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ABSTRACT 

Hospitals are witnessing an inexorable growth in emergency admissions, which results in overcrowding and 
a poorer patient experience. The Acute Medicine Program (AMP) is one of the programs developed by the 
Irish health authority aimed at improving patient experience. To review the AMP intervention, this study 
applies a model that integrates three analytical approaches: simulation, multivariate factor analysis and 
multi-objective optimization. The simulation identified 14 different factors affecting five responses that 
were used to develop a Design of Experiments (DoE). Multivariate factor analysis used the DoE to 
determine the factors creating ‘bottlenecks’, such as downstream resources. The multi-objective 
optimization model, based on the Simulated Annealing approach, is applied to support management 
decisions on optimizing key parameters affecting the treatment journey of patients. A Pareto set of solutions 
found that an increase in downstream capacity and unit staff can lead to a 25% decrease at least in the 
patient’s experience time.

1 INTRODUCTION 

Over the past decade, healthcare systems have faced many challenges in their attempts to improve system 
performance. Rapidly increasing costs along with the growing demand on Emergency Departments (EDs) 
have put healthcare decision-makers under constant pressure to manage and control their system in a more 
efficient and effective way. Overcrowding in EDs, which has reached crisis proportions internationally, 
negatively affects patient safety, quality of care, and patient experience (Graff 1999). In 2006, ED 
overcrowding was declared a “national emergency” in Ireland. In November 2015, emergency presentations 
had increased by 15,170  compared to the same period in 2014 according to the Health Service Executive’s 
(HSE 2015). Additionally, prolonged waiting times were reported, with more than 100 patients waiting on 
trolleys for hospital admission every day, and 23% of patients waiting for more than 24 hours (HSE 2015). 
Although Ireland is not the only country that experiences prolonged waiting and overcrowding (Forero et 
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al. 2010; Bond et al. 2007; Schafermeyer and Asplin 2003), it is important not to underestimate the potential 
consequences this situation can have on patients’ experience and safety, as well as on staff. 
 The National Acute Medicine Program (AMP) is a clinician-led initiative incorporating the Irish Health 
Service Executive’s (HSE) Clinical Strategy and Programs Directorate, and the Royal College of Physicians 
of Ireland (RCPI) among others (HSE 2010). It has developed a framework to mitigate the pressure on EDs 
and to minimize the length of stay (LOS) to reduce overcrowding, by introducing specialized units working 
in parallel with the EDs. The framework’s aim is to provide medical patients presenting to the ED with a 
fast track to decisions regarding their treatment journey in the hospital. Patients presented in these units get 
to see a senior medical doctor, who is able to make treatment decisions within almost one hour of admission. 
 However, hospitals managers and executives requested a formal assessment on how these units can cope 
with the unpredicted increase in workload and demand. In response, a project was carried out within the 
HSE to provide the managers with a tool to enable assessment of a dedicated unit within a hospital, and to 
propose a model to assist with resource planning. A Discrete-Event Simulation (DES) model is developed 
and validated to model the underlying relationships between such a unit and the ED. This model is then 
integrated with statistical analysis and optimization components to identify the significant factors that affect 
patient-related performance measures and to then optimize the key parameters to improve the system. 
 Simulation models have been successfully used to evaluate healthcare programs, policies and initiatives. 
In the UK, DES is used to assess one of the National Health Service’s initiatives, ‘See and Treat’, a fast-
track method based on the principle that one clinician can see, treat and discharge a patient after initial 
assessment (Davies 2007). The dynamic capabilities of simulation enable more accurate interpretation of 
the use of hospital resources (Thorwarth, Rashwan, and Arisha 2015), supporting hospital managers in their 
decisions on bed usage and patient flow (Harper 2002). However, research has found that simulation 
modelling can be time-consuming since multiple simulations have to be carried out to achieve statistically 
valid results (Brailsford 2006). These obstacles, however, can be alleviated by using integrated simulation 
surrogate models (metamodels). The integration can provide users with the required simplicity in using the 
tool and also the details of the system modelling (Poropudas and Virtanen 2011). Simulation surrogate 
modelling has several practical benefits: one particular advantage is its sensitivity analysis, which can be 
used to validate a simulation model when no historical data exists, and also in measuring the impact of 
uncertain variables on the system being simulated (Kleijnen 2005). Another objective of developing 
surrogate models is to enable optimization: to find the system configuration that identifies the optimal 
setting of the objective function (Barton and Meckesheimer 2006; Dellino, Kleijnen, and Meloni 2009). 
Metamodel techniques use analytical approaches to approximate objective functions so that the metamodel 
can replace part or all of a simulation model with a mathematical function that reflects the input-output 
behaviour of that part. Integrating metamodels in this way can shorten model computation times, and 
consequently, simplify the whole optimization process (Reis dos Santos and Reis dos Santos 2009). 

2 ACUTE MEDICAL UNITS (AMU) 

Acute Medical Units (AMUs) were set up in many acute healthcare trusts in the UK as the result of 
investment in acute medicine and to alleviate pressure from the EDs. These units act as a focal point for the 
rapid assessment of acutely ill medical patients referred to the hospital (Oddoye et al. 2009). In Ireland, 
AMUs have been established in all the main hospitals to facilitate the immediate medical assessment, 
diagnosis and treatment of patients who suffer from a wide range of medical conditions. AMUs are not 
designed to play a different role from EDs; they deal with medical patients who are triaged as urgent or 
very urgent, while ED deals with medical and non-medical patients with different acuity levels. Every AMU 
should have access to a senior clinical decision-maker at all times. The benefits of AMUs arise from the 
efficient streaming of medical patients to a location where they can be seen without delay by a senior 
medical doctor (i.e. a consultant, specialist registrar or registrar). If admission is required, this will occur 
within a defined period, and the patient will be admitted to the most appropriate clinical area in the hospital. 
Patients access to these units based on their acuity level and other criteria that should be set by each hospital. 
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AMUs are usually divided into two sub-units: Acute Medical Assessment Unit (AMAU) and Short Stay 
Unit (SSU). While the AMAU acts as the first gateway for acute medical patients referred from the ED, the 
SSU is for patients who need to be admitted to the hospital, but their estimated length of stay is below a 
certain threshold. Patients can also be admitted directly to hospital clinical wards from AMU (Figure 1). 

 

 

Figure 1: Generic patient’s pathways through hospital with the AMU. 

3 UNDERSTANDING THE DYNAMICS  

Healthcare executives sought to gain insights into the dynamics of the ED and AMU care system applied 
in Tallaght Hospital, one of Ireland’s largest hospitals. Recently the hospital adopted the AMP’s 
recommendations and opened two more units to offer alternative routes for patients: an AMAU and an SSU. 
The AMAU works as a 12-hour unit; it opens every weekday from 9:00 – 21:00, but only accepts patients 
up to 18:00, to allow beds to be freed for the next day. The SSU works as a short-stay ward for patients 
who need to be admitted to the hospital, and whose length of stay is estimated to be less than five days. The 
only access to the AMAU is through the ED after patients are assigned a triage category. The two units and 
the ED share resources, and also share resources with the hospital. In this study, a DES model is developed 
and tested to model the underlying relationships between the different units based on a previously developed 
model for the ED (Swallmeh et al. 2014). 

3.1 Data Collection and Analysis 

The qualitative and quantitative data used in this study were obtained from historical ED logs, electronic 
patient records (EPRs), direct observation and interviews. After the introduction of AMUs, the average 
patient experience time (PET) improved. While a medical patient spends an average of 9.06 hours in ED, 
another medical patient routed to the AMU spends an average of 4.11 hours from admission to discharge. 
Comparing the PET of medical patients in both units and the average time they spend in different care 
stages, it is clear that patients in the ED spend a significant amount of their time waiting to be moved into 
the department or waiting to be discharged or admitted. Also, a considerable number of patients who should 
be routed to the AMAU are misallocated to the ED, leading to an increase in their PET. 

3.2  Process Mapping 

On registration at the ED, walk-in patients remain in the waiting area to be triaged by a triage nurse. They 
are then assigned a triage category according to the Manchester Triage System (MTS), which is widely 
used in the UK, Europe generally, and Australia (Cronin 2003). Once assigned a triage category, a medical 
patient can be directed to either the ED or AMAU; the patient is eligible for the AMAU path if s/he arrives 
between 9:00 and 18:00 (the unit’s admission hours) and is triaged in category 2 or 3. If a patient is believed 
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to be eligible for the AMAU path, the triage nurse calls the AMAU’s consultant to inform him/her about 
the case and check the availability of a bed for the patient. If a bed is unavailable in the AMAU, the patient 
is referred to the ED path. Otherwise, the patient is directed to the AMAU and registers in their system. A 
nurse then interviews the patient and measures him/her vitals while waiting for a doctor’s assessment. Most 
patients in the AMAU would follow the pathway in Figure 2, which shows the primary care steps relevant 
to all AMAU patients, whether they are discharged or admitted to the hospital.  

 

Figure 2: Patient’s Flow in AMAU. 

 A conceptual model of the unit has been documented and validated by the hospital’s senior clinicians 
and senior nursing staff. Based on this model and empirical data analysis, a comprehensive DES model has 
been developed. The simulation model was validated using face validation and comparison testing to ensure 
that the actual system length of stay times is mirrored by the model. 

3.3  Integrated Model 

The integrated model presented in this study is aimed at evaluating the AMU’s intervention in Tallaght 
Hospital. A DES model was developed initially to provide better understanding of the interrelated dynamics 
between the system factors, and the responses that would give the clinicians insights into their system. It 
was also adopted to examine the impact of strategies proposed by the management team. Simulation outputs 
were able to identify all possible controllable and uncontrollable factors to be considered. The design of 
experiment (DoE) aims to measure the factors’ impacts on five responses. Multivariate factor analysis then 
complemented the model by using the results of the DoE to ascertain the critical activities and determine 
the significant factors to each response. The DoE results were also used as an input to different machine 
learning techniques, used to find the best surrogate model to describe each response in terms of its 
predictors. A machine learning metamodel based on multi-objective simulation-optimization is proposed 
to support management decisions in identifying the bottleneck activities in the treatment journey of patients, 
and to determine the Pareto set of solutions to key decision variables, using simulated annealing (Figure 3). 

4 MULTIVARIATE FACTOR ANALYSIS 

Clinicians and executives were interested in identifying the most significant factors affecting the overall 
performance of the AMAU. Therefore, a DoE on the results of the simulation model was conducted. In 
practice, DoE is a useful tool, with many theoretical developments and practical applications in various 
fields. Latin hypercube sampling is a flexible way to build efficient designs for quantitative factors (Sanchez 
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2005). Near-Orthogonal LH (NOLH) designs, specifically, have good space-filling and orthogonality 
properties with a small to an average number of factors (Cioppa and Lucas 2007). 
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Figure 3: Different components of the proposed integrated model. 

 A NOLH design is employed in this study using 14 selected factors with 66 design points. This design 
is represented by a matrix Mn×p where n is the number of scenarios (experiments), and p is the number of 
factors (controllable and uncontrollable variables) that are uniformly spaced. Controllable variables are 
directly observable, such as the number of beds, whereas uncontrollable ones require statistical inference, 
such as patients’ arrival rate (Kleijnen and Sargent 2000). The responses measured in each of these 
experiments (Table 1) are defined as the average patient’s experience times in AMAU, the average patient’s 
waiting time, the average number of patients accessing the AMAU, the average number of lost patients due 
to unavailable beds, and the average of boarded patients in the AMAU due to unavailable downstream beds 
(wards and SSU). The response matrix is evaluated using the simulation model for each experiment. 

Table 1: Description of DOE variables and responses. 

Factors/Predictors 
Levels 

 
Responses Variables 

Type Variable Description  

U
nc

on
tr

ol
la

bl
e 

p1: Patients’ misallocation. 2L: 0 or 1  y1: Average patient’s experience time (PET) in 
AMAU p2: Opening Hours (12 hrs, 18 hrs, 24 hrs.) 3L: -1, 0 and +1  

p3: Service time change 3L: -10%, 0, 10%  y2: Average patient’s waiting time in AMAU 
p4:	Inter-arrival time at night in minutes 3L: 27, 30 and 33  y3: AMAU accessibility; average number of daily 

patients accessing AMAU p5: Inter-arrival time evening in minutes 3L: 11, 12 and 13  
p6: Inter-arrival time morning in minutes 3L: 7, 8 and 9   y4: AMAU blocking; the average number of lost 

patients daily due to bed unavailability. p7: Average number of ED boarders 8L: 0,1,2...7  

C
on

tr
ol

la
bl

e 

x1: Number of AMAU beds 8 L: 9, 10… 16  y5: AMAU Boarders; average number of boarded 
patients daily in AMAU due to unavailability of 
downstream resources (i.e. SSU and ward beds) 

x2: Number of SSU beds 16L: 9, 10… 24  
x3: Number of ward beds 66L: 470 to 570  
x4: Number of Nurses 3L: 2, 3, and 4  
x5: Number of Registrars 3L: 1, 2, and 3   
x6: Number of SHOs 3L: 1, 1, and 1   
x7: Number of Consultants 2L: 1 and 2   

4.1 Performance Determinants 

From a practical perspective, a transformation of the predictor and response variables is required before 
analysis, due to the different scales of the predictors and also where some of them are found to be skewed. 
The most frequent and straightforward transformation is to centre and scale the predictors. It is possible to 
centre the data by subtracting the sample mean from all the values while scaling the data requires each value 
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of a variable to be divided by its sample standard deviation. In addition to centring and scaling, removing 
the distributional skewness is a major step in improving the numerical stability of the calculations. The 
skewness of the variables is fixed using Yeo-Johnson Power Transformations (Yeo and Johnson 2000). 
 The variables were examined separately for the 66 design points. The transformed factor and response 
matrix are x* and y* respectively. Standard multiple regression was performed between each response 
variable separately as a dependent variable and with x* as the independent variables. Table 2 displays the 
standardized/transformed regression coefficients, intercept, significance, standard error and R2. The R2 for 
all regression models is significantly different from zero, at p < 0.001. 

Table 2: Regression analysis results. 

Analysis of Deviance Table (Type II tests) 

Factors 

Responses 
PET, y1 Waiting Time, y2 AMAU Access, y3 Blocked Patients, y4 Internal Boarders, y5 

Estimate (Std. Error) Estimate (Std. Error) Estimate (Std. Error) Estimate (Std. Error) Estimate (Std. Error) 

-1.2811 (0.1198)*** -1.2218 (0.1543)*** -1.1909 (0.1199)*** 1.1773 (0.1147)*** 0.4381 (0.2112)* 
p1: Misallocation 0.5882 (0.1161)*** 0.3874 (0.1496)* 0.3467 (0.1162)** -0.3662 (0.1111)** 0.407 (0.2047)^ 
p2: Opening Hours 0.987 (0.0797)*** 1.0281 (0.1026)*** 1.0175 (0.0797)*** -0.9942 (0.0762)*** -0.6416 (0.1404)*** 
p3: Service Time 0.1791 (0.0569)** -0.108 (0.0733) 0.0353 (0.0569) -0.0309 (0.0545) 0.004 (0.1003) 
p4: Inter-arrival time1 0.0308 (0.0587) -0.003 (0.0756) -0.0098 (0.0587) -0.0725 (0.0562) 0.0319 (0.1034) 
p5: Inter-arrival time2 -0.0748 (0.0573) 0.0371 (0.0738) -0.1009 (0.0573) -0.1428 (0.0548)* -0.0397 (0.1009) 
p6: Inter-arrival time3 0.066 (0.0582) -0.0076 (0.0749) -0.0089 (0.0582)^ -0.3742 (0.0557)*** 0.0141 (0.1025) 
p7: ED Boarders -0.2269 (0.0566)*** -0.1819 (0.0729)* -01868 (0.057)** 0.19 (0.0542)*** -0.1667 (0.0998)^ 
x1: AMAU Beds 0.0505 (0.0576) -0.0818 (0.0742) 0.0634 (0.0576) -0.0505 (0.0551) 0.1142 (0.1015) 
x2: SSU Beds -0.2229 (0.0572)*** -0.3134 (0.0737)*** 0.1482 (0.0572)* -0.1519 (0.0548)** -0.2039 (0.1008)* 
x3: Ward Beds -0.0839 (0.0566) -0.1932 (0.0729)* 0.3999 (0.0566)*** -0.3554 (0.0542)*** -0.3632 (0.0998)*** 
x4: Nurses 0.0571 (0.0576) 0.0677 (0.0742) -0.0541 (0.0576) 0.048 (0.0551) -0.0125 (0.1015) 
x5: Registrar -0.269 (0.0568)*** -0.1672 (0.0731)* 0.0179 (0.0568) -0.0181 (0.0543) -0.025 (0.1) 
x6: SHO -0.1699 (0.0583)** -0.1185 (0.075) 0.0697 (0.0583) -0.0482 (0.0557) 0.0271 (0.1027) 
x7: Consultant -0.3311 (0.0575)*** -0.1174 (0.0741) 0.0052 (0.0575) -0.0106 (0.055) -0.0536 (0.1013) 
Significance. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '^' 0.1 ' ' 1  

 Patient Experience Time – Eight variables, x1, x2, x3, x5, x8, x9, x10 and x14, contributed significantly 
to PET in AMAU (y1), at p < 0.001. Altogether, 84.26% of the variability in the AMAU PET was 
predicted based on these eight variables. Misallocation x1, opening hours x2 and service time x3 are 
positively associated with this response. It is evident that increasing the demand and service time 
of the unit would lead to an increase in the time experienced by the patient. On the other hand, y1 
is negatively associated with increasing staff capacity x8, x9 and x10, and the downstream bed 
capacity (SSU bed; x5). Also, increasing the number of ED boarders has a negative impact on the 
AMAU PET because the boarded patients block admission to the unit, which indirectly reduces the 
average PET of the admitted patients. Counter-intuitively, the unit bed capacity, x4, has an 
insignificant impact on the PET, which may explain why the AMAU beds are not a capacity 
constraint (a bottleneck). The size of the relationship suggests that opening hours and misallocation 
have the highest positive impact while the number of consultants and registrars has the largest 
negative impact. 

 Waiting Time – The variables x1, x2, x5, x6, x8 and x14 were identified as having a significant impact 
on waiting times in AMAU (y2), p < 0.001. The predictors can explain 73.7% of the total variation 
in the average waiting time. The results reflect a strong positive association between demand factors 
x1, and x2 while waiting time on the downstream resources, x5 and x6, the number of registrars, x8, 
and ED boarders, x14 , are negatively correlated with average waiting time in AMAU, y2. 

 The AMAU accessibility – Six independent variables, x1, x2, x5, x6, x13, and x14 have a significant 
impact on the patient’s accessibility to the AMAU unit, y3, at p < 0.0001. These predictors can 
explain 84% of the total variance in the number of patients admitted to the AMAU unit. More 
available downstream beds, x5 and x6, would lead to more admissions to the AMAU. Also, 
increasing the number of patients arrival during the AMAU opening hours, x13, and increasing the 
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demand, x1, and x2, were associated with increasing the number of admitted patients to the AMAU. 
Apparently, the ED boarded patients in the AMAU, x14, contribute negatively to the acceptance of 
more patients. Also, the results showed that the AMAU bed capacity, x4, has no significant effect 
on admissions as the unit is constrained by resources in the subsequent stages. 

 Blocked Patients – This response summarizes the number of blocked patients due to opening 
hours, misallocation, bed unavailability, boarding and reneging. Seven predictors were defined that 
have a significant effect on this response: x1, x2, x5, x6, x12, x13, and x14. The first six variables showed 
a negative relationship with the number of blocked patients in the unit. Also, the number of boarders 
from the ED showed a positive correlation with the number of blocked patients. Hence, a control 
on how many patients are allowed to board the unit’s beds would lead to an improvement in this 
figure. 

 AMAU Boarding – The multiple linear regression analysis was conducted to predict the AMAU 
boarded patients, y6, based on all factor variables. A significant relationship was found (p < 0.0001), 
with R2 of 51.1%. Five variables, x1, x2, x5, x6, and x14, have contributed significantly to predicting 
a number of AMAU’s boarders due to the unavailability of beds in the SSU or ward. 

 In the current individual setting of the AMAU under study, the AMAU’s bed capacity did not have a 
significant impact on any of the performance variables, which shows that this factor should not be presented 
as a bottleneck. 

5 MULTI-OBJECTIVE OPTIMIZATION 

Focusing only on the strongest predictors of response measures from the regression analysis may not always 
be the most effective when planning for improvement strategies. The ultimate objective of this study was 
to find the optimal configuration of the main unit resources in order to optimize multiple objectives 
simultaneously, subject to a set of capacity constraints. The mathematical formulation of the problem (P) 
is:  

ܻ	݊݅ܯ ൌ ሼ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, െ ଷ݂ሺݔሻ, ସ݂ሺݔሻ, ହ݂ሺݔሻ	ሽ (P) 
s.t  
   ݈  x  and x ݑ ∈	Integer set. 

 The objectives are to minimize the average PET in the AMAU, f1(x), average waiting time, f2(x), 
average number of blocked patients, f4(x), and the average number of boarded patients, f5(x), while 
maximizing the mean access to the unit, f3(x). The vectors l and u are the lower and upper capacity levels 
of the decision variables x based on the decision-maker’s recommendations. Since this multi-objective 
discrete optimization problem doesn’t have a closed analytical form; it should be evaluated using the 
simulation model, where yi(x) is the estimation of fi(x). 

5.1 Machine Learning (ML) based Surrogate-Models 

A set of supervised ML predictive models is tested to select the best surrogate model for each response 
variable. Three groups of predictive models are tested for each response variable. The first group is the 
linear regression models, which include ordinary least squares regression (OLS), partial least squares 
(PLS), elastic net, and linear support vector machines (Linear SVM). The second group is the non-linear 
retrogression models. The nonlinear regression models tested are neural networks (Nnet), multivariate 
adaptive regression splines (MARS), and radial basis function SVM (Radial SVM). Finally, regression tree 
and rule-based models are tested, consisting of a set of nesting ݂݅ െ  rules for the predictors that ݄݊݁ݐ
partition the data. Six regression trees and rule-based models are examined for each response variable: 
classification and regression tree (CART), condition inference tree, bagged tree, boosted tree and random 
forest (RF) and Cubist. To reducing the noise, five replications are employed in this study, resulting in an 
acceptable level of mean square error. The training dataset for each ML model is obtained from the NOLH 
discussed earlier. Typically, the Root Mean Square Error (RMSE) is used to evaluate the effectiveness of 
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the regression models. RMSE is employed to assess the predictive performance of the ML models (next 
section). 

5.2 Parameter Tuning and Model Selection 

For each response variable, 13 predictive ML models were assessed over a defined set of tuned parameters 
(grid search). The performance metric was evaluated using five repeats of 10-fold cross-validation. In the 
process of parameter tuning, cross-validation generated 50 different estimates of the accuracy of each 
candidate of model parameters. A resampling method is used to compare between these 13 models, based 
on the cross-validation statistics. Table 3 summarizes the RMSE calculated from the cross-validation of 
each response variable across all models. Since the models’ accuracies are evaluated using identically 
resampled data, the paired-t test can be applied to compare the significant differences among these models 
for each response separately. 
 The main criterion for selecting the appropriate surrogate model is the RMSE (Table 3). However, 
when there is no significant difference between the surrogate models (using paired-t test), the most 
interpretable model is selected as a rule of thumb. The rule of thumb for the results indicated that LSVM 
has the best cross-validation accuracy for	yෝଵ, but there is no evidence – with a 95% confidence level – to 
support the idea that the accuracy of LSVM is better than that of OLS, PLS, elastic net, MARS, or Cubist. 
In this case, the elastic net model is selected as a candidate metamodel to predict the PET in AMAU ሺyොଵሻ 
regarding the decision variables, because it is a less opaque model compared with LSVM. The MARS and 
Cubist models outperformed the rest of the models for predicting the waiting time (ݕොଶ), access to AMAU 
 the paired t-test showed that ;(ොହݕ) and number of boarded patients (ොସݕ) number of blocked patients ,(ොଷݕ)
there is no significant difference in the accuracy between these two models; therefore MARS was the 
selected model to predict the responses, because it is more interpretable than the Cubist model. The elastic 
net has two tuned parameters (fraction, λ) and MARS also has two parameters (no. of prune, degree). The 
values of the tuned parameters used for each selected model are presented in the last column of Table 3. 

Table 3: Machine learning models for selecting the appropriate surrogate models. 

Resp. 
Var. 

Linear Regression Models 
Nonlinear 

Regression Models 
Tree and Rule-based Regression Models 

Selected 
Model 

Tuned 
Parameters 

OLS PLS 
Elastic 

Net 
LSVM MARS RSVM Nnet CART 

Cond Inf 
Tree 

Bagged 
Tree 

Boosted 
Tree 

Radom 
Forest 

Cubist 

 ෝ 0.65* 0.64* 0.64* 0.62* 0.66* 0.71 0.71 0.94 0.94 0.89 0.66 0.86 0.63* Elastic net (.9, .01)࢟
 ෝ 2.50 2.36 2.11 2.39 1.23* 2.25 2.29 1.86 1.86 1.85 1.83 1.79 1.25* MARS (4,2)࢟
 ෝ 8.02 7.87 7.37 8.76 4.87* 7.48 7.35 7.86 7.92 8.16 5.47 6.33 4.97* MARS (7,1)࢟
 ෝ 14.28 14.20 13.89 15.35 6.51* 14.87 9.80 14.42 14.42 14.62 9.69 9.64 7.40* MARS (12,2)࢟
 ෝ࢟ 4.72 4.60 4.27 4.67 2.80* 4.11 4.84 4.48 4.43 3.97 3.31 3.27 2.18* MARS (15,3) 

* There is no significant difference between these models based on a paired-t test at 95% confidence level for each solution. 

5.3 Desirability-Based Multi-Objective  

The desirability function approach was introduced by Harrington (1965) to optimize multiple simultaneous 
objectives by transforming the estimated response ݕపෝሺxሻ into a unified scale [0, 1], called a desirability 
index, denoted by	݀൫ݕపෝሺxሻ൯. The highest desirable solution has a value of 1 while a highly undesirable 
solution has a value of 0. The desirability function for minimization and maximization-type response 
functions are given by equations (1) and (2) respectively: 

݀
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ە
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۔

ۖ
ۓ
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௫

ቆ
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ܻ
௫ െ ܻ

ቇ
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															݂݅	 ܻ
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 ܻ
  and ܻ

௫  are the lower and upper bound of the response ݕపෝ  respectively, and ߜ  is the shape 
parameter of the desirability function	݀൫ݕపෝሺxሻ൯. The desirability function is linear if ߜ ൌ 1 and convex 
(concave) if ߜ  ߜ) 1 ൏ 1ሻ. The shape parameter is chosen such that the desirability is easier or more 
difficult to achieve. ܻ

 and ܻ
௫ are calculated using the quantile ranks. These parameters are chosen 

by the modeller in coordination with the decision-maker. 

5.4 Optimization Results 

A composite or overall desirability (ܦሻ of a solution (system configuration) combines all the individual 
desirability values ݀൫ݕపෝሺxሻ൯ using the geometric mean. Derringer (1994) proposed a weighted geometric 
mean, which is given by	ܦ ൌ ∏ ݀ሺݕොሻ


 . Replacing the multiple objectives with the composite desirability 

function D obtains a new single-objective to be used to find the set of efficient solutions. Gradient-based 
search methods are not suitable for this problem since the various prediction models are not smooth and 
have many discontinuities (e.g. MARS and Cubist). A direct search method is applied to obtain a near-
optimal configuration: simulated annealing (SA) (Suman and Kumar 2006). SA is a global search technique 
that attempts to avoid the possibility of being trapped in local optima through accepting poor solutions. The 
acceptance/rejection of worse solutions is controlled by a probability function that depends on a temperature 
parameter to trade off exploration and exploitation. 
 The search is repeated several times using different starting points to overcome being stuck in local 
optima, and also to generate a set of solutions from which the best can be selected. A total of 15 starting 
points are chosen from the DoE dataset; the first starting point of the 15 is sampled randomly, and the rest 
are chosen using the maximum dissimilarity sampling method. All constraints are handled using the penalty 
function. Table 4 presents the results obtained from the SA method; it is divided into four sections: values 
of decision variables, the corresponding responses, the responses’ desirability, and the composite 
desirability of the solution. The first row shows the current solution; each following row presents a different 
solution obtained from the 15 starting points. Out of the 15 starting points, only seven trails succeeded in 
reaching a feasible solution. 

Table 4: A set of efficient solutions obtained from SA method with multiple starts. 

Solutions Decision variables Responses Individual Desirability Overall
  x1  x2  x3  x4  x5  x6  x7   ෝ࢟  ෝ࢟  ෝ࢟  ෝ࢟  ෝ࢟ d1  d2  d3  d4  d5  D 

Current 11 12 520 3 2 2 1 4.125 1.541 20.790 1.358 1.849 0.884 0.812 0.807 1.0 0.744 0.845 
Solution 1 16 16 510 2 2 2 2 3.460 0.830 21.686 1.226 1.210 1.00 1.000 0.835 1.000 0.942 0.953 
Solution 2 10 15 498 3 1 2 2 3.872 1.151 17.163 3.998 2.225 0.95 0.946 0.650 0.993 0.634 0.819 
Solution 3 11 15 544 2 2 3 2 3.235 0.619 23.134 0.068 0.922 1.00 1.000 0.874 1.000 1.000 0.973 
Solution 4 11 16 519 2 3 2 2 3.110 0.533 23.142 1.352 0.154 1.00 1.000 0.874 1.000 1.000 0.973 
Solution 5 11 14 496 3 2 3 2 3.425 1.079 15.970 4.272 3.024 1.00 0.970 0.558 0.975 0.422 0.741 
Solution 6 11 11 491 2 1 3 1 4.697 2.115 14.754 5.890 5.110 0.719 0.580 0.347 0.868 0.034 0.335 
Solution 7 13 15 530 2 3 1 2 3.337 0.571 22.479 1.149 0.184 1.00 1.000 0.857 1.000 1.000 0.970 
Note: The rejected (dominated) solutions are struck-through. 

 
 The current solution is strongly dominated by solutions 1, 3 and 7. Also, solutions 5 and 6 are local 
optima points regarding the value of their composite desirability D since all other solutions dominate them; 
therefore, they can be safely excluded. Solutions 1 and 2 can also be excluded since they are strongly 
dominated by solution 3. The non-dominated solution set is formed from solutions 3, 4 and 7; comparing 
their desirability values, solution 3 and 4 weakly dominate solution 7. Also, comparing the input/output 
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levels of each non-dominated solution reveals that solution 4 is the best configuration. This configuration 
improves the patient-related indicators significantly with the minimum extra resources. This solution 
suggests the need to increase the bottleneck resources that limit the patient flow. 
 The results of comparing the current AMAU settings and the best (near optimal) setting, solution 4, 
(Figure 4) show some improvement in all the response variables. The horizontal line represents the current 
performance (as 100%), and the bar chart shows the response variables of the best setting as a percentage 
of the current setting. The average PET, average waiting time and number of AMAU boarders are 
dramatically decreased – by 25% and 65% respectively. The AMAU boarders are nearly eliminated, while 
AMAU accessibility (patient flow) has increased by around 11%. It is likely that the expected performance 
improvements in the optimal scenario would be subject to the implementation challenges. 

 

 

Figure 4: Comparison between current and the best scenario setting of the AMAU. 

6 CONCLUSION 

With the increasing demand for emergency services, Emergency Departments (EDs) are starving for 
support. Hospitals desiring to improve patients’ experience have to implement facilitative interventions. 
The Acute Medicine Program (AMP) provides a framework to deliver acute medical services aimed at 
substantially improving patient care, reducing waiting times in emergency units, and helping to shorten the 
decision-making process in a safe way. It proposes that specialized units known as Acute Medical 
Assessment Units (AMAUs) work in parallel with EDs to alleviate the pressure caused by high demand. 
The main contribution of this study is to introduce an integrated model that is used to evaluate the 
integration of AMAU in Tallaght Hospital, Dublin. 
 A Discrete Event Simulation (DES) model was initially developed to provide insights and understand 
the dynamics of the selected units in the hospital. Several experiments proposed by the management team 
were studied; the simulation model was used to examine the impact of different strategies on the AMAU’s 
performance. Fourteen factors were identified from the simulation results as being significant to the 
response variables suggested by the unit’s management. These factors and patient-related responses were 
then used to develop a Design of Experiments (DoE) with good space-filling to cover all possible outcomes 
of the system. Sixty-six different scenarios resulting from the design were evaluated by the simulation 
model; they were then used in performing a multivariate factor analysis to identify the performance 
determinants for each response variable. 
 Results from the factor analysis showed that downstream capacities had significant impacts on all 
performance variables. Therefore, their exact values needed to be optimized to help alleviate the pressure 
on the unit in a cost-effective manner. Similarly, patient misallocation, ED boarded patients and the unit’s 
opening hours considerably affected all the unit responses. However, in the individual setting of the AMAU 
under study, and at variance with common clinician perceptions, the AMAU’s bed capacity did not have a 
major impact on any of the performance variables, indicating that increasing bed capacity will not alleviate 
pressure on the unit. The DoE results were also used as inputs to exploit 13 machine learning predictive 
metamodels in an attempt to provide surrogate models for each response variable. Surrogate models were 
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employed to describe the relationships between response variables and their predictors and then used in the 
multi-objective optimization model since there is no closed analytical form to predict the responses. The 
literature indicates that machine learning algorithms are effective in attaining a closed form for each 
response variable. The results show that multivariate adaptive regression splines (MARS) outperformed 
most other methods for predicting the surrogate model for all response variables, except for the average 
patient experience time (PET) in AMAU, where elastic nets had the best root mean square error.  
 Finally, the model proposed provides real-time strategies for AMAUs to improve patient care, by 
introducing a multi-objective optimization approach that aims to compromise among various objectives. 
The desirability function method is used to convert the multiple objectives into a single objective problem. 
The simulated annealing (SA) approach is then used to obtain near-to-optimal solutions. The search is 
repeated 15 times, with different starting points to avoid being trapped in local minima. The suggested 
solutions from the SA show that developing downstream capacity along with increasing the unit’s human 
resources would lead to a 25% decrease in PET and significantly improve other response variables, allowing 
the AMAU to meet the unpredictable increase in demand better. 
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