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ABSTRACT

This paper aims to further motivate the use of simulation of complex systems in optimizing healthcare
operations under uncertainty. One argument to use optimization only such as mathematical programming
instead of simulation optimization in making decisions is the ability of the former to account for constraints
and to consider a large number of alternatives. However, current state-of-the art of simulation optimization
has opened the possibilities of using both simulation and optimization in the case of multiple performance
measures. We consider the case of hospital bed allocation and give an example on how a stochastically
constrained optimization via simulation can be applied. Nested Partitions are used for the search algorithm
and combined with OCBA-CO, an efficient simulation budget allocation, as simulation is time-consuming.

1 INTRODUCTION

Stochastic simulation and optimization are two powerful tools in decision making. Simulation enables
decision makers to understand complex systems and evaluate their performances under uncertainty. Op-
timization is useful as it considers wider range of solutions in selecting the best instead of pre-generated
alternatives in a simulation study. Simulation optimization or optimization via simulation are able to capture
both benefits of stochastic simulation and optimization (Fu 2002). At the same time, there are still some
challenges in integrating simulation optimization into practice as described in Fu et al. (2014).

Out of many real-world problems, the application of simulation to healthcare is ubiquitous (Jun, Jacobson,
and Swisher 1999). There have been some applications of simulation optimization to healthcare but their
numbers are relatively fewer than simulation case studies. Brailsford et al. (2007) combine discrete-event
simulation with a metaheuristic called Ant Colony Optimization (ACO) to determine the optimal screening
policies in addressing diabetic retinopathy. Tanfani, Testi, and Alvarez (2010) use simulation optimization
to determine the optimal plan for the Operating Room.
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In this paper, we consider the bed allocation problem which is not new but remains challenging. Poor bed
allocation could cause overcrowding in Emergency Department leading to increase in mortality (Sprivulis
et al. 2006). Despite the wide range of literatures on the bed allocation problem, only few works use
simulation optimization techniques. Wang et al. (2015) applied multi-objective optimization via simulation
on the bed allocation problem. Zhang et al. (2012) to address the issue of long-term care planning.
Holm, Lurås, and Dahl (2013) and Keshtkar, Salimifard, and Faghih (2015) consider both simulation and
optimization. Most of other literatures either use only optimization or only simulation. Those which use
only optimization aim to find the best way of allocating beds by considering a huge number of possibilities
(Ridge et al. 1998, Teow and Tan 2008). It is possible to consider uncertainties in optimization using
stochastic programming. At the same time, some decision makers may need to use simulation to evaluate
performance measures which do not have closed-form expressions such as the number of bed overflow. In
addition, simulation is able to evaluate policy to model the hospital complexities or preferences (Goldman,
Knappenberger, and Eller 1968). Simulation studies have given useful insights on bed allocation (El-Darzi
et al. 1998, Harper and Shahani 2002, Akkerman and Knip 2004, Cochran and Bharti 2006). However,
the use of only simulation is limited as it only considers a pre-determined set of alternatives which may
not be the real best solution.

One of the challenges of simulating complex service systems such as healthcare is the amount of
times required as multiples replications are needed to get better estimates of the performance measures of
interest. Lapierre et al. (1999) mentioned that once a valid simulation model for the bed allocation problem
is obtained, we could compare among the alternatives using ranking and selection procedure (R&S) that
efficiently determines the number of replications. R&S have been shown to be much more efficient than
if the simulation budget is equally distributed among the alternatives. Another challenge is to consider
constraints in the performance measures separately instead of lumping it into a single objective. These
two challenges can be tackled by integrating R&S with optimization methods. For example, Ahmed and
Alkhamis (2009) integrates the constrained R&S procedure by Andradóttir, Goldsman, and Kim (2005) with
the search algorithm (Alkhamis and Ahmed 2004) to find the optimal number of staffs in the emergency
department.

In this paper, we apply the proposed allocation procedure (OCBA-CO) and Nested Partitions method
in finding the best feasible bed configuration which consists the number of beds for each specialty. This
provides an alternative for decision makers who wish to model the problem as a constrained optimization
instead of a single objective problem or a multi-objective problem. For the case where all performance
measures are equally important, Wang et al. (2015) provides an excellent example on how to efficiently
obtain the set of non-dominated solutions.

2 PROBLEM STATEMENT

2.1 Sample of System Description and Modeling

We consider a hypothetical setting as described in Pujowidianto et al. (2012). The bed management unit
is open 24 hours daily and we consider two sources to the bed management unit, namely the emergency
patients and the elective patients. For the emergency patients arrivals, we treat their service time in the
emergency department as a one lump sum. We assume that the service time distribution is uniform across
different levels of patient acuity. Some patients from the emergency department will then be admitted to
the bed management unit based on the historical probability of admission for different types of patient
attributes. We assume that there is no physical limit for the number of patients in the emergency department.
For both the emergency and the elective patients, we consider 5 different specialties.

We use non-stationary Poisson process to model both the emergency patients and the elective arrivals.
The length of stay is exponentially distributed. The more critical patients receive a higher priority in
practice. However, for simplicity, we do not consider different patient acuity levels and so first-in first-out
(FIFO) is used as the queue discipline. In addition, we assume that the travelling time to the ward and
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the cleaning time are incorporated inside the length of stay. Figure 1 shows the process flow in modeling
the bed allocation problem. It is possible to allow for an overflow when the bed with the correct specialty
for a particular patient is not available. This is governed by the overflow protocol in Table 1. For each
specialty, there are at most three other specialties where the overflow can be allowed.

Figure 1: Process Flow.

Table 1: Overflow protocol.

Specialty 1st Overflow 2nd Overflow 3rd Overflow
Medicine Oncology Cardiac Not Applicable

Cardiac Medicine Surgery Orthopedic
Oncology Medicine Surgery Orthopedic

Surgery Medicine Oncology Cardiac
Orthopedic Surgery Medicine Not Applicable

2.2 Problem Description

Let c be the total number of specialties considered while xm and um are the number of available bed and
the number of occupied bed respectively at a given fixed time of the day for the specialty m = 1, . . . ,c.
We consider three daily performance measures, namely the bed occupancy rate (BOR), the 99th percentile
of the turn-around-time (TAT99), and the number of overflow (O). BOR is defined as the total number of
occupied beds at a particular time of the day divided by the total number of bed, i.e. BOR = ∑

c
m=1 um

∑
c
m=1 xm

. In
this study, the parameters xm and um are measured at 6 a.m. Let rp, ap, and tp be the time of bed request,
the time of the admission to the bed management unit, and the turn-around-time for patient p ∈W where
W is the set of all possible patients. The turn-around-time for patient p is measured from the time of bed
request to the time the patient is admitted, i.e. tp = ap− rp. TAT99 can then be obtained by taking the 99th

percentile of tp of all patients p ∈W in a day. The daily number of overflow represents the number of
mismatched between the specialty of the patients and that of the bed. It is measured in terms of percentage
of the number of overflow with respect to the total number of admitted patients in a given day.

Our goal is to determine the best feasible bed configuration, that is to find the configuration xi= [x1 . . .xc]
among k designs, i.e. i = 1, . . . ,k, which returns the largest BOR while ensuring the 99th percentile of the
turn-around-time and the number of overflow are less than the maximum limits γ1 and γ2 as described in
the following
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maxxiBOR subject to TAT99 ≤ γ1,O≤ γ2. (1)

Due to the uncertainties in the patients arrival time and the length-of-stay, the values of BOR and
TAT99 need to be estimated via simulation. Let Hi jd be the BOR in the j-th simulation replication
and in the d-th day for the bed configuration i, hi = E j[Ed [Hi jd ]]. Similarly, the simulation sample for
TAT99 is Gi1 jd , gi1 = E j[Ed [Gi1 jd ]] and that for the percentage of overflow is Gi2 jd , gi2 = E j[Ed [Gi2 jd ]].
The comparison of the bed configurations are based on sample means, i.e. Ĥi =

1
Ni

∑
Ni
j=1(

1
D ∑

D
d=1 Hi jd)

, Ĝi1 = 1
Ni

∑
Ni
j=1(

1
D ∑

D
d=1 Gi1 jd), and Ĝi2 = 1

Ni
∑

Ni
j=1(

1
D ∑

D
d=1 Gi2 jd) where Ni is the number of simulation

samples for bed configurations i and D is the number of simulated days. We assume that simulating the
system for D days excluding the warm-up period is sufficient to represent the original system. The key for
an efficient comparison is then on the determination of Ni.

We note that the problem in (1) can be modified depending on the goal of the decision maker. For
example, we can consider an additional constraint if the BOR should not exceed 85%. Gorunescu, McClean,
and Millard (2002) show that hospitals need to keep 10−15% emptiness to maintain the service efficiency
using queuing model. This is in line with the finding in Bagust, Place, and Posnett (1999) that regular
shortages can occur if the average bed occupancy unit is 90% or more.

3 PROPOSED METHOD

Our goal is to propose a procedure that allows hospital decision makers to select the best feasible bed
allocation design, i.e. the design which optimizes the main objective while satisfies all constraints. Both
the main objective and the multiple constraint measures need to be estimated via simulation. This is done
by integrating a constrained ranking and selection procedure for efficiently allocating the simulation budget
in comparing the designs and a search algorithm for generating the next sets of designs to be compared as
shown in Figure 2.

We use the Optimal Computing Budget Allocation for Constrained Optimization (OCBA-CO) which
efficiently allocates the simulation budget to the critical designs based on the means and variances in
selecting the best feasible alternative. When the number of alternatives is small enough for all designs to
be simulated, we can use this procedure directly. The sequential algorithm for implementing OCBA-CO
can be found in Lee et al. (2012).

For the searching algorithm, we use Nested Partitions method by Shi and Ólafsson (2000). In Nested
Partitions, the search space is partitioned into several regions. In each region, design points are randomly
sampled. Based on these samples, the most promising region is determined based on the promising index.
Once a region is declared as the most promising region, it will be further partitioned in the next iteration. The
other region will be aggregated as one partition called as the surrounding region. The most promising region
can be defined as the area where the best feasible alternative is located. This matches the characteristics
of OCBA-CO which emphasizes on selecting the best among a fixed number of alternatives instead of
accurately estimating the performance of each alternative. To avoid being trapped in a local optimal, Nested
Partitions allows backtracking if the best alternative at the current iteration is not located to any partitions
of the previous iterations most promising region.

4 NUMERICAL EXAMPLES

For the simulation, we use 4 warm-up days and afterwards 90 working days are simulated. The parameters
for the emergency patients arrivals are taken from Ahmed and Alkhamis (2009) as they are easier to generate.
Table 2 shows the arrival rates for each time period. The service time in the emergency department is
exponentially distributed with mean of 180 minutes. Aside from the arrival rates and the service time,
we adapt the data from the work in a Singapore hospital by Calugcug et al. (2009). For the emergency
patients, 64% of them are admitted. Table 3 shows the length of days for each specialty together with the
breakdown of the admitted emergency patients and elective patients for each specialty.
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Figure 2: The framework for integrating Nested Partitions and OCBA-CO.

In this example, 5 specialties are considered and the average bed occupancy rate (BOR), the average
99th percentile of the turn-around-time (TAT99), and the number of overflow are measured. The maximum
limit for the TAT99 is γ1 = 480 (in minutes). For the number of overflow, several values of the maximum
limit are used to see the effect of the selection of the overflow limit. For the setting where only one value
is used, the limit of overflow is defined as 30%.

4.1 Selection from a small number of alternatives

Pujowidianto et al. (2012) considered a simple case where there are only 5 alternatives. All designs are
simulated and there is no search needed. The constrained ranking and selection approach we use, namely
OCBA-CO and the commonly used Equal Allocation (EA) are being compared. The measurement of
effectiveness is the probability correct selection (PCS) which is estimated by the fraction of obtaining

Table 2: The arrival rates for each time period.

Time 0 2 4 6 8 10 12 14 16 18 20 22
Emergency Patients 5.3 3.8 3 4.8 7 8.3 9 7.8 7.8 8 6.5 3.3

Elective Patients 0 0 0 0 0.2 0.4 0.7 4.7 5.3 3.2 0.8 0.3
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Table 3: The simulation parameters for each specialty.

Medicine Cardiac Oncology Surgery Orthopedic
Length of Stays (days) 6.3 3.8 9.1 4.8 11.2
Proportion of Admitted Emergency Patients 50% 14% 5% 18% 13%
Proportion of Elective Patients 14% 22% 20% 28% 16%

correct selection out of a pre-determined number of independent experiments. The results show that
OCBA-CO performs better than EA.

4.2 Selection from a large number of alternatives

In this paper, we consider the case where the number of alternatives is huge. For each specialty, the
minimum number of bed is 5 while the maximum number of bed is 500. In other word, the search space
is Θ = [5,500]5 as there are 5 specialties. This translates to 3.002×1013 alternatives. Thus, a searching
algorithm is needed as it is virtually impossible to simulate all alternatives.

For the settings of Nested Partitions, we divide each axis of the most promising region into two.
In other word, there are 25 subregions as with 5 considered specialties. The first experiment shows the
result where 1 sample is taken from each region. The total computing budget for the first iteration is 215.
Subsequently, we increase the total computing budget by 50 in each of the iteration of Nested Partitions. For
the OCBA-CO, we run 5 initial replications for each design considered. Afterwards, there is an increment
of 50 replications to be allocated to the designs until the total computing budget in each of the NP iteration
is exhausted. Figure 3 shows that NP+OCBA-CO is able to converge in terms of the main objective value
as the search algorithm progresses.

Figure 3: Convergence of NP+OCBA-CO in terms of the main objective BOR.

In addition, we run different values of the limits to observe the effect of these limits to the total number
of bed changes. Table 4 shows the effect of the limit on TAT99 while the effect of overflow limit can be
seen in Table 5. As expected, a stricter requirement results in a solution with higher total number of beds.
The solution to the case with a lower turn-around-time (TAT99) limit has a higher total number of beds so
as to reduce the waiting time. Similarly, reducing the allowed percentage of overflow follows in a higher
total number of beds due to the reduction in flexibility which decreases the pooling effect.
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Table 4: Effect of TAT99 limit when the overflow limit is 50%.

Turn-around-time (TAT99) limit Total number of bed
480 705
360 824

Table 5: Effect of overflow limit when the TAT99 limit is 480 minutes.

Percentage of overflow limit Total number of bed
50% 705
30% 802
10% 920

5 CONCLUSION

In this paper, we formulate the bed allocation problem as a stochastically constrained optimization via
simulation. This allows the consideration of uncertainties embedded in patients arrival and service time
and the constraints on some of the performance measures. As simulation is computationally intensive,
we apply the OCBA procedure for constrained optimization. We provide an alternative for addressing the
stochastically constrained optimization via a black-box simulation by integrating OCBA-CO with Nested
Partitions method for selecting the best design given a huge discrete search space. The integrated procedure
is the methodological contribution and it is able to provide a guideline on how to select the best feasible
bed configuration.

The desire of the paper is to provide more motivations for hospital decision makers to use simulation
optimization as it is able to incorporate constraints in the performance measures. For those who prefer to
incorporate the constraints into a single objective, the constrained ranking and selection (R&S)procedure
by Hu and Andradóttir (2014) can be used. In terms of how to implement the integration of simulation,
R&S, and optimization algorithm, one can refer to SimOpt by Pasupathy and Henderson (2011) which
provides abundant examples on how to code them. One can also use the framework by Li et al. (2015)
which proposes an object-oriented discrete event simulation modeling for ease of development. Their
modeling paradigm facilitates the integration of simulation, efficient simulation budget allocation methods,
and search algorithms.

In practice, the parameters can be updated to model arrival and service time characteristics in a more
realistic manner. The potential configurations can be obtained by both the users preference and by searching
algorithms for randomly sampling the configurations out of the possible combinations. In addition, the
schedule of the elective patients in this paper is assumed to be given. When necessary, the model can
be extended to capture the interaction between the elective patients and the patients entering the bed
management unit from the emergency department. It is possible to do other what-if scenarios such as
changing the order of the overflow protocol. In the case where a single optimal solution is not preferred,
the OCBA method for selecting optimal subset can be explored. These show the flexibilities of simulation
optimization in addressing bed allocation problem.
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