
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

KIWANO: SCALING VIRTUAL WORLDS

Raluca Diaconu

Computer Laboratory
University of Cambridge
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK

Joaquı́n Keller

Distributed Systems
Orange Labs Research

38-40, rue du Général Leclerc
Issy-les-Moulineaux F-92794, FRANCE

ABSTRACT

Kiwano is a distributed system that enables an unlimited number of avatars interact in the same virtual
space. By separating the management of virtual world components –avatars, moving objects from the static
décor– we take a novel approach and introduce a neighborhood relation between avatars. In Kiwano we
employ Delaunay triangulations to provide each avatar with a constant number of neighbors independently
of their density or distribution. The avatar-to-avatar interactions and related computations are then bounded,
allowing the system to scale. The optimal number of avatars per CPU and the scalability of our system have
been evaluated simulating tens of thousands of avatars connecting to an open Kiwano instance deployed
across several data centers, in the cloud. These results exceed by orders of magnitude the performances of
current state-of-the-art.

1 INTRODUCTION

Virtual worlds attract millions of users which routinely access them. However, they are still unable to host
simultaneously more than a few hundred users in the same contiguous space. Since the early 1970s, when
the first multi-user graphic virtual world appeared, the algorithmic complexity of running virtual worlds is
O(N2), where N is the number of users that are together in the same region (Debeauvais, Valadares, and
Lopes 2012). In particular, when an avatar joins the world, all other avatars must be informed. Thus, the
algorithmic complexity is O(N2).

Contribution. To enable scalability we rely on the separation of concerns in virtual worlds, i.e., avatars,
mutable objects, and static terrain. This allows us to propose a specific solution for avatar scalability. Our
main contribution is Kiwano, a distributed system that enables an unlimited number of avatars to be and
interact in the same contiguous space. In Kiwano we employ Delaunay triangulations to provide each avatar
with a bounded number of neighbors independently of their density or distribution. The avatar-to-avatar
interactions and related computations are then bounded, allowing the system to scale. The load is constantly
balanced among Kiwano’s nodes which redistribute their load dynamically. The optimal number of avatars
per CPU and the performances of our system have been evaluated simulating tens of thousands of avatars
connecting to a Kiwano instance running across several data centers. The results of these simulations
are presented in this paper and they confirm the scalability of Kiwano: the needed resources per avatar
remain constant when the number of avatars grows. These distributed algorithms and this architecture,
fully described here for the first time, have been successfully used to scale a popular MMOG, Minecraft
(Diaconu, Keller, and Valero 2013), (Valero, Diaconu, and Keller 2013), and to build a mixed reality
world, HybridEarth (de Campredon, Diaconu, Keller, and Triponez 2014). We also designed a scalable
architecture for existing virtual worlds such as Second Life (Diaconu and Keller 2014). With Kiwano our
intention is to provide the first massively distributed and self-adaptive solutions for virtual worlds suitable

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1836

Diaconu and Keller

to run in the cloud. Kiwano is easily accessible via a public API available at http://kiwano.li,
which enables interoperability between all connected virtual worlds.

Roadmap. We review some relevant works in Section 2. We introduce our notion of neighborhood
based on Delaunay graphs in Section 3. Kiwano distributed algorithms are described in Section 4 and how
they are deployed in cloud facilities for actual applications is explained in Section 5. We emphasize the
cloud and interoperability features. The settings and measurements of our evaluation are in Section 6.

2 RELATED WORK

When the number of avatars and objects increases, it becomes infeasible to run a centralized world because
(1) each user needs to handle more and more events of the virtual world and (2) the simulator reaches its
limits in numbers of avatars and frequency of updates. To address (1) virtual worlds assume spatial locality:
events have only a local, limited effect (interested management). For (2) the load must be distributed.
Locality has thus far been defined in terms of space distance. Events are perceived within a circle around
their location. Avatars receive updates of events happening in some area surrounding their position. As
far as we know, locality has not yet been approached based on a neighborhood relation graph.

Interest management. Actual notions of interest management define, under various names, an area
of interest. Interaction between avatars is possible if they are in each other’s area, hence the geographical
dependence. The limitation of fixed zones is that the avatar distribution is skewed, some areas are
overcrowded while others are empty (de Oliveira and Georganas 2003), (Yahyavi and Kemme 2013). In
VELVET (de Oliveira and Georganas 2003) Alice may see Bob while Bob may not see Alice when her
area is larger. In VON (Hu, Chen, and Chen 2006) Alice and Bob maintain the connection if at least
one can see the other. Donnybrook (Bharambe, Douceur, Lorch, Moscibroda, Pang, Seshan, and Zhuang
2008) proposes a fixed size interest set of other avatars to whom the player is paying attention. These are
frequently updated, while all others, once per sec. It attains 900 simultaneous players in a p2p infrastructure.

Delaunay triangulations. And the dual Voronoi diagrams have been widely employed for proximity
dissemination in peer-to-peer systems and are recognized as scalable (Keller and Simon 2002), (Hu, Chen,
and Chen 2006), (Buyukkaya, Abdallah, and Cavagna 2009). Each node maintains a local triangulation
of its position and the neighbors’ positions. When avatars move in the virtual world they connect and
exchange information from hop to hop. Similarly, MOPAR (Yu and Vuong 2005), (Knutsson, Lu, Xu,
and Hopkins 2004) is a hybrid architecture that uses the best equipped computers (superpeers) to maintain
fixed triangulated zones.

Architectures. All commercially successful virtual worlds are built upon server-based architectures
(Minecraft, Second-Life, World of Warcraft). Multi-server solutions rely on space division. The cost of
the computation is quadratic inside the region, and depending on their complexity, virtual worlds report
different upper limits: ∼100 users/region in SecondLife, a few thousands for Minecraft (Diaconu, Keller,
and Valero 2013), ∼120 users per shard for World of Warcraft. EveOnline (Hamburger 2013), reporting
3000 users, relies on particular features that allow time dilatation. This is not applicable in all scenarios.
These suffer from a well-known problem, avatars want to join zones that are populated (Varvello et al. 2011)
and finally, do not scale. Also, the world is not contiguous. Pikko Server (Almroth 2010) developed an
optimized dynamic space partitioning algorithm that permanently re-evaluates the boundaries. It transfers
players dynamically between game servers to avoid overloading. It established in 2012 a world record with
thousands of concurrent users in a FPS battle. Pikko is a distributed, self-adaptive architectures. However,
transferring chunks of the virtual world is costly, so it runs on a single (powerful) machine.

Some systems do a separation of concerns such as client management, physical simulation, script
processing, and scene persistence (Lake, Bowman, and Liu 2010). Components run as independent
services and are connected through the shared “scene graph.” They reported support for up to 1,000
simultaneous avatars in OpenSim for a slightly reduced frequency of updates.

1837

Diaconu and Keller

(a) Levels of neighborhood (b) A zone in Kiwano

Figure 1: Delaunay 3 data structure.

3 AVATAR INTEREST MANAGEMENT

The main idea is to separate the management of the three components –avatars, objects, and terrain. For
each, the notion of area of interest changes. Although they must be located in the proximity of the concerned
avatar, the way we pay attention to these components differs. The interest in avatars is for social interaction,
objects may be tools, and the décor is fixed. This is the reason we employ a graph notion, of neighboring
avatars. In Kiwano users can solely see and interact with their neighbors. The neighborhood relation is
designed such that the number of neighbors remains within a range regardless of the avatar distribution.

3.1 Neighborhood relation

The notion of neighbor evokes (some sort of) proximity. In this section, we abstract the notion of neigh-
borhood relation employing graphs where avatar positions constitute the vertices and possible interactions
represent edges. In our approach we consider a graph with a degree of roughly fixed size, build on top of
the Delaunay triangulation.

In what follows we use 2D Delaunay triangulations. In most virtual worlds long/lat coordinates suffice
for neighborhood discovery (occasional cases where avatars are flying or climb are tolerated). Moreover,
for N vertices, the size of the 2D Delaunay graph is O(N), while in 3D is O(N2). Furthermore, we describe
a family of neighborhood relations based on the Delaunay power graph, allowing us to chose the most
suitable in terms of details vs. performance.

3.2 Delaunay power graphs

We note D or D1 the Delaunay triangulation graph of the avatar positions and Dk, the kth power graph of
D. For simplicity we employ the same notation Dk for the corresponding adjacency relation. Thus, for a
relation Dk the neighborhood of a vertex v is Dk(v), the set of adjacent vertices. As a reminder, v and u
are said to be neighbors in the power graph Dk if their distance in D –i.e., the minimum number of hops
between them– is at most k:

Dk+1(v) = Dk(v) ∪ D1(Dk(v))

The first three levels of this relation are represented in Figure 1a. To improve readability, the dual Voronoi
tessellation is depicted, emphasizing each level.

The number of neighbors of an avatar v, i.e., the size or cardinality of Dk(v), noted |Dk(v)|, is not
constant and depends on the distribution of other avatars in the proximity. To determine the range in which
the number of neighbors evolves, we simulated avatar positions with distributions: uniform, Gaussian, and
power law, and varying parameters. A power law avatar distribution is considered realistic (Legtchenko,

1838

Diaconu and Keller

4 6 8 10 12

0%

5%

10%

15%

20%

25% size of D1(v)

5 10 15 20 25 30 35 40

0%

2%

4%

6%

8%

10%
size of D2(v)

10 20 30 40 50 60 70 80 90

0%

1%

2%

3%

4%

5% size of D3(v)

20 40 60 80 100 120 140 160

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%
size of D4(v)

60 80 100 120 140 160 180 200 220

0%

0.5%

1%

1.5%

2%

2.5%

size of D5(v)

100 150 200 250 300

0%

0.5%

1%

1.5%
size of D6(v)

Figure 2: Distribution of the number of neighbors for Dk.

Monnet, and Thomas 2010), (Varvello et al. 2011), (Yahyavi and Kemme 2013). We summarize the outcome
of the simulations for the power law distribution for D1 to D6 in Figure 2. We trace the percentage of
avatars v with a given size of Dk(v). Due to the local nature of the Delaunay triangulation, these percentages
are stable, in the range of a Gaussian bell distribution, regardless of the total number of avatars. Actually,
measurements with uniform and Gaussian densities produce very similar results. Only configurations built
carefully and on purpose, with perfectly aligned positions, have been able to grow the neighborhood to
large numbers.

Our notion of interest management based on Delaunay triangulations enjoys the following properties:

i) The number of neighbors falls within a range, providing the necessary setting to practical scalability,
see Figure 2. This is a mandatory condition.

ii) The relation is symmetric, since Dk is an undirected graph. Bob sees Alice whenever she sees him.
iii) The nearest avatars are neighbors. In Dk the k-nearest avatars are guaranteed to be connected and

in practice the number of nearest neighbors is greater (local properties of Delaunay triangulations).
iv) A similar property with three avatars: If they are alone inside a bubble they are all neighbors.
v) The number of meaningful neighbors to ensure social interaction varies depending on the intended

application and features. We offer the possibility to customize it by using a suitable Delaunay
power graph. For our current evaluation of Kiwano we have chosen k = 3 which yields a minimum
of 15 neighbors and guarantees at least 30 neighbors for 96% of the avatars.

Condition (ii) avoids invisibility. It also ensures that interaction is perceived by all those involved.
When an avatar sees another they are both able to interact. Bob sees Alice whenever she kisses him.
Conditions (iii) and (v) circumvent the limitations imposed by a fluctuating avatar density. In an open space
one sees where are the closest neighbors, while in a crowd one pays attention to those in the immediate
proximity, avoiding the “empty world” effect.

We have seen in the previous section that the most common interest management technique, the set of
avatars within a distance, does not satisfy these conditions because the density of avatars may vary sharply,
if the area is adjusted for each avatar. The number of neighbors is bounded ((i), (iii), (v) are satisfied) but
the relation is asymmetric ((ii), (iv)).

1839

Diaconu and Keller

Providing a symmetric relation, the composition with another symmetric relation preserves this property.
This is especially convenient when one needs to create the ‘fog’ of the virtual words, that is, to limit the
visibility capacities to a fixed distance. For instance, perceiving the Delaunay neighbors in a fixed range
distance is, indeed, a symmetrical relation.

3.3 Distributed DelaunayK overlay

To make Kiwano scalable in the cloud, it is fundamental to distribute the computation of Dk and to update
the structure dynamically. Here we explain how we construct and maintain a Dk graph, or DDk, in a
distributed manner among the nodes of the system, a system we call the DDk overlay.

Each node i of the DDk overlay hosts a set a of avatars: The node receives the position updates from
these avatars and is responsible to notify them about their neighbors. Avatars are represented as vertices in
the Delaunay triangulation at their respective positions. The set of vertices of the hosted avatars is denoted
Hi or, when no confusion is possible, simply H. An avatar is hosted by only one node, therefore, the sets
Hi are disjoint two-by-two.

We extend the definition of neighborhood for sets of vertices. For U , a subset of the vertices of the
global graph Dk, the neighborhood of U is the union of all neighborhoods of its vertices:

Dk(U) =
⋃

u∈U

Dk(u)

We denote by core the set of vertices that have their neighborhood included in H.

Corek
i = {v ∈ Hi : Dk(u)⊆ Hi}

Correspondingly, Ini, the in-border set is constituted by the vertices that have neighbors outside of Hi:

Ink
i = Hi−Corek

i

To supply to the hosted vertices all their neighbors we need to correctly compute the neighborhood
relation for all vertices in Hi. More precisely, we must consider some of the vertices outside of Hi, namely,
the neighbors of the vertices on the in-border. We name this set out-border:

Outk
i = Dk(Hi)−Hi

The set of all vertices of node i, i.e., the indexed vertices:

V k
i = Dk(Hi) ∪ Hi = Corek

i] Ink
i] Outk

i

Each node i computes locally a Delaunay triangulation of its vertices Vi and the corresponding power
(sub)graph Dk

i . We note Dk
i |Hi the Dk

i relation –and the derived graph– for the local set of hosted vertices
Hi:

Dk
i |Hi = {(u,v) ∈ Dk

i : u ∈ Hi}

These definitions enable us to show that the computation of the Dk neighborhood relation is distributable.
Theorem 1 (Distributed DelaunayK graph) The global Delaunay triangulation graph Dk is the union of
the locally computed Dk

i |Hi :
Dk = Dk

1|H1 ∪ Dk
2|H2 ∪ ... ∪ Dk

n|Hn

Proof. (Sketch) Following the definition of the restricted neighborhood relation Dk
i |Hi every such relation

i becomes thus asymmetric. For the ordered pairs (u,v), u ∈ Ini if and only if v ∈Outi. However, for each
node, all its in-border objects belong to at least one other node’s out-border. In other words, u ∈ Ini if and
only if there is at least one node j such that u ∈ Out j.

1840

Diaconu and Keller

Since Delaunay triangulations can be represented by their dual Voronoi tessellations, we define the
zone of a node as the area composed by the Voronoi cells of its hosted vertices in H. Figure 1b pictures
a zone and its out-border for k = 3. The Core3 is white, the in-border is red and the out-border blue. We
emphasise the neighborhood levels.

As the size of the neighborhood of each vertex is bounded, so the size of the out-border set is bounded.
Also, as sets Hi are disjoint two-by-two, so are the relations Dk

i |Hi . However, sets Vi overlap on their
borders. When Vi∩Vj 6= /0, nodes i and j are connected in the overlay and are said to be neighboring DDk

nodes. Since the global Dk relation is symmetric, if Vi∩Dk(H j) is not empty, then neither Vj ∩Dk(Hi) is
empty. In this case we say that Dk

i and Dk
j are neighbors. Correspondingly, the two DDk nodes i and j

are said to be neighbors. To summarise, the neighborhood relation and the DDk overlay form connected
undirected graphs.

4 ALGORITHMS

The chosen Delaunay data structure ensures locality: position updates affect (1) an avatar’s old and new
neighbors and (2) their respective DDk nodes. In this section we explain how the data structure is maintained
efficiently when positions are continuously updated.

4.1 A dynamic self-adaptive data structure

The load of the entire system depends on all the indexed vertices. As vertices on the borer are indexed on
multiple servers, they consume resources (CPU and bandwidth). The aim is having most of the neighbors
hosted by the same node, forming contiguous zones. In a highly dynamic environment each move tends
to disrupt this property. In what follows we show how the distributed data structure is balanced among
Kiwano nodes for efficient operations. This means minimizing the overlap at the borders and the number
of neighboring nodes.

Avatar insertion. When an avatar joins the world, it needs to connect to a node in order to receive
the up-to-date set of neighbors for its position. The role of the dispatcher is to select the entry node in the
overlay (see Figure 3).

The dispatcher maintains a simplified map of the DDk nodes and selects the right entry with high
probability. Each node i of this DDk map is represented by the barycenter of its hosted Hi vertices. The
nodes update the map regularly regularly with the value of their barycenter. The dispatcher selects then
the node whose barycenter is the nearest to the avatar’s insert position and forwards the insert query to
that node. This behaviour favorises a compact shape for zones.

The avatar sends its initial position to the dispatcher, which selects the best DDk node to handle the
avatar. The insertion query is then forwarded to the selected node that will add it to H, the set of hosted
avatars. The node will, from now on, maintain the avatar’s neighborhood and receive future position
updates.

Transfer on position update. In a dynamic environment avatars move, frequently update their position
and thus their neighbors change. When most of the neighborhood spans over another node, the vertex is
transferred to that node. This behavior minimizes the size of the borders.

Load balancing. Avatar distribution can vary in time and some nodes may have more load than others.
To avoid having most of the charge handled by just a few ones, nodes regularly send information about
their load to their neighboring nodes. When the load of two neighboring nodes significantly differs, the
most loaded one transfers to the other node avatar vertices from its in-border until they are balanced. In
this way the vertices are step-by-step, peer-to-peer, partitioned into sets of similar sizes. The vertices to
be transferred are selected to minimise the distance to the barycenter, again, favoring a compact shape for
zones.

Node addition. When the total load of the system exceeds the resources available across the overlay,
new nodes need to be added. When joining the system, a node must know at least one vertex and its

1841

Diaconu and Keller

DDk node DDk node DDk node. . .

Dispatcher

Avatar Avatar

position
updateneighborsk

insert

insert

Border
protocol

DDk map

Figure 3: Distributed Delaunayk overlay.

neighborhood to be able to maintain the borders with its neighboring nodes. In other words, the smallest
zone is the Voronoi cell of a vertex. A new, empty node queries the dispatcher, which selects the node
with the highest load. The selected node partitions the set of hosted vertices Hi in two disjoint subsets
U1]U2 = Hi and transfers one of them to the new node. They also communicate the outer borders to
maintain the neighborhood in the node overlay. The two subsets U1 and U2 are selected using the barycenter
criterion to produce two compact sets with small border overlap.

Reshaping. Even when the load is similar, the size of the borders may be too large leaving place to
only a few internal vertices. For instance, if a node hosts one vertex, the size of the border is roughly
70. To avoid this, DDk nodes regularly transfer to their neighboring nodes vertices on the in-border. The
vertices to be transferred are selected to favorise compact zones.

4.2 Periodical Update

When avatars join, leave, and update their positions, DDk nodes recompute the neighborhood, Dk
i to deliver,

as soon as possible, updates to avatars. This is the raison d’être of the DDk overlay. We identified two
possible manners to compute the Dk

i : (1) incrementally, each position update is processed at a time and
(2) periodically, incoming messages are aggregated and processed in batch. We initially implemented the
incremental method that notifies clients of each update immediately. For one level of neighborhood, Dk

1,
the system performs acceptably, but for two or more levels there are too many messages and overhead to
maintain the borders. In Kiwano we implemented a periodical neighborhood computation. The Delaunay
graph is recomputed ten times per second. Virtual worlds are implemented in a similar way, having a
discrete loop in which events are periodically executed in batch with frequencies (or frame-rates (Bharambe,
Douceur, Lorch, Moscibroda, Pang, Seshan, and Zhuang 2008), (Yahyavi and Kemme 2013)) of 10-20x/sec,
e.g., MOVIES (Dittrich, Blunschi, and Salles 2011). Also, this delay does not apply to updates on known
neighbors. Avatar data –including the position– can be notified directly, without passing through the DDk

overlay, see Section 5.
Avatar insertion. A node creates a new vertex when an avatar is (1) inserted by the dispatcher,

(2) transferred from a neighboring node or (3) appears on the out-border. It is then queued to be inserted
in the triangulation. When it is inserted or transferred, the avatar is also hosted –its vertex is added to H–
and notified about the node that handles future position updates. Otherwise, the vertex is just added to the
out-border and used to compute the Dk relation.

Avatar removal. When it leaves the world or has not updated its position for a long time, it is queued
for deletion.

Position updates. For vertices in H updates come from the avatar. For the out-border thy come from
a neighboring node. Updates are collected and the affected neighborhoods are notified after the subsequent
Dk

i computation.

1842

Diaconu and Keller

Dk
i computation. Before recomputing the Dk

i relation, the set Vi is updated with the pretreated events
like border updates or avatar inserts, transfers, and removals. After the computation of the Dk

i relation, all
hosted avatars receive notifications about the changes in their neighborhood. Of course, they will receive
notifications only if there are any differences, i.e., sets Dk

i (u) - oldDk
i (u) or oldDk

i (u) - Dk
i (u) are non empty.

Also, neighboring nodes are informed and updated of all vertices that are in their out-borders. The cyclic
computation of Dk

i is described in Algorithm 1.

Algorithm 1 Periodical update on each DDk node
loop

oldDk
i ← Dk

i
update Vi with the inserted, deleted, and updated vertices
recompute Dk

i for the local set of vertices Vi
for all u in Hi do

inform u to add Dk
i (u) - oldDk

i (u), if any
inform u to discard oldDk

i (u) - Dk
i (u), if any

end for
update and optimise the border with neighbour nodes

end loop

Summary. Vertices of the out-border have their positions updated by the node that hosts them. So,
updates for the vertices on the border are forwarded to the concerned neighboring nodes. If a node receives
a border update for a vertex not already in its out-border, the vertex is added to the set Out. This node to
node communication ensures a coherent Distributed Delaunay computation in a decentralized system.

The amount of exchanged border messages grows with the size of the borders and the number neighboring
nodes. Therefore, we need to minimise the number of vertices on the borders and the number of neighboring
nodes. The reshaping process and, in general, the way the avatars are transferred from one node to another
are aimed at optimizing these values using heuristics. At regular time intervals, the load balancing and node
addition processes distribute the load evenly among all nodes. However, every avatar movement tends to
break the equilibrium. For some frequency of updates or amplitude of movements the system will witness
a degradation in performance. The performance of our actual implementation is described in Sec. 6.

5 SYSTEM ARCHITECTURE

In this section we describe the cloud architecture that supports the discussed algorithms and exposes the
functionality with a public API. By simply connecting to this API we open the possibility for virtual world
interoperability.

Transparency. The DDk nodes will not be exposed directly through the API. This would lead to too
frequent reconnections from the clients. We introduced proxy nodes, each avatar having a proxy as single
entry point for the entire session, as depicted in Figure 4. Proxies forward messages between clients and
DDk nodes hiding the distribution of the Kiwano algorithm from the developers. Their charge depends
linearly on the number of avatars hosted and do not pose a scalability problem. All proxy nodes report
on their availability to an allocator which assigns proxies to the newcomers such that the load among the
proxies is balanced.

Public API and Interoperability. We envisaged Kiwano to be deployed in the cloud and to be
accessible via an API to virtual world developers. The exposed functionality allows an avatar to: (1) update
position and state, (2) gracefully leave the virtual world, (3) get all neighbors, (4) send message to all/one
neighbor(s). Kiwano responds with the following messages: (1) full list of neighbors and (2) notification
message or neighbor position. When connecting multiple virtual worlds to Kiwano, avatars indexed together,
thus the interoperability. Our examples include HybridEarth and a Minecraft plugin (Valero, Diaconu, and
Keller 2013), (de Campredon, Diaconu, Keller, and Triponez 2014), (Diaconu 2015).

1843

Diaconu and Keller

DDk node DDk node

Proxy Proxy

Sim Sim

User User

Kiwano

position
updates neighborsk

position
updates neighborsk

Real time
multimedia

Avatar data
(and signaling)

Border
protocol

Figure 4: Kiwano distributed architecture.

6 EVALUATION

Kiwano is implemented in python using bindings to C++ Delaunay triangulations on a sphere (Caroli,
de Castro, Loriot, Rouiller, Teillaud, and Wormser 2010).

Settings. To perform the evaluation, we employed a heterogeneous system. We disposed of virtual
and physical machines of diverse configurations and performances located in four different physical places.
DDk nodes, the dispatcher, and the allocator ran on four 8-core Intel i7 CPU 920 at 2.67GHz, 64bit, with
24GB of RAM located in the same data center. Each DDk node was running on a different core. All nodes
were communicating via ethernet regardless wether they were running on the same station or remotely.
For running the proxies we had at our disposal:

• 15 physical CPUs in a data center, Intel Xeon at 2.00GHz, 64bit, 2GB of RAM,
• 30 virtual machines in a different data center, QEMU Virtual CPU, 64bit, 1.5GB of RAM,
• 6 desktop computers in our office, various CPUs at 32bit, all with 4GB of RAM.

Measurements. The avatar simulators ran on proxies and followed a large scale power-law distribution
inspired from Blue Banana (Legtchenko, Monnet, and Thomas 2010), (Diaconu 2015). The proxies reported
to the allocator their state, load, and throughput of incoming and outgoing messages. The DDk nodes
reported to a monitoring server every 10 seconds average values for message delays, number of vertices,
size of borders, exchanged messages, etc.

Initially, we ran the monitoring server, the dispatcher, the allocator and several idle DDk nodes. New
DDk nodes can be added to the system whenever they are needed. The dispatcher was configured to
use an idle DDk node once the average delay between two neighborhood notifications decreased under a
fixed threshold. We launched avatars, one thousand at a time and waited several seconds in between for
the system to stabilise. During this time, the simulated avatars sent their updates with the programmed
frequency. Once the system was stable (i.e., all insertions from the dispatcher were complete and the
measured parameters became constant) the reports were recorded by the monitoring server for all nodes in
the system.

Scenarios. The required frequency for updates in virtual worlds can vary greatly. Second Life and
MMORPGs (World of Warcraft) are centered around social interaction, avatar customization and the
neighborhood does not change frequently (Yahyavi and Kemme 2013). Occasional neighborhood updates
can be delayed up to a few seconds. Temporal resolution for FPS games needs to be as high as 10-30
frames/sec (Yahyavi and Kemme 2013). In addition, we evaluated neighborhood changes using a real

1844

Diaconu and Keller

0 5 10 15 20 24

0K
1K
2K

5K

10K

15K

20K

number of DDk nodes

Total number of avatars
Avatars per DDk node

(a) Action game scenario

0 2 4 6 8 10 12 14 16
0K
2K

5K

10K

15K

20K

25K

30K

number of DDk nodes

Total number of avatars
Avatars per DDk node

(b) Social virtual world

Figure 5: Kiwano Scalability Evaluation.

dataset which captures several hours of soccer player movements (Pettersen, Johansen, Johansen, Berg-
Johansen, Gaddam, Mortensen, Langseth, Griwodz, Stensland, and Halvorsen 2014) where positions are
reported every 100ms. However, most of these movements do not impact the Delaunay graph and, hence,
avatar neighborhood remains unchanged. As a result we evaluated two different scenarios that match these
demanding requirements:

Action games: Position updates are frequent, every 0.5 seconds. The delay between two neighborhood
updates does not exceed 0.2 seconds. If the delay exceeds this value, a DDk node is added to the
overlay.

Social virtual worlds: Each simulated avatar updates their position every 4 seconds. DDk nodes send
neighborhood updates for each hosted avatar. In this scenario the bottleneck becomes the number of
incoming messages, therefore the addition of DDk nodes is triggered when messages to the proxies
are lost.

6.1 Results

Our hardware settings allowed us to perform the evaluations with 22.000 moving avatars hosted by 24
nodes for action games scenario (Figure 5a) and 32.000 avatars hosted by 16 servers for the social virtual
world scenario (Figure 5b). This is orders of magnitude beyond current state-of-the-art. Most importantly
these evaluations show that sub-quadratic scalability is feasible. In our range of evaluation, we observe, as
expected, that the number of avatars per node tends to stabilise around 1000 avatars per node for the action
game scenario and 2000 avatars per node for the social world scenario. Meaning that, from a certain point,
scalability is linear, or, the measured cost per avatar is, as theoretically predicted and expected, constant.

Intuitively, we want to minimise the number of avatars on the borders because their position updates
need to be propagated to the neighboring nodes. Basically, avatars on the borders are represented on two or
more nodes. Results in Figure 5 support this intuition. In both scenarios, when all only one node is needed,
it can host twice as many avatars per node then in the case when 10 or more nodes are are employed.
Filtering mechanisms may also be used to increase the number of avatars per DDk node by lowering the
average frequency of updates. When positions change only slightly, oftentimes they do not trigger changes

1845

Diaconu and Keller

in the neighborhood and they can be sent directly to the neighbors, without recomputing the Delaunay
triangulation.

Some issues may arise. When the number of nodes grows, the probability to go across several nodes
increases. For example, if we have two DDk nodes, a teleportation, in the worst case, would transfer the
vertex to the other node. But with more nodes, the vertex can be transferred subsequently, from node to
node multiple times before reaching the correct node.

7 CONCLUSION

We described Kiwano, a solution for scalable virtual worlds without borders. We handle separately the
main source of load: avatar mobility. Kiwano employs a distributed Delaunay triangulation to provide each
avatar with a constant number of neighbors independently of their density or distribution. The avatar-to-
avatar interactions and related computations are bounded, allowing the system to scale. We evaluated our
implementation with tens of thousands of avatars connecting to a Kiwano instance running in the cloud,
across several data centers, outperforming by many orders of magnitude actual solutions.

Kiwano is a valid solution for real world projects. Our intention is to provide the first massively distributed
and self-adaptive solutions for virtual worlds suitable to run in the cloud. Kiwano API and docs can be accessed
at http://kiwano.li and virtual worlds that use it and interoperate at http://hybridearth.net
and http://manycraft.net.

REFERENCES

Almroth, D. 2010. “Pikko Server”. In Erlang User Conference. Stockholm, Sweden.
Bharambe, A. R., J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and X. Zhuang. 2008.

“Donnybrook: Enabling Large-scale, High-speed, Peer-to-peer Games”. In Proceedings of the ACM
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), 389–400. Seattle, WA, USA.

Buyukkaya, E., M. Abdallah, and R. Cavagna. 2009, Jan. “VoroGame: A Hybrid P2P Architecture for
Massively Multiplayer Games”. In IEEE Consumer Communications and Networking Conference
(CCNC), 1–5. Las Vegas, NV, USA.

Caroli, M., P. M. M. de Castro, S. Loriot, O. Rouiller, M. Teillaud, and C. Wormser. 2010. “Robust and
Efficient Delaunay Triangulations of Points on Or Close to a Sphere”. In 9th International Symposium
on Experimental Algorithms, (SEA), 462–473. Ischia Island, Naples, Italy.

de Campredon, J., R. Diaconu, J. Keller, and E. Triponez. 2014. “HybridEarth: Social Mixed Reality at
Planet Scale”. In IEEE Consumer Communications and Networking Conference (CCNC) (CCNC) -
Demos. Las Vegas, NV, USA.

de Oliveira, J. C., and N. D. Georganas. 2003. “VELVET: An Adaptive Hybrid Architecture for VEry
Large Virtual EnvironmenTs”. Presence 12 (6): 555–580.

Debeauvais, T., A. Valadares, and C. V. Lopes. 2012. “Evolution of scalability with synchronized state
in virtual environments”. In IEEE International Workshop on Haptic Audio Visual Environments and
Games (HAVE), 142–147. Munich, Germany.

Diaconu, R. 2015. Scalability for Virtual Worlds. Ph. D. thesis, Université Pierre et Marie Curie, Paris VI.
Diaconu, R., and J. Keller. 2014. “OneSim: Scaling Second Life with Kiwano”. In Proceedings of

International Workshop on Massively Multiuser Virtual Environments (MMVE), 8:1–8:2. Singapore.
Diaconu, R., J. Keller, and M. Valero. 2013. “Manycraft: Scaling Minecraft to Millions”. In Network and

System Support for Games (NetGames), 1:1–1:6. Denver, CO, USA.
Dittrich, J., L. Blunschi, and M. A. V. Salles. 2011. “MOVIES: Indexing Moving Objects by Shooting

Index Images”. GeoInformatica 15 (4): 727–767.
Ellis Hamburger 2013, July. “Largest space battle in history claims 2,900 ships, untold virtual lives”.

http://www.theverge.com.

1846

Diaconu and Keller

Hu, S.-Y., J.-F. Chen, and T.-H. Chen. 2006, July. “VON: A Scalable Peer-to-Peer Network for Virtual
Environments”. IEEE Network Journal 20 (4): 22–31.

Keller, J., and G. Simon. 2002. “Toward a Peer-to-Peer Shared Virtual Reality”. In International Conference
on Distributed Computing Systems (ICDCS), 695–700. Vienna, Austria.

Knutsson, B., H. Lu, W. Xu, and B. Hopkins. 2004. “P2p Support for Massively Multiplayer Games”. In
IEEE Computer and Communications Societies (INFOCOM). Hong Kong, PR China.

Lake, D., M. Bowman, and H. Liu. 2010. “Distributed Scene Graph to Enable Thousands of Interacting
Users in a Virtual Environment”. In Network and System Support for Games (NetGames), 1–6. Taipei,
Taiwan.

Legtchenko, S., S. Monnet, and G. Thomas. 2010. “Blue Banana: resilience to avatar mobility in distributed
MMOGs”. In IEEE/IFIP International Conference on Dependable Systems & Networks (DSN), 171–180.
Chicago, IL, USA.

Pettersen, S. A., D. Johansen, H. Johansen, V. Berg-Johansen, V. R. Gaddam, A. Mortensen, R. Langseth,
C. Griwodz, H. K. Stensland, and P. Halvorsen. 2014. “Soccer Video and Player Position Dataset”. In
ACM Multimedia Systems Conference (MMSys), 18–23. New York, NY, USA.

Valero, M., R. Diaconu, and J. Keller. 2013. “Manycraft: Massively Distributed Minecraft”. In Network
and System Support for Games (NetGames Demo), 17:1–17:3. Denver, CO, USA.

Varvello et al., M. 2011. “Exploring Second Life”. IEEE/ACM Transactions on Networking 19 (1): 80–91.
Yahyavi, A., and B. Kemme. 2013. “Peer-to-Peer Architectures for Massively Multiplayer Online Games:

A Survey”. ACM Computing Surveys 46 (1): 9.
Yu, A., and S. T. Vuong. 2005. “MOPAR: A Mobile Peer-to-peer Overlay Architecture for Interest

Management of Massively Multiplayer Online Games”. In Proceedings of the International Workshop
on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), 99–104. Stevenson,
WA, USA.

AUTHOR BIOGRAPHIES

RALUCA DIACONU is a Research Associate at the Computer Laboratory at University of Cambridge,
UK, working in the area Internet of Things and Distributed Computing. Dr Diaconu holds a PhD in
Distributed Computing at University Pierre and Marie Curie, Sorbonne Universités in Paris, France, for
her work in distributed algorithms and architectures for scaling up hybrid and virtual worlds. Her email
address is raluca.diaconu@cl.cam.ac.uk.

JOAQUÍN KELLER graduated in Mathematical Logic at Université Denis Diderot and obtained a PhD
in Distributed Systems from Université de Versailles. He has been leading research in virtual worlds for
more than ten years. He is the designer of Solipsis “the first peer-to-peer virtual world” and cofounder of
Twinverse, a technology company for social location based services and virtual worlds. He is now a senior
researcher at Orange Labs where he has launched HybridEarth, a mixed reality world spanning the planet, and
Kiwano, a scalable distributed infrastructure aimed at allowing an unlimited number (i.e., millions and more)
of users to simultaneously interact in a virtual environment. His email address is joaquin.keller@gmail.com.

1847

