
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

A METHOD TO AVOID SMARTPHONE MEMORY ERRORS IMPACTING ENCRYPTION
KEYS

Jianing Zhao
Peter Kemper

Department of Computer Sciences
College of William and Mary

Williamsburg, VA 23185, USA

ABSTRACT

Encryption is used as the method of choice to control access to sensitive data on a smartphone by systems
such as CleanOS. We present a simulation study to demonstrate the potential damaging effect that memory
errors can have on encrypted data if errors corrupt encryption keys. We show how simple algorithmic
strategies to detect and correct a faulty key can marginalize the risk of such errors.

1 INTRODUCTION

The proliferation of smartphones and their use in everyday life for personal and business purposes has led
to the situation that phones store a significant amount of sensitive data. Therefore much research has gone
into the identification, tracking and protection of sensitive information. The CleanOS system Tang et al.
(2012), for example, relies on encryption and the remote storage of keys in the cloud to control access
to sensitive data and to prevent decryption of locally stored, encrypted data in case of theft. However, if
memory errors corrupt encryption keys, encrypted data may become accidentally inaccessible. As main
memory in most smartphones is not protected against memory errors, holding encryption keys only in main
memory over time as done in CleanOS is susceptible to memory errors. Zhao and Kemper (2016) show
some preliminary findings on ways memory errors can lead to loss of sensitive data under the CleanOS
architecture.

In this paper, we further extend results from Zhao and Kemper (2016) by simulating the effect of
algorithmic strategies to prevent memory errors from affecting encryption keys. The research question
we investigate is: To what extent can software solutions alleviate the possible destructive effects of
memory errors on encryption keys for the encryption of sensitive data in a key escrow system such
as CleanOS? We consider the following threat model: We assume that content in main memory can be
corrupted (single or multiple bits) at any moment in time due to memory errors. Possible root causes
are software errors as well as hardware failures. Programming errors in kernel or application code can
accidentally overwrite content in main memory. Programming languages such as C are infamous for the
numerous possibilities to make mistakes with pointer arithmetic, dangling pointers and so forth (van der
Veen et al. 2012). Single or multiple bit errors can also be the result of hardware errors on unprotected
DRAM. ECC protection for DRAM is technically possible, but comes at a price in terms of increased
production costs, reduced capacity and increased energy consumption. So for most smartphones, it is
currently common that DRAM is not equipped with ECC. Although the probability of a memory error is
small, it is still quite possible that it happens and a stored key may be corrupted by some hardware or
programming error.

We investigate existing solutions in related work in Section 2. In Section 3, we discuss specific solutions
to make the key management in encryption-based systems like CleanOS resilient to memory errors. We

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1848



Zhao and Kemper

come up with a simple algorithm and perform a simulation study to evaluate its effectiveness in Section 4
and its performance in Section 5.

2 RELATED WORK

Hardware faults are one source of memory errors. For DRAM used in large scale data centers, studies
by Hwang, Stefanovici, and Schroeder (2012) and Schroeder, Pinheiro, and Weber (2009) show that there
is a rising rate of memory error occurrences despite efforts in quality control of DRAM production and
error-tolerance mechanisms. There are many causes for memory errors such as environmental factors as
shown in Kim et al. (2014), Khan et al. (2014), Liu et al. (2013). For mobile memory, we did not
find corresponding numbers being published. However, high density and low cost design are arguments
to justify the assumption that DRAM in mobile devices is less reliable than PC DRAMs at least for the
low-end of the market.

A second source of memory errors result from programming errors such as buffer overflow and dangling
pointers in software developed in languages such as C and C++.

2.1 Existing Hardware-based Solutions

A number of common memory error detection and correction techniques exists such as Parity, SEC-DED,
Chipkill (Dell 1997) and DEC-TED that all rely on some variant of error correction codes (ECC) to handle
a small number of bits or chip errors. Techniques such as RAIM or Mirroring to correct errors towards
the size of a module come with high cost in terms of added capacity or logic. See Luo et al. (2014) for
an excellent, brief overview. According to Malladi et al. (2012), mobile DRAM such as LPDDR2 has x16
width compared to x4 or x8 width for the common DDR3. This creates a challenge because original ECC
code is not designed for x16 width DRAM.

Nair, Kim, and Qureshi (2013) describe a method to deal with high memory error rates caused by higher
density DRAM technology that increases capacity per area. They use a fault map to store the location
of bad memory cells and then operate with a copy of these locations. Although technology such as ECC
is an effective way to detect and correct hardware-caused memory errors, it is currently not employed in
DRAM for mobile devices. So we conclude that a robust mobile OS can not rely on the presence of a
strong hardware layer to handle memory errors.

2.2 Existing Software Solutions

Pattabiraman, Grover, and Zorn (2008) propose an OS kernel extension to protect critical data from memory
errors in their Samurai system. Critical data is stored multiple times to allow for detection of an error
as differences between redundant copies and its subsequent correction by majority voting to determine
the correct content. Samurai is implemented at the OS level and little change is required for applications
besides the need to tag critical fields.

Yoon and Erez (2010) propose a virtual ECC that maps redundant information to a different memory
location where it is visible to the program. The benefit of this method is the flexibility to choose ECC
protection methods, but the memory management system needs to be modified.

All these systems need to establish some form of redundancy to allow for the recovery of errors. In
the following we explore a design that benefits from the fact that keys in a system like CleanOS have a
trustworthy copy of a key that can be retrieved when needed.

3 A DESIGN TO PROTECT SDOS IN CLEANOS AGAINST MEMORY ERRORS

The basic idea of the CleanOS system is to encrypt sensitive data already in main memory and use encryption
keys that only reside temporarily in main memory and are obtained from a cloud service as needed. A
Sensitive Data Object (SDO) is defined in Tang et al. (2012) to represent and administer sensitive data.

1849



Zhao and Kemper

Figure 1: CleanOS communication between phone and cloud for the one time, initial registration of an
SDO, encryption and key eviction (top part) and the regular operation sequence of fetching the key, data
decryption, data access, data encryption and key eviction (bottom).

An SDO has a key for encryption and a descriptor that is necessary to obtain the key from the cloud
service. The analysis of CleanOS in Zhao and Kemper (2016) revealed vulnerabilities for memory errors
to escalate into data loss for an SDO and Figure 1 in Zhao and Kemper (2016) shows the communication
between mobile and cloud. The time window between fetching the SDO key from the remote service and
using it for encryption or decryption gives an opportunity to corrupt the key and to cause data loss. A
different vulnerability results from corrupting the SDO descriptor that leaves the CleanOS system unable
to request the key for an SDO from the remote service. In conclusion, the SDO (or bucket (Krawczyk
and Eronen 2010)) key and the SDO descriptor are pieces of data that need protection against memory
errors. SDO key and descriptor are both small in size and present in same quantities. However there are
important differences: the key information naturally has a trusted, valid copy in the cloud; its eviction on
the phone requires secure deletion of the key. Having multiple local copies is contrary to the CleanOS
design’s policy of having tight control over the SDO by controlling access to the key. The SDO descriptor
on the contrary is not controlled by the cloud service, it is not particularly secret and having multiple local
copies is acceptable. Although a trusted, valid copy of the SDO descriptor exists on the cloud side, there
is no functionality on the phone side to obtain this copy. For brevity of presentation, we focus on the key
and only argue about the descriptor if it requires a separate discussion. To achieve the goal of protecting
the keys, the following two components are crucial.

Error detection For a software-based solution that allows for error detection and correction, we
need to establish a boolean function detect(x) that returns true iff x is invalid and a function correct(x) that
returns the correct value for x. Function detect(x) can be established in different ways which all rely on
some form of redundant information to support a comparison operation. One way is to store copies of x
and perform a direct comparison. The other way is to check if the hash value of x changes over time. The
latter saves on space but more importantly it prevents keys from being stored elsewhere.

Error correction As discussed in the section on related work, a variety of techniques exist for
recovering data after a memory error. However, error correction is straightforward if a valid copy can be
requested from a trusted source as it is the case for the SDO key and the fetchKey operation that obtains
a valid copy from the cloud service. Since key eviction and refetching is part of the normal operational
routine, refetching a key is the natural choice of error correction for the SDO key. The induced extra
overhead for network communication corresponds directly to the frequency of memory errors which is
expected to be low.

The SDO descriptor has different characteristics as it can not be recovered from the cloud services
but it also need not be evicted or protected with encryption, retaining several copies for error correction

1850



Zhao and Kemper

is acceptable. This makes the SDO descriptor a good example for a piece of critical data protected with
Samurai or a reimplementation of the Samurai concept.

3.1 Preventing Data Loss in CleanOS

We propose the simple algorithm 1(Keyguard) which uses error detection and correction mechanisms to
prevent that vulnerabilities result in a data loss in the CleanOS system. For simplicity of presentation, we
consider one SDO, one key and one descriptor (arbitrary but fixed). We consider the key in lieu of the SDO
key or the bucket key because the only difference is that for the bucket key one needs to obtain the SDO
key and compute the bucket key. We begin with vulnerabilities that result from corrupting the key. As the
cloud service provides a trusted, valid copy on demand anyway, our error correction is simply based on
fetching the key. For error detection, we use a hash code. We attach the hash value to the key such that
key and hash value are stored and retrieved together from the remote server.

Algorithm 1 describes the enhanced basic encryption and decryption routines to include error correction
and detection. We assume that the key, its hash value, its descriptor, and the sensitive data are accessible
through corresponding variables named key, hash value, descriptor and data. We also assume the existence
of a hash function named HASH. The CleanOS function to fetch the key is named FETCHKEY and the
function actually used for encryption is named AESENCRYPT. Function DETECT implements the error
detection based on hashing. Function CORRECT implements the error correction by refetching the key from
the cloud. Function DETECTANDCORRECT performs an error correction as often as necessary to obtain
a valid key. The handling of the encryption and decryption process are very similar with corresponding
observations towards correctness, limitations, termination and performance such that we discuss only the
encryption part in the following.

The two main ideas for the data encryption in function ENCRYPT are 1) to ensure that a key is valid
at the beginning of an encryption operation and to recover it if necessary (line 12) and 2) to check the
key again at the end of the encryption operation (line 14) and before overwriting thus destroying the clear
text data (line 15). Line 14 is the last moment to redo the encryption if the key turns out to be invalid.
The rationale is that if the key is valid before and after the encryption operation, then it was also valid
during the encryption operation. The conclusion is only true if the possibility of two successive changes
to the key that balance out is negligible, which we assume. With this assumption, we can argue that
ENCRYPT satisfies the key consistency condition. Note that this algorithm is limited to protecting the key
and does not consider memory errors that corrupt data or descriptor. With regard to termination, function
DETECTANDCORRECT may lead to an infinite loop. In practice, one would limit the number of attempts
by a threshold value and exit with an error code if the valid key can not be obtained within given number of
attempts. In terms of network communication overhead, the number of additional FETCHKEY operations
that imply communication with the cloud service is directly proportional with the number of memory errors
that corrupt the key such that the overhead is assumed be marginal. In terms of performance overhead,
the hash function and comparison in function DETECT is computationally inexpensive and the operation
to fetch the key is the same as for the regular CleanOS operation. Repeatedly encrypting the data in line
13 may be computationally expensive but the number of iterations is the same as the number of memory
errors that corrupt the key in that time frame such that an actual additional iteration with line 13 is rare.

There are three further scenarios worth considering. If the key is right, but the hash value is corrupted
by memory errors, we can not distinguish this from a corrupted key and hence, we refetch the key-hash
value pair and check the hash value again. This case is at most as likely as the key corruption and its impact
is moderate as it results in an unnecessary fetch key operation. Another scenario is a hash collision. The
impact of a hash collision for a key and a corrupted key would make the DETECT method fail to recognize
a corrupted key which will then lead to a loss of data for the ENCRYPT function. The frequency of a hash
collision depends on the chosen hash function and length of hash values. For instance, SHA1(Eastlake and
Jones 2001) is a frequently applied cryptographic hash function and it has 160 bit values. In our design,
we assume with a reasonable length of hash values, such that the probability of a collision is negligible.

1851



Zhao and Kemper

Another extremely unlikely event is that of two memory errors that corrupt key and hash value such that
HASH(key) and hash value match with the consequence of a faulty result of the DETECT method. In
summary, the additional error detection and correction functions in Algorithm 1 suffice to prevent the key
from corrupting in almost all possible scenarios. This addresses vulnerabilities I and III listed in Zhao and
Kemper (2016)

Algorithm 1 Basic encryption/decryption operation with error detection and correction.

1: function DETECT(key)
2: return(hashvalue != HASH(key))
3: function CORRECT(descriptor)
4: (key,hashvalue) ← FETCHKEY(descriptor)
5: function DETECTANDCORRECT(key,descriptor)
6: while DETECT(key) do
7: CORRECT(descriptor)
8: function ENCRYPT(data)
9: if key not in cache then

10: (key,hashvalue) ← FETCHKEY(descriptor)
11: repeat
12: DETECTANDCORRECT(key,descriptor)
13: tmp ← AESENCRYPT(data,key)
14: until false == DETECT(key)
15: data ← tmp
16: function DECRYPT(data)
17: if key not in cache then
18: (key,hashvalue) ← FETCHKEY(descriptor)
19: repeat
20: DETECTANDCORRECT(key,descriptor)
21: tmp ← AESDECRYPT(data,key)
22: until false == DETECT(key)
23: data ← tmp

Key generation So far we focused on the fetching and using the key for encryption or decryption.
With regard to the generation of keys, a key can be generated either locally in the device or remotely in
the trusted cloud. The CleanOS design suggests a local generation and sending the key to the cloud upon
registration. This allows for an opportunity to register a corrupted key which is not satisfying as such but
does not lead to an inconsistency between local and remote key. Since we suggest to attach the hash value
to the key and register both with the remote server, the correctness of the key can be easily checked on
both sides in the key registration process.

Protection of descriptor We recognized that the descriptor is essential to fetch a key from the cloud.
Consequently, a corrupted descriptor prohibits obtaining the key for decryption, which in turn prohibits
decryption of encrypted sensitive data. The descriptor itself is not part of the sensitive data and encryption. It
naturally occurs in multiple locations such as the metadata of each SDO, individual pieces of sensitive data,
for example the entries in SQLite database columns that are added to accompany columns with sensitive
data. While the metadata that includes the descriptor information is securely stored on persistent storage
by the CleanOS system, we did not find a way to identify a corresponding meta entry if the descriptor is
not known (corrupted). The descriptor is a good example of the data the Samurai OS extension envisions

1852



Zhao and Kemper

as ”critical”. If the Samurai concept can be refined to apply to TaintDroid storage, the descriptor should
be protected in all of its locations.

Protection of data In the above, we discussed memory errors to keys because keys are more sensitive
to memory errors than data. However, it is quite possible that data are corrupted by memory errors. When
we changed one bit of sensitive data and used AES encryption to encrypt and decrypt the data, we observed
that the bit that was changed was lost after decryption but the other bits of sensitive data were correct. On
the contrary, if we change one bit of the key, then after decryption we observed that the whole sensitive
data is lost. If we apply the aforementioned method used to protect keys to sensitive data, more extra
resources are needed. For example, if the sensitive data is big, it takes more time and uses more space to
detect errors in sensitive data and correct them.

4 RELIABILITY EVALUATION

In this section we present findings from a simulation study to demonstrate how vulnerable the handling of
keys in a CleanOS system is to memory errors and to what extent the suggested improvements in Algorithm
1 can withstand injected memory errors that destroy the key.

We first use Mobius (Deavours et al. 2002) to simulate the CleanOS and Keyguard , then we implement
basic usage scenarios in C and use a concurrent thread for fault injections to evaluate our approach as a
proof of principle. Both simulation and C implementation is based on the CleanOS source code analysis.

4.1 Evaluation using Mobius

We use Mobius (Deavours et al. 2002) to establish and simulate the Keyguard algorithm using SAN models.
We use one submodel for Keyguard and one submodel for fault injection as shown in Figure 2 and Figure
3. The parameters used in the experiment are shown in Table 1. We also evaluate a simpler version of the
model in Figure 2 that only measures failures but does not refetch a key to measure the effect of memory
errors on the basic CleanOS system without Keyguard. We use an exponential distribution to model the
time between memory faults, denoted as fault injection rate. The mean time between faults ranges between
0.87 and 2.4 hours. For the other activities, we assume a deterministic distribution for simplicity and use
published average values from Tang et al. (2012). Idle time denotes the time between phases of active
usage of an SDO, its parameter value was estimated from measurements of app usage for two volunteers
in a period of two weeks. Measurements were recorded with the QualityTime app.

In Figure 2, the activities named keyfetch, decryptionRefetch, encryptionRefetch, and eviction have a
duration that is modeled with the network communication delay in Table 1. The duration of other activities
follows corresponding distributions shown in Table 1. The whole system is described in previous sections
and we do not describe further details of the Mobius model for space limitations. We conducted simulations
for different rates of fault injections, namely for a mean time between faults in [0.87,2.4] such that for an
exponential distribution, λ ∈ [0.4,2.0]. All simulations were performed with the Mobius simulator for a
terminating simulation, confidence level setting of 95% and confidence interval setting of 0.1.

In Figure 4, we observe several measures as a function of the fault injection rate. Red lines show
results for an average idle time of 6 minutes, blue lines for an idle time of 12 minutes between active
phases for an SDO. A longer idle time reduces the number of times the system can go through a decryption,
SDO active usage, SDO inactive timeout, encryption, key eviction cycle (a CleanOS cycle) in a fixed
time horizon of 5000 hours. For sanity checks, Figure 4b shows the total number of cycles (correct or
failed) being independent of the fault injection rate and that shorter idle times yield more CleanOS cycles
(red line vs blue line). Figure 4a shows that the basic CleanOS model without key protection experiences
failures that increase with the fault injection rate and that the more CleanOS cycles are performed the
higher the number of failures (difference between red line and blue line). Figure 4c shows results for the
CleanOS model with Keyguard. Between 230-1400 (180-600) memory errors that cause key corruption are
successfully detected for 6 minutes (12 minutes) idle time and corrected with refetch operations. The key

1853



Zhao and Kemper

Figure 2: Mobius: keyguard model.

Figure 3: Mobius: fault injection model.

Table 1: parameters in the model.

parameter distribution value source
decryption, encryption delay Deterministic 2ms (Tang et al. 2012)
network communication delay Deterministic 300 ms (Tang et al. 2012)
fault injection rate Exponential Mean:0.87-2.4 per hr (Schroeder et al. 2009)
SDO active, SDO inactive timeout Deterministic 60 s (Tang et al. 2012)
idle time Deterministic 0.2 hr qualitytime used by two voulun-

teers
experiment time interval - 5000 hrs assume a smartphone is used 14

hours daily for a year

(a) Failed cycles without Keyguard. (b) Total cycles. (c) Keyguard key refetch number.

Figure 4: Mobius simulation result.

1854



Zhao and Kemper

refetch number is basically the same as the failed CleanOS cycles in Figure 4a as all failures are detected
and a single refetch operation apparently suffices in most cases. For the chosen model distributions and
parameter values, we observe from our simulation that failures are expected in the order of hundreds per
year and that Keyguard’s overhead is basically one additional key fetch operation per failure. We can see
the corrupt keys in the daily usage scenario is in the order of 103 for entire memory. In the simulation, we
assume all fault injections target keys, although in reality memory errors spread across memory.

4.2 Evaluation using Two Threads in C

We also implemented two usage scenarios in C that follow the operational model for encryption and
decryption in the CleanOS system and use AES encryption code. The first usage scenario describes the
regular access to sensitive data in an existing SDO and its eviction; it consists of the following sequence
of steps:

Usage Scenario I

1. The first access to SDO data triggers key fetching from the trusted location. Perform decryption
and store a local copy of key in cache. Let k denote the size of SDO.

2. Perform n-1 other data accesses that require decryption and use the cached copy of the key.
3. After a delay d, perform an idle eviction: encrypt all n pieces of sensitive data that is currently in

clear text form and delete the local copy of the key.

This scenario is then repeatedly executed over time. As we can recognize from this scenario, caching the
key creates an extended period of time where a memory error can corrupt the key. Therefore, we also look
into a second scenario in that keys are not cached:

Usage Scenario II

1. Any access to encrypted SDO data triggers key fetching rom a trusted location. Perform decryption
of data.

2. After delay d and idle eviction, key is fetched from a trusted location. Perform encryption of data.

This scenario is then repeatedly executed over time. We set the idle time to zero to create a stress test
scenario where a fault injection is basically effective all the time. We measure failures by counting failed
scenarios. We consider a scenario failed if the encrypted data is lost at the end of the scenario, i.e., it
can not be decrypted with a valid key anymore. We confirmed with a separate and independent test that a
memory error that hits the data leads only to a partial data loss of corresponding size (only the corrupted
bytes can not be successfully decrypted again). However that test also showed that a single bit error on
the key escalates into a complete loss of the encrypted data.

Parameters for the first scenario are 1) n, the number of data items decrypted and encrypted, 2) k, the
average size of the data items as this contributes to the execution time for encryption and decryption, 3)
the timeout delay d to start the idle eviction. For the second scenario it is just the size of the data items
and the time delay. For the fault injection (FI) model, faults are injected after random delays such that we
can measure an average rate of fault injections per time unit. We decided to implement this model in C
code and with pthreads. We use one thread for the implementation of the CleanOS usage scenario and one
thread for the FI model. The key is a shared data object with unsynchronized access by both threads which
establishes a race condition. The FI thread overwrites the content of the key, while the CleanOS thread
reads the content of the key for encryption/decryption operations and overwrites it when fetching a key.
We do not use a cloud service, a trusted location is a memory location that is not subject to fault injections.
We decided to use an implementation in C in order to stay close to the existing CleanOS implementation
that is implemented in C and uses the same code for encryption. Thanks to the multithreading, the code in
the CleanOS thread has no information on the fault injections. The thread scheduler influences the timing
of fault injections. In order to avoid scheduling artifacts, we only use calls to thread method “sleep” for

1855



Zhao and Kemper

Figure 5: CleanOS usage scenario II with k=16 bytes: number of successful fault injections per second
into the key differentiated by occurrence before/during encryption/decryption as a function of the total fault
injection rate.

delays on the FI thread but not on the CleanOS thread. We use a random delay with a fixed average value
that is experimentally configured to deliver the highest possible FI rate. We then throttle the actual FI rate
with the help of a second random variable to randomly decide to overwrite the key value or not. Varying
the probability for an overwrite in the second random variable does not influence the thread scheduler such
that we can vary the actual FI rate without modifying the amount of CPU time given for each thread. We
trace the FI and CleanOS thread activity in log files with time stamps and we carefully checked that both
threads get executed, that FI strikes the CleanOS thread in all possible stages of execution, and that the
time interval we evaluate for measurements is one where both threads perform.

Figure 5 shows that the fault injection is successfully placing errors into the keys before and during
encryption and decryption for the repeated execution of usage scenario II without key protection. The
number of successful injections is proportional to the time spend in each of the phases. One can clearly
see that decryption takes much longer time than encryption while the phases between fetching the key and
using the key are very short but it is still possible to inject faults. We exercised similar sanity checks for
larger values of k with corresponding results.

A successful fault injection corrupts the key and makes a usage scenario fail. Figure 6 shows how the
rate of successful executions of usage scenario II deteriorates if there is no protection of the key and one
increases the fault injection rate. The experiment shows that a memory error that hits the key can escalate
into data loss for an SDO. Note that the size of an SDO can be substantial, in Tang et al. (2012), coarse
default SDOs such as a Password SDO for all passwords and a SSL SDO for all objects read from SSL
connections are established which makes such a data loss significant.

Figure 7 shows our main result for parameter settings n=10, k=16 bytes, d=0; we vary the rate of fault
injections per second over a series of experiments and observe the average number of failed scenarios (loss
of sensitive data) per second. The red line shows the number of failures for the first usage scenario that
models the CleanOS behavior most closely. There is no protection against memory errors and the results
show the steepest slope and highest values of all experiments. The black line relates to the second usage
scenario for a CleanOS variant with no caching of keys and no protection against memory errors. The
failure rate drops significantly which is caused by the minimal time between fetching the key and using it
for encryption or decryption. Obviously the price for this is an increase in network communication. The
green and blue lines that coincide and remain constantly at zero are the results of using the key protection
of Algorithm 1 (Keyguard) in experiments for the first and second usage scenario. The experiment supports
our claim that Keyguard reliably detects and corrects key corruptions and thus effectively prevents failures.

1856



Zhao and Kemper

Figure 6: Rate of successful eviction cycles for the
CleanOS usage scenario II as a function of fault in-
jection rates.

Figure 7: Observed failure rates of usage scenarios
I and II with key protection (keyguard) and without
(CleanOS) as a function of fault injection rate (injec-
tions/second).

5 PERFORMANCE EVALUATION

From Figure 7 one can clearly see that fetching keys instead of caching keys reduces the chances of a
memory error to corrupt the key significantly (black line vs red line in figure). However, caching the key
implies that the number of fetch key operations # f etchkey ∝ #evictions as there is one fetch key operation
per idle eviction operation. Without caching, communication costs for the number of fetch key operations
rise dramatically to # f etchkey ∝ (#encryption+ #decryption) as each encryption and each decryption
operation triggers a fetch key operation of its own. This is why the actual CleanOS design emphasizes
caching for SDO keys and bucket keys and follows usage scenario I. The Keyguard protection mechanism
in Algorithm 1 supports caching but it also increases the potential number of fetch key operations. The
number of fetch key operations is # f etchkey ∝ (#evictions+#memory f aults) as each successful corruption
of the key is detected and corrected with the help of an additional fetch key operation. This proportion
can be also seen in the experimental results. We measured the number of fetch key operations for the
usage scenario II and a varying number of fault injections. Figure 8 shows a series of box plots for a set
of experiments with increasing fault injection rates. As the number of memory faults that corrupt the key
is expected to be low over time, so is the additional overhead on the network communication.

Figure 8: Boxplot with rates of keyfetch operations
(calls/second) for a usage scenario II with Keyguard
in response to different fault injection rates.

Figure 9: Boxplot with rates of successful executions
of usage scenario II with Keyguard in response to
different fault injection rates.

An increase in the number of fetch key operation drags on the overall performance. Figure 9 shows
the processing rate for usage scenario II with Keyguard for different fault injection rates. When the fault
injection rate increases, the successful cleanos rate decreases because we need to refetch the keys more

1857



Zhao and Kemper

often. The time cost by a successful cleanos cycle increases as the refetch keys are more often caused by
increasing fault injection rates. Note that the fault injection rates are not meant to be realistic but chosen
to demonstrate the effect. From Figure 5, we can recognize that encryption and especially decryption
operations are computationally expensive. Options to improve on this are known. As noted in Tomoiaga
and Stratulat (2010), Gleeson, Rajan, and Saini (2014), it is possible to use GPU to encrypt and decrypt
sensitive data in order to reduce the workload of CPU. Furthermore, Suh et al. (2003) use one-time-pad
encryption to reduce decryption latency. In the AES algorithm under CBC mode, the decryption starts only
after all data is read completely. By applying Suh’s method, the decryption can start after the first chunk
of data is read, hence, data access and decryption can overlap.

6 CONCLUSION

In this paper, we did a simulation study of CleanOS to see how memory errors can affect its operation
and a simple algorithm to deal with memory errors in such case. Based on several scenarios identified in
Zhao and Kemper (2016) where corruption of a key that is used for encryption can lead to loss of sensitive
data, we discuss possible solutions for error detection and correction and present a specific algorithm that
naturally fits into the overall setting as a purely software-based solution. The algorithm imposes marginal
overhead in the network communication that is proportional to the number of memory errors that corrupt
the local copy of the encryption key. We conduct two simulation studies, one based on stochastic model
in Mobius, the other closer to running actual implementation code with a thread-based fault injection
to evaluate the risk of data loss with and without our approach. We believe that our suggested strategy
naturally generalizes to other architectures such as Keypad that also rely on encryption and remote storage
and monitoring with the help of encryption keys.

ACKNOWLEDGMENTS

Thanks to Roxana Geambasu for sharing the CleanOS source code with us.

REFERENCES

Deavours, D. D., G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders, and P. G.
Webster. 2002, October. “The MöBius Framework and Its Implementation”. IEEE Transactions on
Software Engineering 28 (10): 956–969.

Dell, T. J. 1997. “A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main Memory”.
Eastlake,3rd, D. and Jones, P. 2001. “US Secure Hash Algorithm 1 (SHA1)”.
Gleeson, J., S. Rajan, and V. Saini. 2014. “GPU Encrypt: AES Encryption on Mobile Devices”.
Hwang, A. A., I. A. Stefanovici, and B. Schroeder. 2012, March. “Cosmic Rays Don’T Strike Twice:

Understanding the Nature of DRAM Errors and the Implications for System Design”. ACM SIGPLAN
Notices 47 (4): 111–122.

Khan, S., D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu. 2014, June. “The Efficacy
of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study”.
ACM SIGMETRICS Performance Evaluation Review 42 (1): 519–532.

Kim, Y., R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu. 2014. “Flipping
Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors”.
In Proceeding of the 41st Annual International Symposium on Computer Architecuture, ISCA ’14,
361–372. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Inc.

H. Krawczyk and P. Eronen 2010, May. “HMAC-based Extract-and-Expand Key Derivation Function
(HKDF)”. https://tools.ietf.org/html/rfc5869.

Liu, J., B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu. 2013, June. “An Experimental Study of Data Retention
Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms”. ACM
SIGARCH Computer Architecture News 41 (3): 60–71.

1858



Zhao and Kemper

Luo, Y., S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khessib, K. Vaid,
and O. Mutlu. 2014. “Characterizing Application Memory Error Vulnerability to Optimize Datacenter
Cost via Heterogeneous-Reliability Memory”. In Proceedings of the 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’14, 467–478. Washington, DC,
USA: Institute of Electrical and Electronics Engineers, Inc.

Malladi, K. T., B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi, and M. Horowitz. 2012, June.
“Towards Energy-proportional Datacenter Memory with Mobile DRAM”. ACM SIGARCH Computer
Architecture News 40 (3): 37–48.

Nair, P. J., D.-H. Kim, and M. K. Qureshi. 2013. “ArchShield: Architectural Framework for Assisting
DRAM Scaling by Tolerating High Error Rates”. ACM SIGARCH Computer Architecture News 41 (3):
72–83.

Pattabiraman, K., V. Grover, and B. G. Zorn. 2008. “Samurai: Protecting Critical Data in Unsafe Languages”.
In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008,
Eurosys ’08, 219–232. New York, NY, USA: ACM.

Schroeder, B., E. Pinheiro, and W.-D. Weber. 2009. “DRAM Errors in the Wild: A Large-scale Field
Study”. In Proceedings of the Eleventh International Joint Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’09, 193–204. New York, NY, USA: ACM.

Suh, G. E., D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas. 2003. “Efficient Memory Integrity Verification
and Encryption for Secure Processors”. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 36, 339–. Washington, DC, USA: Institute of Electrical and
Electronics Engineers, Inc.

Tang, Y., P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and N. Sarda. 2012. “CleanOS: Limiting
Mobile Data Exposure with Idle Eviction”. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, 77–91. Berkeley, CA, USA: USENIX Association.

Tomoiaga, R., and M. Stratulat. 2010. “AES Performance Analysis on Several Programming Environments,
Operating Systems or Computational Platforms”. In 2010 Fifth International Conference on Systems
and Networks Communications, 172–176. Institute of Electrical and Electronics Engineers, Inc.

van der Veen, V., N. dutt Sharma, L. Cavallaro, and H. Bos. 2012. “Memory Errors: The Past, the Present,
and the Future”. In Proceedings of the 15th International Conference on Research in Attacks, Intrusions,
and Defenses, RAID’12, 86–106. Berlin, Heidelberg: Springer-Verlag.

Yoon, D. H., and M. Erez. 2010, March. “Virtualized and Flexible ECC for Main Memory”. ACM SIGPLAN
Notices 45 (3): 397–408.

Zhao, J., and P. Kemper. 2016. “Protecting Encryption Keys in Mobile Systems Against Memory Errors”.
In Proceedings of the 9th EAI International Conference on Performance Evaluation Methodologies and
Tools, VALUETOOLS’15, 224–227. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

AUTHOR BIOGRAPHIES

JIANING ZHAO is a PhD candidate of Computer Science at the College of William and Mary. His
research interests lie in simulation modeling, data mining, causal inference especially in social good. His
email address is jzhao@cs.wm.edu.

PETER KEMPER is an Associate Professor in the Department of Computer Science at the College of
William and Mary (previously TU Dortmund and TU Dresden, Germany). His research interests include
modeling techniques and tools for performance, performability and dependability analysis of systems. He
contributed to analysis techniques for the numerical analysis of Markov chains, model checking stochastic
models, techniques for simulation optimization. His email address is kemper@cs.wm.edu.

1859


