health insurance schemes. The introduction of
cost sharing will decrease the utilization of most kinds of medical services and different levels of cost
sharing could bring different extents of health services utilization. Goldman and Joyce (2007) showed
that increased cost sharing in healthcare insurance is associated with lower rates of drug treatment, poorer
adherence among existing patients, and more interruption of continuation of therapy.
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Under the seasonal influenza prevention mechanism proposed in this paper, two incentive-based health-
care policies, reimbursement and cost-sharing, are used to decrease the infectious population. The insurer
first announces the healthcare policies before the flu season and each insurant decides whether or not to
receive a vaccination and whether or not to receive treatment once getting flu. In the proposed mechanism,
we consider not only the self-interest behavior of each individual insurant, but also the cost-reduction
behavior of the insurer. The individual-level model of the insurant is characterized by his/her own attributes
(e.g., income) that s/he considers when making the vaccination decision. The insurer decides on the
reimbursement and cost-sharing policies by maximizing utility in a Stackelberg Vaccination Game (SVG).
The agent-based simulation model couples the individual decision making model with a population-level
model with dynamic spreading of influenza. The contributions of this paper are in the following aspects:
(1) we design an incentive-based mechanism that aims to decrease the flu-infected population; (2) we
model the interaction behavior between the insurer and insurants, i.e., vaccination behavior of insurant and
cost-sharing and reimbursement setting behaviors of the insurer, as a SVG; (3) we develop an ABM and
present simulation results for optimal incentive-based policies for the insurer and vaccination and infection
rates for the insurants among population.

The structure of this paper is as follows. The problem description with the mechanism design is
described in Section 2. The agent-based modeling and formulations of decision problems for the insurer
and the insurants in the proposed mechanism are presented in Section 3. Section 4 shows results from the
ABM simulation and experiments. Conclusions are discussed in Section 5.

2 PROBLEM DESCRIPTION

The proposed influenza prevention mechanism is illustrated in Figure 1. In the mechanism, the insurer takes
the risk of high medication cost from the infected insurant in the flu season. In order to reduce the high cost
of medical treatment caused by the spread of influenza, the insurer adopts two incentive-based healthcare
policies: the first is to provide reimbursement to drugstores/pharmacy chains and clinics, and the second is to
adjust the cost-sharing rate for seeking appropriate medical attention. Cost-sharing is the extra out-of-pocket
expense paid by insurant if he/she goes to the doctor because of infection. The drugstores/pharmacy chains
offer the insurant incentives (e.g., coupons or goods on a non-pharmacy purchase) for early vaccinations
according to received reimbursement. The incentive is determined by cost of flu vaccines, administrative
cost, and the reimbursement provided by the insurer. For simplicity, we assume drugstores/pharmacy
chains/clinics offer flu vaccines for social responsibility and gain no profit, i.e., incentive offering to
insurants equals the reimbursement minus cost of flu vaccines and administrative cost. For insurants,
they determine whether or not to receive a vaccination based on their personal income, the inconvenience
cost of receiving a vaccination, the incentive provided by drugstores/pharmacy chains/clinics, cost-sharing
rate, direct infection cost (e.g., healthcare expenses), indirect infection cost (e.g., lost productivity and the
possibility of pain or morality). Note that in this mechanism, the insurants take actions after the insurer
announces healthcare policies. At each time step during the flu season, an individual insurant will receive
the flu vaccine only if the expected utility for vaccinating exceeds the expected utility for not vaccinating.
Similarly, an infectious insurant will seek a medical treatment only if the expected utility for seeking a
medical treatment exceeds the expected utility for not seeking at each time step.

In this paper, the following assumptions are made. We assume that the vaccine is free to all insurants
since the Affordable Care Act requires everyone to have healthcare insurance and flu vaccinations are
covered at no out-of-pocket cost; therefore, everyone in the game is assumed to have healthcare insurance.
In addition, for the insurants, we further assume that all infected insurants are able to determine whether
or not to receive medical attention. For drugstores/pharmacy chains, unlimited supplies of the vaccine
are available. For simplicity, here we assume that a vaccinated insurant grants perfect immunity from the
seasonal flu so that all insurants do not perceive any risk from vaccination.
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Figure 1: Interactions between a single insurer and insurants under designed mechanism.

3 AGENT-BASED MODELING AND PROBLEM FORMULATION

To examine the effect of healthcare insurance policies and understand the spread of seasonal flu, an ABM
is designed in Section 3.1. For each insurant, the decision to receive a flu vaccine is determined by
his/her expected utility; meanwhile the decision for the insurer is the reimbursement for vaccination and
cost-sharing rate for medical treatment. The optimal insurance policies maximize the insurer’s total utility
while considering the social benefit, i.e., public health. The problems of the insurants and the insurer are
formulated in Section 3.2.

3.1 Agent-based Modeling

ABM is one approach to model and predict the pattern of different communicable diseases through a
population. It is also an individual-based simulation approach, but it is capable of allowing the behaviors
and interactions between autonomous agents to influence the whole effects on the modeling population.
ABM consists of a population of individual actors called agents, a non-agent environment, and a set
of learning rules or adaptive processes. Each individual agent in ABM collects information from its
surroundings or neighbors and uses the information to determine how to act. ABM has been widely
employed for highly infectious disease studies due to its advanced capability of tracking the movement
of an infectious disease and the interaction among infectious and susceptible individuals in a community
located in a network, and addressing the naturally stochastic nature of the infectious process. The potentials
that ABM possess to model an epidemic spread have been demonstrated to study and track the movement
of infected populations and their contacts in a social system Perez and Dragicevic (2009). Vaccination
dynamic behavior is integrated into ABM to study an epidemiological process (Lee et al. 2010; Fu et al.
2010).

We studied the spread of seasonal influenza with a simplified SIR (Susceptible-Infectious-Recovered)
model (Kermack and McKendrick 1927) with vaccination and corresponding rules that govern the trans-
mission of disease in an ABM simulation, as depicted in the flow diagram in Figure 2. Each individual
insurant is represented as an agent in the proposed model. In addition, we adopt a stochastic approach to
traverse agent states using infection probability and recovery probabilities. Agents are grouped into six
classes. The first class is the susceptible (S) agents, who are not in direct contact with infectious agents
and are subject to be infected; that is, all its neighboring agents are not infected. The second class is the
contact (C) agents, who are in direct contact with other infectious neighboring agents. Therefore, an agent
in (C) class has an infection probability to get infected by infectious neighboring agents. The third class
is the (I) infectious agents, who are contagious. The fourth class is the (V) vaccinated agents, who are
receiving flu vaccines. The fifth class is the (T) treated agents, who are receiving medical treatment after
being infected. The sixth class is the (R) recovered agents. Figure 2 presents a flow chart which explains
in detail the sequence of health states of agents adopted in this paper.
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Figure 2: Flow diagram representing different infection phases with vaccination.

Population members in (S) susceptible class may be in contact with infectious neighboring agents
(move into (C) in-contact class). In-contact agents may acquire the infection (move into the (I) infection
class) by given infection probability. Agents in (I) infection class may infect its neighbors with a given
probability. Infectious agents may become recovered (move into (R) recovered class) based on given
recovery probability. Note that recovered agents will not return to the (S) class and are resistant to seasonal
flu. Agents receiving medical treatment have higher recovery probability than agents without medical
treatment. Note that at the start of the simulation, most of the agents fall in the (S) susceptible class and
some fall in the (I) infectious class and due to voluntary vaccination behavior, some agents are in the (V)
vaccinated class. The agents calculate their expected utility associated with the insurance policy to decide
whether to get vaccinated. Note that decisions “Is insurant vaccinated?” and “Is insurant receiving medical
treatment?” in the flow diagram are answered by the insurants; the other questions are determined by their
neighbors or given probabilities.

3.2 Problem Formulation with Stackelberg Vaccination Game

ABM in the previous section models the spread of seasonal influenza based on the six classes of infection
phases. In this section, we consider the actions of insurants, i.e., receiving vaccination and seeking medical
treatments. We model the dynamic interaction between the insurer and insurants as a SVG defined as
follows.

Stackelberg vaccination game

The SVG is a two stage game played by a single insurer (an insurance company or public payer) and
multiple insurants. The insurance company/public payer and insurants are modeled as leader and followers,
respectively. The insurer moves first by announcing the policies, i.e., incentive and cost-sharing rate to
insurants, and each insurant takes an action by determining whether to get a vaccination or not in each
time step after the announcement. If an insurant that is not vaccinated is infected, another action is to
determine whether or not to seek medical attention.
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Table 1: Notations for SVG modeling.

Notation Description
Wi Insurant i’s initial stock of health capital.
cdir,in f Direct infection cost, i.e., incremental healthcare cost of treating insurants infected with flu.

cind,in f
Indirect infection cost, e.g., incremental loss of productivity and the possibility of pain among
insurants infected with flu.

cdir,vac Direct vaccination cost, i.e., vaccine acquisition cost of flu vaccines from wholesalers apiece.
cind,vac Indirect vaccination cost, e.g., the value of work loss time for vaccination.
rsharing Cost-sharing rate in healthcare insurance.
γinc Incentive in healthcare insurance given to vaccinated insurant.
γr Reimbursement given to drugstores/pharmacy chains.
pvac Proportion of the vaccinated population.

Pi,unv(v)
Probability that an unvaccinated insurant i will eventually be infected given v
infectious neighbors.

Pi,vac(v) Probability that a vaccinated insurant i will eventually be infected (= 0).
Pi,tre Probability that an infected insurant i being treated will recover from the flu.
Pi,unt Probability that an infected insurant i not being treated will recover from the flu.
Φin f Proportion of the infected population.
Φvac Proportion of the vaccinated population.
φtre Proportion of the infected population that receives medical treatment.
cadm Vaccine administration cost for vaccine providers, e.g., drugstores/pharmacy chains.

3.2.1 Vaccination Problem of the Insurant

The expected utility of the insurant depends on whether s/he eventually gets infected or vaccinated. The net
income notation I has two subscripts where the first one indicates whether the individual insurant receives
a vaccination or not (subscript vac if the individual insurant is vaccinated and subscript unv otherwise),
and the second one indicates whether the individual insurant eventually gets infected or not (subscript inf
if the individual is infected and subscript uni otherwise).

All parameters used in SVG are defined in Table 1. The parameter Wi is intended to reflect
Grossman’s measure of initial stock of health capital, and can be increased or decreased by insur-
ant i’s health investment for each period, e.g., decisions of vaccination and treatment seeking (Gross-
man 1972). If the insurant i decides not to receive a flu vaccine, the net income is (Iunv,uni, Iunv,in f ) =(
Wi,Wi − rsharingcdir,in f − cind,in f

)
, and if the insurant i decides to receive a flu vaccine, the net income is

(Ivac,uni, Ivac,in f ) =
(
Wi − cind,vac + γinc,Wi − cind,vac + γinc − rsharingcdir,in f − cind,in f

)
. The insurant i has the

utility function Ui. All individuals are assumed to be risk-averse, i.e., Ui is a convex, increasing function for
all i. Insurant i’s expected utility for a particular time period is represented by corresponding net income
and infection probability and whether the insurant is infected. The expected utility of an unvaccinated
insurant is

Ei,unv = (1−Pi,unv)Ui(Iunv,uni)+Pi,unvUi(Iunv,in f ). (1)

At each step, the insurant will be infected based on infection probability Pi,unv, which changes each
step according to the health state of insurant’s neighbors. Here we adopt the probability of a susceptible
insurant being infected from Schimit and Monteiro (2011),

Pi,unv(v) = (1− e−kv), (2)
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where v is the number of infected neighbors connected to insurant i and k is a parameter related to the flu
infectivity. For an individual insurant, a large value of v and/or a large value of k results in a high probability
of getting infected. If no neighbors are infected, i.e., v = 0, then the probability of getting infected for
the insurant is 0, i.e., Pi,unv(0) = 1. The CDC counts the number of infected cases every single year and
calculates notifiable disease rates (U.S. Department of Health and Human Services 2015). Different ranges
of k can be categorized in terms of severity of the flu owners and likelihood of being transmitted, see the
Morbidity and Mortality Weekly Report (MMWR) (Centers for Disease Control and Prevention (CDC)
2016). The expected utility of vaccinated insurant is formulated as follow,

Ei,vac = (1−Pi,vac)Ui(Ivac,uni)+Pi,vacUi(Ivac,in f ).

Due to the assumption of complete immunity, Pi,vac = 0, thus,

Ei,vac =Ui(Ivac,uni). (3)

On any given day, if Ei,vac ≥ Ei,unv, then the insurant decides to receive a flu vaccine; otherwise they may
still receive a flu vaccine in the future based on the same decision rule. That is, insurants choose whether
or not to vaccinate based on their respective expected utilities with and without vaccination. If the insurant
does not get vaccinated today, s/he can still receive a vaccination on the following day.

Once the insurant is infected, s/he chooses whether or not to receive treatment based on the expected
utilities for receiving or not receiving medical treatment. Similarly, the net income notation I here also has
two subscripts where the first one indicates whether the individual insurant receives medical treatment or
not (subscript tre if the individual insurant receives medical treatment and subscript unt otherwise), and
the second one indicates whether the individual insurant eventually recovers from the flu or not (subscript
inf if the individual is still infected and subscript rec otherwise). If the insurant i decides not to receive
medical treatment, the net income is (Iunt,in f , Iunt,rec) =

(
Wi − cind,in f ,Wi

)
. If the insurant i decides to receive

medical treatment, the net income is (Itre,in f , Itre,rec) =
(
Wi − rsharingcdir,in f − cind,in f ,Wi − rsharingcdir,in f

)
.

The expected utility of an untreated insurant is

Ei,unt = (1−Pi,unt)Ui(Iunt,in f )+Pi,untUi(Iunt,rec). (4)

The expected utility of a treated insurant is

Ei,tre = (1−Pi,tre)Ui(Itre,in f )+Pi,treUi(Itre,rec). (5)

On any given day, if Ei,tre ≥ Ei,unt , then the insurant decides to receive medical treatment. As in the decision
process of vaccination, if the insurant does not recover from the flu, s/he can still decide to receive medical
treatment on the following day.

3.2.2 Reimbursement and Cost-sharing Rate Setting Problem of the Insurer

From the perspective of the insurer, the purpose is to maximize the total expected utility from both
vaccination and flu infection while considering the social benefit, i.e., public health state of the population.
Let Φvac

(
γinc,rsharing

)
and Φin f

(
γinc,rsharing

)
be the proportion of the population that is vaccinated and

infected, respectively, with response to reimbursement γinc and cost-sharing rate rsharing and φtre is the
proportion of the infected population that receives medical treatment. We express the total utility due to
vaccination and influenza spreading as

max
γr,rsharing

EInsurer

EInsurer = N
[
−Φvacγr −Φin f φtre

(
1− rsharing

)
cdir,in f +w(1−Φin f )

]
,
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where N is the population size, w is the weight of social benefit, e.g., if the insurer is the public payer,
instead of private insurance company, the weight of social benefit should be higher because healthcare
insurance is more like a welfare subsidy designed to aid the needs of the population. The meaning of other
notations is shown in Table 1. Because N is simply a scale factor, the utility is unchanged if N is ignored
for the purpose of maximization. The total utility can be rewritten as

EInsurer =−Φvacγr −Φin f φtre
(
1− rsharing

)
cdir,in f +w(1−Φin f ) .

For drugstores/pharmacies/clinics, if the cost of providing a vaccine to an insurant exceeds the re-
imbursement for that vaccine from the insurance company, then they experience financial loss. Here we
assume that the reimbursement is enough to cover vaccine acquisition cost and administration cost; the
rest of reimbursement will be used as incentive, γinc = γr −cdir,vac −cadm. Thus we now maximize EInsurer
where γinc and rsharing are design variables.

The simulation logic is presented as follows. The simulation models the behavior of insurants and the
spread of seasonal influenza. The behavior of insurants is modeled as a two-stage process, i.e., vaccination
and medical treatment receiving dynamics. In the first stage, each insurant decides whether or not to
vaccinate in advance based on Equations (1) and (3). In the second stage, each insurant decides whether
or not to receive medical treatment based on Equations (4) and (5). The insurants only interact with their
connecting neighbors, i.e., neighboring nodes. The simulation proceeds over iterations and one iteration
can be seen as one decision making period (e.g., one day). The insurer’s incentive policy rsharing and
cost-sharing rate γinc are determined at the beginning of simulation. An insurant’s decision is determined via
comparing expected utilities based on the income, probability of being infected, indirect cost of vaccination,
reimbursement and their neighboring nodes’ health states, etc. At the end of each iteration, ABM is used to
simulate the process of influenza spreading and health states of all insurants will be updated. The spreading
continues until all infected insurants have recovered and there are no more newly infected insurants.

4 EXPERIMENTS

In order to derive the optimal reimbursement and cost-sharing policies, we model the interactions between
insurer and insurants in SVG considering each insurant’s vaccination and medical treatment behaviors.
The insurer adopts coinsurance as his/her cost-sharing policy. The simulation model is implemented in the
ABM programming language NetLogo. Experiments are conducted with a social contact network where
each node represents an agent, i.e., insurant, and each link connecting between nodes represents a close
contact through which infection may spread. In the simulation setting, average contact nodes, i.e., average
number of neighboring nodes, is an input to our graph network. The setting of average contact agents in
population has potential effects on the behaviors of individual agent. For example, the more neighboring
agents the infectious agent has, the more chance that the neighboring agents may get infected, leading to
fast infection transmission. However, higher probability of getting infected may lead to higher vaccination
rate. Here we set the average number of neighbors of individual nodes to 30.

In the experiment, to demonstrate the population-level behavior, we run the spread of seasonal influenza
in a closed population of 400 agents. Initially 25 agents are infected and 20 agents volunteer to get a
vaccination. All simulation results are averaged over 30 replications. The 95% confidence intervals are
calculated, and shown on the graphs when they are not too narrow.

4.1 Vaccination Behavior of the Insurants

In this section, we examine the behavior of insurants by changing the reimbursement and cost-sharing rate.

4.1.1 Effect of Reimbursement on Network Status

First we change γinc to examine the effect of reimbursement (incentive) on vaccination behavior of agents.
The rsharing is set to 0.6, Wi = 160, cdir,in f = 200, cind,in f = 75, cind,vac = 75, k = 0.01, Pi,unt = 30%,
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Figure 3: Vaccination and medical treatment receiving behaviors.

Table 2: Parameter values.

parameter value parameter value parameter value parameter value
Wi 160 cdir,in f 200 cind,in f 75 cind,vac 30
k 0.001 Pi,unt 30% Pi,tre 50% w 30

Pi,tre = 50%, and w = 20. As shown in Figure 3(a), the higher reimbursement causes higher vaccination
rate and lower infection rate. When the vaccination rate is larger than 80%, the infection rate is less than
10%. That is, the vaccination behavior achieves indirect protection through herd immunity. The treatment
rates in this experiment are all 0.

4.1.2 Effect of Cost-sharing Rate on Network Status

Next we change rsharing to examine the effect of cost-sharing policy on vaccination and medical treatment
receiving behavior of agents. The γinc is set to $20, Wi = 160, cdir,in f = 600, cind,in f = 400, cind,vac = 100,
k = 0.01, Pi,unt = 50%, Pi,tre = 80%, and w = 20. Figure 3(b) shows that the higher cost-sharing rate
results in higher vaccination rate and lower infection rate. We also note that cost-sharing has no effect on
the medical treatment rate, which remains constant at approximately 80%, implying agents tend to get a
flu vaccine in advance rather than receive medical treatment when being infected. Figures 3(a) and 3(b)
indicate that the reimbursement and cost-sharing are promising incentive policies to encourage vaccination
and prevent the spread of the flu in the population.

4.2 Optimal Reimbursement and Cost-sharing Policies of the Insurer

Table 2 lists the data that are used for deriving the optimal solutions and simulation inputs. Note that flu
infectivity k in Pi,unv is fixed during the simulation but v may change over each iteration. The following
parameters are examined in our simulation: 1) the infectivity of seasonal flu k, 2) the severity of illness
Pi,unt , and 3) direct infection cost Cdir,in f . We collect the following results in the simulation: 1) different
population-level health status in a social contact network, i.e., final vaccination rate, infection rate, and
rate of receiving medical treatment, and 2) the optimal utility and insurance policies of the insurer. All
simulation results are averaged over 30 replications.

4.2.1 Comparison of Different Infection Rates of Flu

First, we examine a fundamental scenario with different abilities to establish an infection, i.e., probability the
flu spreads among agents, Pi,unv(v). We manipulate the parameter k in Equation (2) to represent infectivity
starting with 0.001 and then every 0.005 to 0.04. Figure 4(a) shows the vaccination and infection rates, and
Figure 4(b) shows the optimal reimbursement policy and utility with different infectivities. It is observed
that when the infectivity of flu is low, i.e., k = 0.001, it is not necessary to get vaccinated due to the
low probability to get infected. The vaccination rate becomes significantly increased even the optimal
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Figure 4: Health status of the population and optimal reimbursement and cost-sharing policies in different
comparisons.

reimbursement is decreased when the infectivity increases. Note that as k ≥ 0.03, the agents tend to get a
flu vaccine even without reimbursement. Since the difference in recovery rate with and without treatment
is small, the medical treatment rate is zero for all the value of k. From 4(b), it is observed that the utility
of the insurer first decreased and then increased as k increases due to lower reimbursement. From Figures
4(a) and 4(b), it is suggested that reimbursement policy is an effective approach to maintain low infection
rate with a highly contagious flu.

4.2.2 Comparison of Different Flu Severities

Next we change the severity of flu, i.e., recovery rate, using Pi,unt every 10%. We set Pi,tre to 20% more than
Pi,unt . As shown in Figure 4(c), the optimal reimbursement policy effectively prevents the spread of flu due
to high vaccination rate as the recovery rate is low. As recovery rate is increased, the optimal reimbursement
is decreased but the infection rate in the population is still low. The first reason is because some agents still
get vaccinated. The other reason is that the infected agents recover quickly before infecting their neighbors.
Figure 4(d) shows that the utility of the insurer increases even though the optimal reimbursement does not
change with recovery rate from 50% to 80%. The reason is because when both vaccination and infection
rates are decreased, the total direct vaccination cost is decreased and social benefit is increased.
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4.2.3 Comparison of Different Direct Infection Costs

Last we compare the effect of direct infection cost, i.e., medication cost, on the population using Cdir,in f
starting with 10 and then every 500 to 2000; in addition, points at 100 and 800 are added to aid resolution
when things change quickly. Figures 4(e) and 4(f) show the vaccination and infection rates, and optimal
reimbursement and utility with respect to different direct infection cost. It is observed that the low medication
cost results in lower vaccination rate and the agents tend to receive medical treatment (treatment rate =
infection rate). When the cost is 500 or above, the medical treatment rate drops to zero. Note that the
optimal cost-sharing policy with Cdir,in f = 10 is 40%. Instead of setting highest cost-sharing rate 60%,
the insurer sets lower cost-sharing rate, resulting in higher treatment rate. That is, the insurer is more
willing to see infected agents receive medical treatment rather than get vaccinated in advance when the
medication cost is low. As the medication cost increases, the vaccination rate grows even with decreasing
reimbursement, causing lower infection rate. It is noted in Figure 4(f) that the utility increases when
medication cost increases. The reason is because higher medication cost and vaccination rate result in zero
medical treatment and reimbursement cost and higher social benefit.

5 CONCLUSIONS

This paper proposes an incentive-based insurance policy to prevent the spread of a seasonal influenza for a
single health insurer and multiple insurants. Dynamic interaction between the insurer and the insurants is
modeled as a Stackelberg vaccination game to examine the individual-level behavior of each insurant. The
proposed mechanism enables the insurer to set optimal insurance policies, reimbursement and cost-sharing
rate, to maximize its utility which is in terms of medication and vaccination cost and social benefit during the
seasonal flu season. ABM has been developed to simulate the propagation of influenza through a population.
Experimental results indicate that (1) both reimbursement and cost-sharing policies are effective approaches
to encourage vaccination behavior; and (2) the designed mechanism can motivate the insurants to maintain a
low infection rate in the population with respect to different infectivity and severities of the flu and different
direct infection cost while taking vaccination and medication cost paid by insurer and social benefit into
consideration.

REFERENCES

Barrett, S. 2007. “The Smallpox Eradication Game”. Public Choice 130 (1): 179–207.
Bauch, C. T., and D. J. D. Earn. 2004. “Vaccination and the Theory of Games”. Proceedings of the National

Academy of Sciences of the United States of America 101 (36): 13391–13394.
Bauch, C. T., A. P. Galvani, and D. J. D. Earn. 2003. “Group Interest Versus Self-Interest in Smallpox

Vaccination Policy”. Proceedings of the National Academy of Sciences 100 (18): 10564–10567.
Betsch, C., R. Bohm, and G. B. Chapman. 2015. “Using Behavioral Insights to Increase Vaccination Policy

Effectiveness”. Policy Insights from the Behavioral and Brain Sciences 2 (1): 61–73.
Briss, P. A., L. E. Rodewald, A. R. Hinman, A. M. Shefer, R. A. Strikas, R. R. Bernier, V. G. Carande-Kulis,

H. R. Yusuf, S. M. Ndiaye, and S. M. Williams. 2000. “Reviews of Evidence Regarding Interventions to
Improve Vaccination Coverage in Children, Adolescents, and Adults”. American Journal of Preventive
Medicine 18 (1): 97–140.

Bronchetti, E. T., D. B. Huffman, and E. Magenheim. 2015. “Attention, Intentions, and Follow-Through in
Preventive Health Behavior: Field Experimental Evidence on Flu Vaccination”. Journal of Economic
Behavior and Organization 116:270–291.

Centers for Disease Control and Prevention (CDC) 2015. “Flu Vaccination Coverage, United States, 2014-
15 Influenza Season”. Available via http://www.cdc.gov/flu/fluvaxview/coverage-1415estimates.htm/
[accessed: 13 July 2016].

Chapman, G. B., M. Li, J. Vietri, Y. Ibuka, D. Thomas, H. Yoon, and a. P. Galvani. 2012. “Using Game Theory
to Examine Incentives in Influenza Vaccination Behavior”. Psychological Science 23 (9): 1008–1015.

2028



Ho, Fishman, and Zabinsky

Centers for Disease Control and Prevention (CDC) 2016. “Morbidity and Mortality Weekly Report
(MMWR)”. Available via https://www.cdc.gov/mmwr/index.html/ [accessed: 13 July 2016].

Francis, P. J. 2004. “Optimal Tax/Subsidy Combinations for the Flu Season”. Journal of Economic Dynamics
and Control 28 (10): 2037–2054.

Fu, F., D. I. Rosenbloom, L. Wang, and M. a. Nowak. 2010. “Imitation Dynamics of Vaccination Behaviour
on Social Networks”. Proceedings of the Royal Society B: Biological Sciences 278 (1702): 42–49.

Galvani, A. P., T. C. Reluga, and G. B. Chapman. 2007. “Long-Standing Influenza Vaccination Policy
Is in Accord with Individual Self-Interest but Not with the Utilitarian Optimum”. Proceedings of the
National Academy of Sciences 104 (13): 5692–7.

Goldman, D., and G. Joyce. 2007. “Prescription Drug Cost Sharing”. JAMA 298 (1): 61–69.
Grossman, M. 1972. “On the Concept of Health Capital and the Demand for Health”. Journal of Political

Economy 80 (2): 223–255.
Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics”.

In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume
115, 700–721.

Lee, B. Y., S. T. Brown, P. C. Cooley, R. K. Zimmerman, W. D. Wheaton, S. M. Zimmer, J. J. Grefenstette,
T. M. Assi, T. J. Furphy, D. K. Wagener, and D. S. Burke. 2010. “A Computer Simulation of Employee
Vaccination to Mitigate an Influenza Epidemic”. American Journal of Preventive Medicine 38 (3):
247–257.

U.S. Department of Health and Human Services 2015. “Health, United States, 2015, with Special Feature
on Racial and Ethnic Health Disparities”. Available via http://www.cdc.gov/nchs/data/hus/hus15.pdf
[accessed: 13 July 2016].

Perez, L., and S. Dragicevic. 2009. “An Agent-Based Approach for Modeling Dynamics of Contagious
Disease Spread”. International Journal of Health Geographics 8 (1): 50.

Reluga, T. C., and A. P. Galvani. 2011. “A General Approach for Population Games with Application to
Vaccination”. Mathematical Biosciences 230 (2): 67–78.

Schimit, P. H. T., and L. H. A. Monteiro. 2011. “A Vaccination Game Based on Public Health Actions and
Personal Decisions”. Ecological Modelling 222 (9): 1651–1655.

Stone, L., B. Shulgin, and Z. Agur. 2000. “Theoretical Examination of the Pulse Vaccination Policy in the
Sir Epidemic Model”. Mathematical and Computer Modelling 31 (4): 207–215.

Vardavas, R., R. Breban, and S. Blower. 2007. “Can Influenza Epidemics Be Prevented by Voluntary
Vaccination?”. PLoS Computational Biology 3 (5): 0796–0802.

AUTHOR BIOGRAPHIES

TING-YU HO is a PhD student in the Department of Industrial and Systems Engineering at the University
of Washington. His research interests include game theory, simulation optimization and healthcare appli-
cations. His email address is tyhotw@uw.edu.

PAUL A. FISHMAN is an Associate Professor in the Department of Health Services, School of Public
Health, at the University of Washington. Professor Fishman’s research interests are in cost analysis and
risk adjustment. His email address is paulfish@u.washington.edu

ZELDA B. ZABINSKY is a Professor in the Department of Industrial and Systems Engineering at the
University of Washington, with adjunct appointments in the departments of Electrical Engineering, Mechan-
ical Engineering, and Civil and Environmental Engineering. Professor Zabinsky’s research interests are in
global optimization under uncertainty for complex systems. Her email address is zelda@u.washington.edu.

2029


