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ABSTRACT

The waiting list for organ transplants is a complex system that affects the lives of thousands of Americans.
The current policies in the United States allow patients to register at multiple Donor Service Areas (DSAs)
provided they have physician approval and can cover the costs of any additional testing through insurance
or personal means. This practice gives rise to ethical concerns, especially among those who believe it
allows the wealthy to take unfair advantage of the system. We develop an agent-based, discrete event model
that simulates the practice of multiple listings in transplant waiting list queues to explore the effects on
the overall transplant system. Our analysis shows that although there are no major impacts at the national
or global level, there are potential consequences at the local DSA level depending on the heterogeneity of
the DSAs involved.

1 INTRODUCTION

A portion of patients eligible for an organ transplant receive organs from living donors. The remaining
eligible patients must receive an organ from a deceased donor and are subsequently added to the national
waiting list. In the United States, there are currently over 120,000 people waiting for a transplant from a
deceased donor (Organ Procurement and Transplantation Network 2015). According to the United Network
for Organ Sharing (UNOS), someone is added to the national transplant waiting list roughly every ten
minutes or 144 per day. UNOS also reported 30,969 organ transplants were performed in 2015 or roughly 85
per day, and an additional 22 people die each day on average waiting for an organ. A rough calculation based
on these numbers illustrates the growing shortage of organs in the U.S. and underscores the time-critical
nature for those who make it onto the national waiting list.

In practice, the United States is divided into 58 different Donor Service Areas (DSAs) that are managed
by the Organ Procurement Organization (OPOs), which manages organ donation and transplantation in
the geographic area. There are currently no limitations on registering at multiple transplant centers in
various DSAs (The United Network for Organ Sharing 2015). The lack of restrictions in regards to multiple
registrations is an allowance that some believe gives an unfair advantage to those with the financial means
to travel anywhere in the country to receive medical care.

In this paper we develop an agent-based model of patients in the United States on the waiting list for
a kidney transplant. The patients are added to one or more queues representing the regional DSA waiting
lists. Some patients have greater advantages than others and are able to register in more than one DSA. We
refer to these patient in the model as the Advantaged patients. The model enables us to analyze the effects
on the overall transplant system when a portion of the patients have the means to register in multiple DSAs.

The remainder of the paper is laid out as follows. Section 2 describes the background of the transplant
problem along with a brief literature review. The model outline and implementation are discussed in
Section 3, along with a description of the input data and experimental design. Section 4 presents the
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subsequent results of our experiments. We close in Section 5 with a brief discussion and avenues for
extending this research.

2 BACKGROUND

Various conditions and diseases may cause a person’s organs to shut down. Modern medicine allows
functioning organs to be transplanted from one person to another. Certain patients can be treated by
receiving a new organ, these patients are referred by a physician to be placed on the national transplant
waiting list, managed by UNOS (Organ Procurement and Transplantation Network 2015). The UNOS
waiting list governs the allocation of heart, lungs, liver, kidney, pancreas, and intestines across the United
States.

Patients eligible for a transplant must wait until an appropriate match is found. Many factors are
considered in the matching process including blood type, height, weight, the number of HLA antigens in
common between the donor and the recipient based on tissue typing, the size of the organ, and geographic
location. When an organ becomes available, priority is given to patients based on the quality of the match,
the health of the potential recipient, and the amount of time a patient has been waiting. Once the medical
attributes are considered the system generally functions as a first-in-first-out queue of matched patients. In
most cases — outside of the most severe circumstances — organs are allocated first within the DSA, then
throughout the region, and finally across the rest of the country (Friedewald et al. 2013). The waiting list
process is shown in Figure 1.

Figure 1: Organ transplant process from the initial referral to receipt of transplant or alternative treatment.

Research has been completed on the organ allocation and transplant system in the United States and
various other countries. A 2013 Winter Simulation Conference paper discusses the development of a model
of the kidney transplant system, KSIM. This paper described a discrete event simulation at the DSA level
to simulate organ allocation policies (Davis and Friedewald 2013). This work did not provide extensive
experimentation and focused largely on geographic and demographic information. Additional work in
modeling the transplant system has focused on queuing models and waiting time inconsistencies. The focus
of this work was the differences in waiting times across different blood types (Stanford, Lee, Chandok, and
McAlister 2014). The core research body in this area focuses on allocation policies of organs and not the
effects of allowing multiple registrations for candidates (Zenios, Chertow, and Wein 2000, Su and Zenios
2004, Boxma, David, Perry, and Stadje 2011).

There are 58 DSAs and 11 regions in the U.S. As a result of the prioritizing process, registering in a
second or even third DSA could prove to be an advantage for a person originally listed in an area with a higher
median waiting time (Health Resources & Services Administration 2015). The shortest median waiting
time for a kidney transplant across DSAs in 2009 was 6 months compared to the longest median waiting
time of 5.22 years (Davis et al. 2014). According to research published in the Journal of Transplantation,
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the difference in wait times is correlated with heterogeneity in the number of patients suffering from
end-stage renal disease, the number of patients listed for transplant, and the organ procurement rates in a
given region (Davis et al. 2014).

Due to the wide range in waiting times, patients can choose to register at more than one DSA. However,
the lack of restrictions in regards to multiple registrations lead some to believe that an unfair advantage
exists for those with the financial means to travel great distances to receive medical care. One of the most
well-known examples of multiple registrations is when former Apple CEO, Steve Jobs, received a liver
transplant at a hospital in Tennessee despite being a California resident (Cox 2009). This caused public
outrage and many considered this a “loophole” existing for the rich to use when faced with the realization
that donor organs are in short supply (Cox 2009). More recent studies have shown that patients with the
ability to register in multiple DSAs may be more likely to receive a transplant (American Heart Association
2015). In the next section we outline the agent-based model we constructed to investigate the effect that
multiple registrations being available to an advantaged few has on the overall transplant waiting list process.

3 THE MODEL

In this section we describe an agent-based model of the organ transplant waiting list with multiple DSAs.
The model consists of patients (i.e., agents) that are in need of a kidney transplant and localized waiting lists
that represent the DSAs. Our objective is to explore the outcomes when certain patients have advantages
in access to healthcare that others do not. Patients with additional resources are able to register in multiple
regions beyond their primary region for an organ transplant. Our experimental design investigates the
impact that allowing multiple listings has on the transplant system to gain a better understanding of the
implications of this practice. The model was programmed in Python version 2.7 using the Mesa package
for agent-based modeling (Project Mesa Team 2015) and implemented in Jupyter (Project Jupyter 2015)
to enable rapid prototyping, web browser compatibility, and accessible documentation.

3.1 The Patients

The agents in our model are patients who have been deemed eligible for a kidney transplant. Each patient
is therefore in one of four conditions; either Waiting, Selected, Transplanted, or Deceased. Waiting patients
are on at least one of the regional transplant waiting lists and have not yet been chosen for a transplant.
Selected patients were at the front of at least one of the regional waiting lists in the last time step and have
just been chosen for a transplant. Transplanted patients have successfully completed the organ transplant
process. Deceased patients were in the Waiting state longer than their lifespan and thus died before being
Selected and Transplanted.

Upon instantiation, each patient is assigned a primary region and they are added to that region’s waiting
list. Each patient is also randomly designated as either “Advantaged” or not according to the user-specified
distribution of advantaged patients. Patients that are Advantaged are then added to additional waiting
lists beyond their primary region. The number of additional waiting lists is selected from a U(1, Nregion

2 )
distribution, where Nregion is the number of DSAs in the model not including the patient’s primary region.
The uniform distribution is a simplified approach to a complex problem where data on the exact number
and frequency of multiple registrations on two or more lists is not known. The upper limit of half the
regions as a selection criteria was implemented to show some realistic time constraints on the agents as it
is time consuming to travel and apply for multiple waiting lists, although not impossible.

Finally, each patient is assigned a lifespan parameter Tlife at instantiation. The Tlife parameter represents
the maximum amount of time the patient can be in the Waiting state before moving to the Deceased state.
That is, if Twait > Tlife the patient exits the Waiting state and enters the Deceased state. For our base case
run of the model, Tlife of each patient is selected from a Normal(98,52) distribution, which corresponds to
an average lifespan of 98 months. Figure 2 illustrates how this process is implemented in the model.
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Figure 2: Overview of the states of a patient in the model.

Patients do not inherently have adaptive traits in the model. However, the model does have an option
for the Smart Listing. When the model is in Smart Listing mode, the Advantaged patients compute the
ratio of transplant arrival rate to queue length, and select the alternate regions with the highest ratio. If
the model is not in Smart Listing mode, agents choose their secondary listing randomly from a uniform
distribution of the remaining options outside of their primary listing location. In the real world, patients
can look up statistical information on transplant rates in different DSAs and choose to register in additional
areas with high transplant rates, the Smart Listing mode replicates this knowledge and awareness.

3.2 The Organ Transplant Waiting Lists

Each regional waiting list in our model is implemented as a first-in-first-out queue. However, as mentioned
in the previous section, balking exists as patients waiting beyond their lifespan will be removed from the
queue before receiving a transplant, and Advantaged patients will be removed from all queues they are in
when they receive a transplant from one of their queues.

Upon initialization of the model, each waiting list is populated with a user-specified number of patients
already in queue. This population distribution is based on data from the current UNOS waiting list. At each
subsequent time step, Ni kidneys become available for transplant in the ith region according to a Poisson
process. The first Ni patients on the waiting list are selected to receive a transplant and are thus removed
from the ith queue. These patients transition to the Selected state. If the patient selected is Advantaged
and listed in other queues, they are removed from those queues before the kidneys in those regions are
allocated. The order in which each waiting list is selected is randomized at each time step. Additionally, new
patients requiring a transplant arrive at each time step according to another independent Poisson process.
The arriving patients are randomly allocated to a primary regional waiting list and Advantaged patients
are randomly allocated to more than one list as described previously.

Figures 3a and 3b depict the waiting list structure and the advantage a patient may have by listing in
multiple regions. Patient I is an Advantaged patient registered in both Regions 2 and 3. When the first
two patients on all three lists receive a transplant, as shown in Figure 3b, Patient I is selected in Region 3
much sooner than if they had only queued in Region 2. However, Patient K missed out on this round of
transplants because the Advantaged Patient I was able to list in two regions.

3.3 Model Scheduling and Process Overview

Time is modeled as discrete steps corresponding to approximately one month. Each replication is run for
120 time steps, which equates to roughly 10 years. The sequence of events executed at each time step is as
follows. For each regional waiting list i, the number of organs available for transplant Ni is generated from
a Poisson process calibrated to the ith region. The order of the waiting list queues is then randomly shuffled
to ensure each waiting list is equally likely to be selected first each time. Then, taking each waiting list
in turn, the first Nipatients are marked as Selected and removed from the queue. If any of those patients
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(a) (b)

Figure 3: (a) The status of three regional queues at time t = 1 with Patient I listed on both queues. (b)
The status of the same queues at time t = 2 when the first two patients in each queue have been selected
for transplant.

are Advantaged, they are subsequently removed from whatever position they held in the other waiting lists
before the organs for that waiting list are allocated.

Once the queues are updated, the patients are updated to reflect the advancement of time. Each of the
patients that were not selected increment their waiting time Twait by 1. If the patient is in the Selected stage,
the patient transitions to the Transplanted stage. If a patient is still in the Waiting stage and they have been
waiting for longer than their predetermined lifespan, the patient will move to the Deceased stage.

Finally, new patients are added to the model according to an independent Poisson process calibrated to
each region. A portion of these patients will be Advantaged and therefore listed in multiple regions. The
model terminates when there are no longer any patients in the Waiting state or if the number of time steps
has exceeded 120. Python’s Mesa module provides the DataCollector to track patient states in the model
over time (Project Mesa Team 2015). Tracking these statistics allows for simple and quick visualizations
of the process and model statistics. The user can specify which statistics are managed by the DataCollector
at the start of each model run. The model also tracks the number of patients meeting the following criteria:

• Patients transplanted that were a primary listing in the queue
• Patients transplanted that were an alternate listing in the queue
• Patients with a primary listing in the queue that received a transplant elsewhere
• Patients with a primary listing that died before receiving a transplant
• Patients with a primary listing
• Patients listed as alternate

3.4 Calibration and Model Input

Our model follows several basic concepts and theories related to the real-world allocation of organs in the
United States. The model directly incorporates different DSAs and allows a patient to join multiple listings
in accordance with current policies and practices in the U.S.

The queues are represented at a fairly simple level of complexity, as we do not account for specific
rules in the transplant system that give preference to certain individuals such as healthier adults or pediatric
patients. The model also does not account for any sort of matching quality. In other words, the patients
are homogeneous and all deemed equally matched with the organs that come available. Given the focus
of our study was the relative advantage certain patients gain from multiple listings, matching metrics were
not crucial to the model design. We do allow for the inherent heterogeneity between regions in the model.
For example, each queue has its own arrival rate of organs for transplant and they are calibrated to reflect
the arrival rate of new patients to a given regional waiting list. This functionality enables us to explore
areas corresponding to specific DSAs.

The model takes in multiple input parameters, most of which are optional. The number of regions,
number of initial patients, and number of additional patients to be added each year are the main parameters
that need to be defined. The transplant rates for each center can also be customized by the user, as can
the arrival rates of new patients to each queue. The Advantage probability specifies the percentage of
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patients that have an advantage and may be listed at multiple centers. The average lifespan can also be
customized before each run, and the user has access to flags that control output and whether the model
is run in Smart listing mode. For our experiments, the variables and initial parameters were taken from
the OPTN Website (Organ Procurement and Transplantation Network 2015) and are based on aggregate
information pertaining to the following DSAs:

• Region 1: CAOP-OP1 OneLegacy
• Region 2: ILIP-OP1 Gift of Hope
• Region 3: INOP-OP1 Indiana Donor Network
• Region 4: MNOP-OP1 LifeSource Upper Midwest OPO

Each of these regions has specific information pulled from the online UNOS database (Organ Procurement
and Transplantation Network 2015). The data is representative of kidney transplants in the year 2014.

Table 1: Initial input parameters in the model.

Parameter Value Description and Motivation
regions 4 The number of separate DSAs
initial patients 16,000 The initial number of patients waiting at

time t = 0
additional patients Poisson(230) Average monthly arrivals of new patients

needing transplant
queue probabilities [0.50, 0.20, 0.10, 0.20] The portion of new patients allocated to

each primary DSA, where each element
represents a different region

transplant rates Poisson([50, 31, 16, 21]) Average monthly transplants Ni in each
DSA where i represents the DSA

advantage prob ∈ [0,1] Advantaged portion of the population
output True Write output statistics to a file or not
average lifespan Normal(98,52) Corresponds to an average lifespan of

just over 8 years
smart listing True Determines whether the patient will in-

telligently determine where to make their
alternate listings

General statistics used to compute regional input data are shown in Table 2. The number of arrivals
for each region was determined by taking the historical total number of arrivals and subtracting waiting
list removals for all reasons besides deceased donor transplantation and death.

Table 2: Annual Donor Service Areas transplant data from the UNOS database 2014.

Region 1 2 3 4
Deceased donor transplant 610 370 188 230
New patient arrivals 2,164 1,354 568 1,057
Transplant-eligible arrivals 1,396 568 273 567
Total patients 7,420 4,427 1,255 2,726
Transplants per patient 0.082 0.084 0.150 0.084
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Input data is also used to generate the waiting times for the initial patients on the waiting list. At the
start of the model many patients, realistically will have already been waiting for some time. The values
displayed in Table 3 show the probabilities that are used to assign waiting times to these initial patients.

Table 3: Number of patients currently on the waiting list by time spent waiting for a transplant.

Months [0,1) [1,3) [3,6) [6,12) [12,24) [24, 36) [36, 60) [60, Inf)
Candidates 3,912 7,815 9,897 17,037 27,153 20,471 23,217 18,405
% Candidates 3.1% 6.1% 7.7% 13.3% 21.2% 16.0% 18.2% 14.4%

3.5 Experiment Configuration

We designed our experiment to study the effects on the transplant waiting list system as a whole when
a certain portion of the population is Advantaged and thus able to register to be considered in multiple
DSAs. All input parameters were held constant at the values shown in Table 1. We employed the batch
run feature of Mesa to analyze the effect of different values of the advantage probability parameter on the
transplant waiting lists.

Our intention was to explore the impact that Advantaged patients have on the overall transplant system
and to analyze whether these patients gain an unfair advantage. The standard queuing measures of waiting
times and the number waiting in queue are collected, along with the number of patients transitioning to
the Deceased state. To create a fairness metric we collected the percentage of transplants performed on
Advantaged patients and compared that to the percentage of the total population represented by Advantaged
patients. We also collected the percentage of Deceased Advantaged patients less the percentage of Advantaged
patients in the population. If the system is perfectly fair, we expect these differences to be zero. Conversely,
if the Advantaged patients receive a disproportionate number of transplants the first metric will be positive.
And if the Advantaged patients disproportionately avoid transitioning to the Deceased state, the second
difference will be negative.

Figure 4: Number of transplants performed at either the primary or alternate listing.
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(a) (b)

Figure 5: (a) Total number of patients in the waiting state as the Advantaged percentage increases. (b) The
average wait time as the Advantaged percentage increases.

4 RESULTS

As mentioned in the previous section, our objective was to analyze the impact that Advantaged patients
have on the overall transplant system. We ran 30 replications of the simulation in Smart listing mode for
each of 100 different values of the advantage prob parameter, allowing it to range from 0.1 to 1.0
in increments of 0.01. We then measured the total number of primary transplant listings and alternate
transplant listings, which taken together describe the size of the national waiting list. The number of
primary listing transplants and the number of alternate listing transplants were also recorded to give the
total number of transplants and where they were acquired. We also tracked the number of Advantaged
patients receiving a transplant for comparison with the total number of transplants. The average waiting
time on the transplant list was recorded for each of the regional waiting lists, along with the number of
patients transitioning to the Deceased state in each region.

Figure 4 shows the number of primary and alternate listing transplants performed with the proportion
of Advantaged patients ranging from 0.1 to 1.0 in increments of 0.01. The total number of transplants
remained consistent across all probabilities of Advantaged patients, averaging 14,278 over 120 months. As
expected, the number of transplants being acquired from alternate listings increases as the percentage of the
population becomes more and more Advantaged. However, even when the entire population is Advantaged
only 47% of transplants are received from an alternate listing.

To analyze the system level impact that Advantaged patients have on the transplant waiting list, we
investigated the total number of patients in the Waiting state as the percentage of Advantaged patients
increased. Figure 5a shows the average number of patients waiting plotted against the percentage of the
population that is Advantaged. Note that as Advantaged patients began to occupy multiple waiting lists
simultaneously, the total number of patients waiting increased by roughly 200.

In keeping with a longer queue, the average time spent waiting for an organ also increased as shown
in Figure 5b from roughly 71 months to just over 72 months. Note also that this transition to longer wait
times and a longer queue happens when only a small percentage of the population is Advantaged. Once
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20% or more of the population is Advantaged there is a diminishing impact and the queue length and wait
times tend to level off.

Figure 6: The number of patients transitioning to Deceased as Advantaged population increases.

The seemingly negative result of a longer national waiting list and longer average waiting time is
accompanied by the counter-intuitive outcome of fewer Deceased patients overall. Fewer patients dying
early on while waiting for a transplant result in a higher survival rate and therefore more people waiting for
a transplant. Since the death rate is lower, the surviving patients waiting for a transplant is much higher,
increasing the waiting list time. Figure 6 shows the average number of patients who transitioned to the
Deceased state plotted against the percentage of the population that is Advantaged. Note again the majority
of the impact occurs when only a small percentage of the population is Advantaged. With more than 20%
of the population being Advantaged, the number of Deceased patients levels off.

The reason for using an agent-based approach for this model was to analyze not only the system level
impact, but also the local level impact of having Advantaged patients present in the model. In light of the
result that fewer deaths occur once some portion of the population are Advantaged, we analyzed the same
metrics in the individual regions. Figure 7a shows how the average wait time for patients is not realized
uniformly over all four regions. Instead, the majority of the increase in wait time comes from Regions 2 and
3, while Regions 1 and 4 showed slight decreases. This suggests that Regions 2 and 3 had favorable queue
lengths and transplant rates that attracted the Advantaged patients to choose them as an alternate listing.
Figure 7b shows that a similar pattern holds for the number of Deceased patients. As more Advantaged
patients are attracted to Regions 2 and 3 the increased wait time means that more patients exceed their
lifespan in those queues and die before receiving a transplant. Referring back to the statistics for DSAs
these regions are calibrated to represent, these two areas had the absolute highest rate of donated organs
per new patient arrivals. Since these two regions have such high donor rates, there is significant advantage
to be gained from choosing them as an alternate listing.

Our final results examine the fairness of allowing Advantaged patients to list in multiple DSAs. One
method for assessing fairness is to test whether Advantaged patients are disproportionately represented
among those receiving transplants and those avoiding death. That is, if Advantaged patients constitute
20% of the population they should receive at most 20% of the transplants and make up 20% of the total
deaths. In a fair system, the difference between the Advantaged patient transplant rate and the percentage
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(a) (b)

Figure 7: (a) Wait time by region as Advantage population increases. (b) Death rate by region as Advantage
population increases.

of Advantaged patients in the population should be zero. Similarly, the difference between the percentage
of Advantaged patient deaths and the percentage of Advantaged patients in the population should also be
zero. Figure 8a plots the difference for the Advantaged patient transplant rate and Figure 8b plots the
difference for the Advantaged patient death rate. When the Advantaged population is less than roughly
30% of the total population, the Advantaged patients receive a disproportionate number of the available
organs. Additionally, the Advantaged population always represents disproportionately fewer deaths, the
most pronounced occurring when they make up less than 30% of the total population.

5 CONCLUSIONS

Our model of the national transplant list concurs with the allocation policies in effect in the United States
allowing multiple transplant registrations outside a patient’s primary region. Our results agree with earlier
research that assert the policy of multiple registrations does not adversely affect the transplant list at the
national level. Indeed, our results show only a slight increase in wait times and queue length, while
simultaneously showing a decrease in the overall death rate of transplant patients.

Upon closer inspection, by allowing advantaged patients to register with multiple Donor Service Areas,
there are disadvantages for patients at the local regional level. As shown in Figure 7b, when a small portion
of the population is considered to be advantaged, patients with a primary listing in the smaller regions tend
to have higher death rates compared to other regions. So although the national death rates are lowered
overall, waiting lists with better donor programs attract the advantaged population and the locals in these
areas are potentially harmed more than the national average reveals. The outcomes of our model suggest
that the multiple listing policy should be studied more closely and on a regional level rather than on the
national level. We contend that a model such as ours can be used to investigate whether certain policies
unfairly disadvantage smaller communities that may become target areas for a domestic form of transplant
tourism.

We employed the agent-based modeling paradigm when designing our model to enable incremental
additions to the simulation and analysis it performs. As part of our future research we intend to make the
population of patients considerably more heterogeneous to determine if additional disparities exist between
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(a) (b)

Figure 8: (a) The relative fairness in receipt of transplants. (b) The relative fairness in death rates.

aggregate measures and more specific ones. Similar upgrades will be added to better define what it means
to be “advantaged,” and more advanced decision-making algorithms can be added to the patients’ behavior.
We also intend to expand the number of regions to analyze whether the phenomena observed here scale
accordingly when all 58 DSAs are considered. Given the results of our analysis, we contend that increased
scrutiny at all levels of the transplant process are needed to accurately determine the true impact of certain
policy decisions.
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